1. Technical Field
This invention relates generally to electronic devices and in particular to a radio frequency signal splitter device.
2. State of the Art
Signal splitters are an electronic device that is used to divide an electronic input signal into two or more versions of the input signal. Signal splitters often accept a downstream input signal at an input port, and provide a reduced-power version of the input signal at two or more output ports. In the reverse direction, an upstream signal received at an output port is transmitted to the input port for continued upstream transmission. In general, there is intentionally high isolation (insertion loss) between the output ports of a signal splitter. This means that there is a high amount of attenuation in a transmission path extending from one splitter output port to another splitter output port.
High isolation (high insertion loss) between output ports is often a desirable feature in a signal splitter. There are applications, however, where it is desirable to transmit signals between output ports of a signal splitter with a minimum of attenuation. In particular it is desirable in some applications to provide a signal splitter that operates in at least two radio-frequency bands of operation, a first radio-frequency band and a second radio-frequency band. High isolation is desirable between splitter output ports in the first frequency band, but low isolation—less attenuation—is desired in the second frequency band. Lowering the isolation between output ports of a splitter has been implemented in some particular splitter devices, but there are drawbacks, including reduced splitter performance outside the particular frequency band of interest, and isolation that is still too high within the particular frequency band of interest. Thus there is a need for an electronic splitter device that provides frequency dependent splitter performance, including high isolation between output ports in a first frequency band, and low isolation between output ports in a second frequency band, without compromising splitter performance in either the first or the second frequency bands.
The disclosed invention relates to electronic devices and in particular to a radio frequency signal splitter device.
Disclosed is an electronic signal splitter device with sufficient frequency bandwidth to support community access television (CATV) signal frequencies as well as in-home entertainment (THE) signal frequencies. The CATV signal frequencies are conducted between an input port and one or more output ports (and vice versa). The in-home entertainment signal frequencies are conducted from any of the output ports, to any of the other output ports, and between the input port and any of the output ports (and vice versa). The application of the disclosed novel coupled transmission line element lowers the isolation between the output ports for signals in the in-home entertainment spectrum, while leaving relatively higher isolation between the output ports for the signals in the CATV spectrum. The inherent isolation characteristics of a classic signal splitter are modified to reduce the isolation in a given frequency band (ie. MOCA or other IHE signal frequency bands) or above a certain given signal frequency boundary.
In some embodiments the coupled transmission line element includes a first electrically conductive wire and a second electrically conductive wire. In some embodiments the first electrically conductive wire includes a first electrically conductive wire length, a first electrically conductive wire first end electrically coupled to the in-home entertainment signal transmission path, and a first electrically conductive wire second end, where the first electrically conductive wire second end is un-terminated. In some embodiments the second electrically conductive wire includes a second electrically conductive wire length, a second electrically conductive wire first end electrically coupled to the in-home entertainment signal transmission path, and a second electrically conductive wire second end, where the second electrically conductive wire second end is un-terminated. In some embodiments the first electrically conductive wire and the second electrically conductive wire are twisted into an approximation of a helix such that the first electrically conductive wire and the second electrically conductive wire are electrostatically coupled. In some embodiments an electrical short connection does not exist between the first electrically conductive wire and the second electrically conductive wire.
In some embodiments an in-home entertainment signal transmission path includes a resistor. In some embodiments the in-home entertainment signal transmission path includes a first inductor positioned between the first output port and the resistor. In some embodiments the in-home entertainment signal transmission path includes a second inductor positioned between the second output port and the resistor. In some embodiments the first electrically conductive wire first end is coupled to the first output port. In some embodiments the first electrically conductive wire first end is coupled to a node between the first inductor and the resistor. In some embodiments the second electrically conductive wire first end is coupled to the second output port. In some embodiments the second electrically conductive wire first end is coupled to a node between the second inductor and the resistor. In some embodiments the length of the first electrically conductive wire is a different value than the length of the second electrically conductive wire.
In some embodiments the coupled transmission line element further comprises a third electrically conductive wire. In some embodiments the third electrically conductive wire includes a third electrically conductive wire length, a third electrically conductive wire first end electrically coupled to a current return path, and a third electrically conductive wire second end, where the third electrically conductive wire second end is un-terminated. In some embodiments the third electrically conductive wire is integrated into the helix formed by the first and the second electrically conductive wire, such that the third electrically conductive wire is electrostatically coupled to both the first and the second electrically conductive wires. In some embodiments more than three electrically conductive wires are included in the coupled transmission line element.
Disclosed is a signal splitter that includes an input port, a first output port, a second output port, and a signal transmission path conducting signals between the first and the second output port. The signal splitter also includes a coupled transmission line element coupled to the signal transmission path, wherein the coupled transmission line element includes a first elongate electrical conductor and a second elongate electrical conductor. The first elongate electrical conductor includes a first elongate electrical conductor first end coupled to the signal transmission path, a first elongate electrical conductor second end, where the first elongate electrical conductor second end is un-terminated, and a first elongate electrical conductor length extending between the first elongate electrical conductor first end and the first elongate electrical conductor second end. The second elongate electrical conductor includes a second elongate electrical conductor first end coupled to the signal transmission path, a second elongate electrical conductor second end, where the second elongate electrical conductor second end is un-terminated, and a second elongate electrical conductor length extending between the second elongate electrical conductor first end and the second elongate electrical conductor second end. The first elongate electrical conductor and the second elongate electrical conductor are not shorted together, and the first elongate electrical conductor and the second elongate electrical conductor are electrostatically coupled.
In some embodiments the signal transmission path includes at least one resistor. In some embodiments the signal transmission path includes at least one inductor. In some embodiments the signal transmission path includes one resistor. In some embodiments the signal transmission path includes a first inductor positioned between the first output port and the resistor. In some embodiments the signal transmission path includes a second inductor positioned between the second output port and the resistor. In some embodiments the first elongate electrical conductor first end is coupled to the first output port. In some embodiments the first elongate electrical conductor first end is coupled to a node between the first inductor and the resistor. In some embodiments the second elongate electrical conductor first end is coupled to the second output port. In some embodiments the second elongate electrical conductor first end is coupled to a node between the second inductor and the resistor. In some embodiments the length of the first electrically conductive wire is a different value than the length of the second electrically conductive wire.
In some embodiments the coupled transmission line element further comprises a third elongate electrical conductor. The third elongate electrical conductor includes a third elongate electrical conductor length, a third elongate electrical conductor first end electrically coupled to a current return path, and a third elongate electrical conductor second end, where the third elongate electrical conductor second end is un-terminated. In some embodiments the third elongate electrical conductor is electrostatically coupled to both the first and the second elongate electrical conductors. In some embodiments the length of the third elongate electrical conductor is a different value than the length of the first elongate electrical conductor. In some embodiments the length of the third elongate electrical conductor is a different value than the length of the second elongate electrical conductor. In some embodiments more than three elongate electrical conductors are included in the coupled transmission line element.
Disclosed is a method of modifying the isolation between the output ports of an electronic signal splitter, the method comprising several steps. The method of modifying the isolation between the output ports of an electronic signal splitter according to the invention includes the step of coupling a first end of a first electrically conductive wire to an in-home entertainment signal transmission path of the signal splitter, where the in-home entertainment signal transmission path couples a first output port of the signal splitter to a second output port of the signal splitter. The method of modifying the isolation between the output ports of an electronic signal splitter according to the invention also includes the step of coupling a first end of a second electrically conductive wire to an in-home entertainment signal transmission path of the signal splitter. The method of modifying the isolation between the output ports of an electronic signal splitter according to the invention includes the step of twisting the first electrically conductive wire and the second electrically conductive wire together to form an approximation of a helix. In some embodiments the first electrically conductive wire includes a first insulating coating, and the second electrically conductive wire includes a second insulating coating. In some embodiments there is no an electrical short circuit connection between the first electrically conductive wire and the second electrically conductive wire. In some embodiments the length of the first electrically conductive wire is a different value than the length of the second electrically conductive wire. In some embodiments the method includes the steps of coupling a first end of a third electrically conductive wire to a current return path, and twisting the first electrically conductive wire, the second electrically conductive wire, and the third electrically conductive wire together to form an approximation of a helix. In some embodiments the length of the third electrically conductive wire is a different value than the length of the first electrically conductive wire.
The foregoing and other features and advantages of the present invention will be apparent from the following more detailed description of the particular embodiments of the invention, as illustrated in the accompanying drawings.
As discussed above, embodiments of the present invention relate to electronic devices and in particular to a radio frequency signal splitter device.
Signal splitters are often designed to have intentionally high insertion loss, or isolation, between their output ports. In some signal splitters the high isolation between output ports is an inherent and desirable quality. In some applications however, it is desirable to have lower isolation between the output ports for signals within a specific frequency range. Disclosed is a signal splitter that includes a coupled transmission line element connected between two of its output ports. The coupled transmission line element is used to lower the isolation between the two output ports for a particular frequency band, while leaving the isolation between the two output ports high for a different specific frequency band. The coupled transmission line element includes a first and a second elongate electrical conductor. The first and the second elongate electrical conductor first ends are coupled to the signal transmission path between the two output ports. The first and the second elongate electrical conductor second ends are un-terminated. The first elongate electrical conductor and the second elongate electrical conductor are not shorted together, and the first elongate electrical conductor and the second elongate electrical conductor are electrostatically coupled, such as by twisting them together into a helix.
Signal splitter 10 shown in
Splitter 10 provides performance that is usually desired from a signal splitter, including
The novel splitter designs described in this document were developed because of an application where the high isolation (high insertion loss) between output ports 14 and 16 is not desired for all signal frequencies. It is desired in a community access television (CATV) system application to have a splitter that has high insertion loss or isolation between output ports of the splitter for a first frequency band of interest, and low isolation between splitter output ports for a second frequency band of interest. The goal was to reduce the isolation in the second frequency band without compromising the splitter's other performance characteristics. Installing lumped elements including resistors, capacitors, and inductors along the signal path between the splitter output ports 14 and 16 was found to be unsatisfactory because outside the frequency band of interest there was degradation in performance in one or more splitter performance characteristics, and, within the frequency band of interest, there was a need to further reduce isolation between the output ports.
Community access television, or cable television, (CATV) networks use an infrastructure of interconnected coaxial cables, splitters, amplifiers, filters, trunk lines, cable taps, drop lines and other signal-conducting devices to supply and distribute high frequency “downstream” signals from a main signal distribution facility, known as a head-end, toward subscriber premises such as homes and businesses. The downstream signals operate the subscriber equipment, such as television sets, telephones, and computers. The typical CATV network is a two-way communication system. CATV networks also transmit “upstream” signals from the subscriber equipment back to the head-end of the CATV network. For example, upstream bandwidth may include data related to video-on-demand services, such as video requests and billing authorization. Two-way communication is also utilized when using a personal computer connected through the CATV infrastructure to the public Internet, for example when sharing photo albums or entering user account information. In most CATV networks the downstream frequency band, or downstream bandwidth, is within the range of 54-1002 megahertz (MHz) and the upstream frequency band, or upstream bandwidth, is within the range of 5-42 MHz. Thus the CATV signals operate within a first frequency band, where the first frequency band is from 5-1002 MHz in this example.
An in-home entertainment (IHE) network may be coupled to the CATV network via the same coaxial cable delivering the downstream and upstream bandwidth of the CATV system. The in-home entertainment network can be a network providing multiple streams of high definition video and gaming entertainment. Examples of in-home entertainment network technologies include Ethernet, HomePlug, Home Phoneline Networking Alliance (HPNA), Multimedia over Coax Alliance (MoCA) and 802.11n protocols. The in-home entertainment (IHE) network is coupled to the CATV network within a subscriber premises to allow the CATV network to distribute IHE signals from one multimedia device to another within the subscriber premises. The multimedia devices in a CATV system are each connected to an output port of a signal splitter, so in a CATV system, IHE signals are delivered between multimedia devices by travelling between the splitter output ports of a signal splitter.
Since the operation of the subscriber premises IHE network must occur simultaneously with the operation of the CATV services, the IHE signals often utilize a frequency range different from the frequency ranges of the CATV upstream and downstream signals. A typical IHE frequency band is 1125-1675 MHz, which is referred to in this document as the IHE signal frequency range, or bandwidth. A specific IHE network technology can includes other frequency ranges, but the 1125 to 1675 MHz frequency range is of major relevance because of its principal use in establishing connections between the multimedia devices within a subscriber network. Thus the IHE signals use a second frequency band of interest, where in this example the second frequency band is from 1125 to 1675 MHz.
It is to be understood that while the example frequency ranges discussed in this document include a first frequency range that is the CATV frequency band from 5-1002 MHz, and a second frequency range that is the IHE frequency band from 1125-1675, the invention is not limited to the use of these two frequency ranges or types of signals. The first frequency range can be any range of signal frequencies. The second frequency range can be any range of signal frequencies. The first frequency range can be a range that transmits any types of signals. In some embodiments the first frequency range transmits signals other than CATV signals. The second frequency range can be a range that transmits any type of signals. In some embodiments the second frequency range transmits signals other than IHE signals.
Although using the in-home cable infrastructure as the communication medium substantially simplifies the implementation of the IHE network, there are certain disadvantages to doing so. One noted problem arises when IHE signals pass between output ports of a conventional splitter en route to another IHE-enabled device within the network. The CATV entry adapter was not originally intended to communicate IHE signals between its ports, as is necessary to achieve IHE communication in the IHE network. To implement the IHE network, the IHE signals must traverse between the output ports of a signal splitter.
As discussed earlier, the typical signal splitter has a high degree of signal rejection or isolation between its output ports. When the in-home entertainment signals traverse between the separate signal component legs of the splitter, the degree of signal rejection or isolation greatly attenuates the strength of the IHE signals. Thus it is desirable to have a system which transmits both CATV signal of a first frequency range, and IHE signals of a second frequency range. The desire is to have high signal isolation between the splitter output ports for CATV signals of the first frequency range, but low signal isolation between the splitter ports for IHE signal travelling from one splitter output port to another. Thus the IHE signal can travel between splitter output ports, and from one multimedia device to another within the IHE network, without attenuating or rejecting the IHE signals that are travelling between splitter legs.
Splitter 110 of
Coupled transmission line element 160 in this embodiment includes two elongate electrical conductors, first elongate electrical conductor 130, and second elongate electrical conductor 140. In some embodiments coupled transmission line element 160 includes three elongate electrical conductors. In some embodiments coupled transmission line element 160 includes more than three elongate electrical conductors. An elongate electrical conductor is any length of electrically conductive material with a first end and a second end, and an electrically conductive path between the first end and the second end. In some embodiments the elongate electrical conductor is a trace on a printed circuit board. In some embodiments the elongate electrical conductor is an electrically conductive wire. In some embodiments the elongate electrical conductor is some other form of electrically conductive material with a first end, a second end, and a length of electrically conductive material between the first end and the second end.
In the embodiment of splitter 110 shown in
First and second electrically conductive wires 130 and 140 are electrostatically coupled in the embodiment shown in
In some embodiments the rate of twist of electrically conductive wires 130 and 140 is constant along the lengths of the wires 130 and 140. In some embodiments the rate of twist of electrically conductive wires 130 and 140 varies along the lengths of the wires 130 and 140. In some embodiments the length L1 of first electrically conductive wire 130 is a different value than the length L2 of second electrically conductive wire 140.
In embodiments where elongate electrical conductors 130 and 140 are electrical traces 130 and 140 or take other forms, elongate electrical conductors 130 and 140 can be electrostatically coupled in many different ways. Electrical traces 130 and 140 can be electrostatically coupled by varying their shape and direction on the printed circuit board such that there is electrostatic coupling between elongate electrical conductors 130 and 140. In some embodiments the distance between elongate electrical conductors can be the same, or vary along the length of electrical traces 130 and 140.
In some embodiments coupled transmission line element 160 includes a ground plane that is electrostatically coupled to elongate electrical conductors 130 and 140.
Elongate electrical conductor 150 as shown in
In the embodiment shown in
Elongate electrical conductors 130 and 140 can be coupled to IHE signal transmission path 156 at many different points. In the embodiment shown in
In the embodiments of splitter 110 according to the invention of
In some embodiments method 400 includes the step of coupling a first end of a third electrically conductive wire to a current return path. In some embodiments method 400 includes the step of twisting the first electrically conductive wire, the second electrically conductive wire, and the third electrically conductive wire together to form an approximation of a helix. In some embodiments the length of the third electrically conductive wire is a different value than the length of the first electrically conductive wire.
The embodiments and examples set forth herein were presented in order to best explain the present invention and its practical application and to thereby enable those of ordinary skill in the art to make and use the invention. However, those of ordinary skill in the art will recognize that the foregoing description and examples have been presented for the purposes of illustration and example only. The description as set forth is not intended to be exhaustive or to limit the invention to the precise form disclosed. Many modifications and variations are possible in light of the teachings above.
This application claims priority to U.S. Provisional Application Ser. No. 61/663,953 to Alkan et al, filed Jun. 25, 2012 and entitled “Radio Frequency Signal Splitter”, which is incorporated entirely herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3790909 | LeFevre | Feb 1974 | A |
3845358 | Anderson et al. | Oct 1974 | A |
3939431 | Cohlman | Feb 1976 | A |
4027219 | Van Alphen et al. | May 1977 | A |
4306403 | Hubbard et al. | Dec 1981 | A |
4344499 | Van der Lely et al. | Aug 1982 | A |
4399419 | Dobrovolny | Aug 1983 | A |
4512033 | Schrock | Apr 1985 | A |
4520508 | Reichert, Jr. | May 1985 | A |
4648123 | Schrock | Mar 1987 | A |
4677390 | Wagner | Jun 1987 | A |
4715012 | Mueller, Jr. | Dec 1987 | A |
4961218 | Kiko | Oct 1990 | A |
4982440 | Dufresne et al. | Jan 1991 | A |
5010399 | Goodman et al. | Apr 1991 | A |
5126840 | Dufresne et al. | Jun 1992 | A |
5214505 | Rabowsky et al. | May 1993 | A |
5231660 | West, Jr. | Jul 1993 | A |
5334955 | Strnad | Aug 1994 | A |
5369642 | Shioka et al. | Nov 1994 | A |
5485630 | Lee et al. | Jan 1996 | A |
5534830 | Ralph | Jul 1996 | A |
5548255 | Spielman | Aug 1996 | A |
5557319 | Gurusami et al. | Sep 1996 | A |
5557510 | McIntyre et al. | Sep 1996 | A |
5659273 | Harpham | Aug 1997 | A |
5668510 | Humpherys | Sep 1997 | A |
5719792 | Bush | Feb 1998 | A |
5740044 | Ehrenhardt et al. | Apr 1998 | A |
5745836 | Williams | Apr 1998 | A |
5798902 | Blodgett et al. | Aug 1998 | A |
5815794 | Williams | Sep 1998 | A |
5818825 | Corrigan et al. | Oct 1998 | A |
5839052 | Dean et al. | Nov 1998 | A |
5893024 | Sanders et al. | Apr 1999 | A |
5937330 | Vince et al. | Aug 1999 | A |
5950111 | Georger et al. | Sep 1999 | A |
5970053 | Schick et al. | Oct 1999 | A |
6012271 | Wilkens et al. | Jan 2000 | A |
6014547 | Caporizzo et al. | Jan 2000 | A |
6049693 | Baran et al. | Apr 2000 | A |
6069960 | Mizukami et al. | May 2000 | A |
6094211 | Baran et al. | Jul 2000 | A |
6101932 | Wilkens | Aug 2000 | A |
6128040 | Shinbori et al. | Oct 2000 | A |
6129187 | Bellanger et al. | Oct 2000 | A |
6169569 | Widmer et al. | Jan 2001 | B1 |
6173225 | Stelzle et al. | Jan 2001 | B1 |
6185432 | Vembu | Feb 2001 | B1 |
6205138 | Nihal et al. | Mar 2001 | B1 |
6348837 | Ibelings | Feb 2002 | B1 |
6348955 | Tait | Feb 2002 | B1 |
6373349 | Gilbert | Apr 2002 | B2 |
6377316 | Mycynek et al. | Apr 2002 | B1 |
6388539 | Rice | May 2002 | B1 |
6425132 | Chappell | Jul 2002 | B1 |
6430904 | Coers et al. | Aug 2002 | B1 |
6495998 | Terreault | Dec 2002 | B1 |
6498925 | Tauchi | Dec 2002 | B1 |
6510152 | Gerszberg et al. | Jan 2003 | B1 |
6546705 | Scarlett et al. | Apr 2003 | B2 |
D475019 | Soulodre | May 2003 | S |
D475020 | Soulodre | May 2003 | S |
6560778 | Hasegawa | May 2003 | B1 |
6570928 | Shibata | May 2003 | B1 |
D475350 | Soulodre | Jun 2003 | S |
6587012 | Farmer et al. | Jul 2003 | B1 |
6594827 | Pennings | Jul 2003 | B1 |
6622304 | Carhart | Sep 2003 | B1 |
6640338 | Shibata | Oct 2003 | B1 |
6678893 | Jung | Jan 2004 | B1 |
6683513 | Shamsaifar et al. | Jan 2004 | B2 |
6725462 | Kaplan | Apr 2004 | B1 |
6728968 | Abe et al. | Apr 2004 | B1 |
6757910 | Bianu | Jun 2004 | B1 |
6758292 | Shoemaker | Jul 2004 | B2 |
6804828 | Shibata | Oct 2004 | B1 |
6843044 | Clauss | Jan 2005 | B2 |
6845232 | Darabi | Jan 2005 | B2 |
6868552 | Masuda et al. | Mar 2005 | B1 |
6877166 | Roeck et al. | Apr 2005 | B1 |
6915530 | Kauffman et al. | Jul 2005 | B1 |
6920614 | Schindler et al. | Jul 2005 | B1 |
6928175 | Bader et al. | Aug 2005 | B1 |
6942595 | Hrazdera | Sep 2005 | B2 |
7003275 | Petrovic | Feb 2006 | B1 |
7012496 | Sugiura et al. | Mar 2006 | B2 |
7029293 | Shapson et al. | Apr 2006 | B2 |
7039432 | Strater et al. | May 2006 | B2 |
7048106 | Hou | May 2006 | B2 |
7061355 | Tanaka et al. | Jun 2006 | B2 |
7127734 | Amit | Oct 2006 | B1 |
7162731 | Reidhead et al. | Jan 2007 | B2 |
7254827 | Terreault | Aug 2007 | B1 |
7283479 | Ljungdahl et al. | Oct 2007 | B2 |
7399255 | Johnson et al. | Jul 2008 | B1 |
7404355 | Viaud et al. | Jul 2008 | B2 |
7404738 | Montena | Jul 2008 | B2 |
7416068 | Ray et al. | Aug 2008 | B2 |
7454252 | El-Sayed | Nov 2008 | B2 |
7464526 | Coenen | Dec 2008 | B2 |
7505819 | El-Sayed | Mar 2009 | B2 |
7530091 | Vaughan | May 2009 | B2 |
7549157 | Jackson et al. | Jun 2009 | B1 |
D596131 | Soulodre | Jul 2009 | S |
7675381 | Lin | Mar 2010 | B2 |
7742777 | Strater et al. | Jun 2010 | B2 |
8082570 | Olson et al. | Dec 2011 | B2 |
8098113 | Alkan | Jan 2012 | B2 |
8106660 | Merewether et al. | Jan 2012 | B1 |
8149070 | Albag et al. | Apr 2012 | B2 |
8181211 | Olson et al. | May 2012 | B2 |
8286209 | Egan et al. | Oct 2012 | B2 |
8350641 | Alkan et al. | Jan 2013 | B2 |
8356322 | Wells et al. | Jan 2013 | B2 |
8429695 | Halik et al. | Apr 2013 | B2 |
8479247 | Shafer | Jul 2013 | B2 |
8510782 | Wells et al. | Aug 2013 | B2 |
8589997 | Wells | Nov 2013 | B2 |
20010016950 | Matsuura | Aug 2001 | A1 |
20010050605 | Sugiura et al. | Dec 2001 | A1 |
20020141347 | Harp et al. | Oct 2002 | A1 |
20020144292 | Uemura et al. | Oct 2002 | A1 |
20020166124 | Gurantz et al. | Nov 2002 | A1 |
20020174423 | Fifield et al. | Nov 2002 | A1 |
20030084458 | Ljungdahl et al. | May 2003 | A1 |
20040113742 | Tanaka et al. | Jun 2004 | A1 |
20040147273 | Morphy | Jul 2004 | A1 |
20040172659 | Ljungdahl et al. | Sep 2004 | A1 |
20040229561 | Cowley et al. | Nov 2004 | A1 |
20040244053 | Golombek | Dec 2004 | A1 |
20040263283 | Ji | Dec 2004 | A1 |
20050034168 | Beveridge | Feb 2005 | A1 |
20050047051 | Marland | Mar 2005 | A1 |
20050144649 | Bertonis et al. | Jun 2005 | A1 |
20050183130 | Sadja et al. | Aug 2005 | A1 |
20050283815 | Brooks et al. | Dec 2005 | A1 |
20050289632 | Brooks et al. | Dec 2005 | A1 |
20060015921 | Vaughan | Jan 2006 | A1 |
20060041918 | Currivan et al. | Feb 2006 | A9 |
20060191359 | Tarasinski et al. | Aug 2006 | A1 |
20060205442 | Phillips et al. | Sep 2006 | A1 |
20060241838 | Mongiardo et al. | Oct 2006 | A1 |
20060250197 | Petrovic | Nov 2006 | A1 |
20060282871 | Yo | Dec 2006 | A1 |
20070076746 | Faska et al. | Apr 2007 | A1 |
20070288981 | Mitsuse et al. | Dec 2007 | A1 |
20070288982 | Donahue | Dec 2007 | A1 |
20080012658 | Fortier | Jan 2008 | A1 |
20080014790 | Montena | Jan 2008 | A1 |
20080022344 | Riggsby | Jan 2008 | A1 |
20080040764 | Weinstein et al. | Feb 2008 | A1 |
20080120667 | Zaltsman | May 2008 | A1 |
20080127287 | Alkan et al. | May 2008 | A1 |
20080204172 | Sakai et al. | Aug 2008 | A1 |
20080235750 | Urbanek et al. | Sep 2008 | A1 |
20080247401 | Bhal et al. | Oct 2008 | A1 |
20080247541 | Cholas et al. | Oct 2008 | A1 |
20080271094 | Kliger et al. | Oct 2008 | A1 |
20080313691 | Cholas et al. | Dec 2008 | A1 |
20090002246 | Rabinovich et al. | Jan 2009 | A1 |
20090031391 | Urbanek | Jan 2009 | A1 |
20090047917 | Phillips et al. | Feb 2009 | A1 |
20090077608 | Romerein et al. | Mar 2009 | A1 |
20090113510 | Knutson et al. | Apr 2009 | A1 |
20090165070 | McMullin et al. | Jun 2009 | A1 |
20090180782 | Bernard et al. | Jul 2009 | A1 |
20090320086 | Rijssemus et al. | Dec 2009 | A1 |
20100017842 | Wells | Jan 2010 | A1 |
20100079218 | Albag et al. | Apr 2010 | A1 |
20100095344 | Newby et al. | Apr 2010 | A1 |
20100100918 | Egan, Jr. et al. | Apr 2010 | A1 |
20100125877 | Wells et al. | May 2010 | A1 |
20100146564 | Halik et al. | Jun 2010 | A1 |
20100225813 | Hirono et al. | Sep 2010 | A1 |
20100244980 | Olson et al. | Sep 2010 | A1 |
20100251314 | Olson et al. | Sep 2010 | A1 |
20100251323 | Jackson | Sep 2010 | A1 |
20100301972 | Alkan | Dec 2010 | A1 |
20110025430 | Ellingboe et al. | Feb 2011 | A1 |
20110072472 | Wells et al. | Mar 2011 | A1 |
20110181371 | Alkan et al. | Jul 2011 | A1 |
20110187481 | Alkan et al. | Aug 2011 | A1 |
20110258677 | Shafer | Oct 2011 | A1 |
20120054805 | Shafer et al. | Mar 2012 | A1 |
20120054819 | Alkan et al. | Mar 2012 | A1 |
20120159556 | Alkan | Jun 2012 | A1 |
20130081096 | Wells et al. | Mar 2013 | A1 |
20130091533 | Wells et al. | Apr 2013 | A1 |
20130125193 | Wells | May 2013 | A1 |
20130133019 | Montena et al. | May 2013 | A1 |
20130196539 | Shafer et al. | Aug 2013 | A1 |
20130227632 | Wells et al. | Aug 2013 | A1 |
20130278353 | Alkan et al. | Oct 2013 | A1 |
20130342281 | Alkan et al. | Dec 2013 | A1 |
20140033264 | Li et al. | Jan 2014 | A1 |
Number | Date | Country |
---|---|---|
55-080989 | Jun 1980 | JP |
55-132126 | Oct 1980 | JP |
57-091055 | Jun 1982 | JP |
58101582 | Jun 1983 | JP |
5899913 | Jul 1983 | JP |
59026709 | Aug 1984 | JP |
61157035 | Jul 1986 | JP |
05-191416 | Jul 1993 | JP |
07-038580 | Feb 1995 | JP |
11-069334 | Mar 1999 | JP |
2001-177580 | Jun 2001 | JP |
2004-080483 | Mar 2004 | JP |
2005-005875 | Jan 2005 | JP |
2007-166109 | Jun 2007 | JP |
2007-166110 | Jun 2007 | JP |
0005895 | Feb 2000 | WO |
0024124 | Apr 2000 | WO |
0172005 | Sep 2001 | WO |
0233969 | Apr 2002 | WO |
02091676 | Nov 2002 | WO |
2005062611 | Jul 2005 | WO |
2010035264 | Apr 2010 | WO |
2010117488 | Oct 2010 | WO |
2010117490 | Oct 2010 | WO |
2010117496 | Oct 2010 | WO |
2010138896 | Dec 2010 | WO |
2011035278 | Mar 2011 | WO |
2012088350 | Jun 2012 | WO |
2013074705 | May 2013 | WO |
Entry |
---|
U.S. Appl. No. 13/245,510, filed Sep. 26, 2011, Wells. |
PCT/US2010/049568 International Search Report May 31, 2011. |
Egan, Multi-Port Enry Adapter, Hub and Method for Interfacing a CATV Network and a MoCA Network, U.S. Appl. No. 12/255,008, filed Oct. 21, 2008. |
Wells, CATV Entry Adapter and Method for Preventing Interface with eMTA Equipment from MoCA Signals, U.S. Appl. No. 12/691,149, filed Jan. 21, 2010. |
Hallik, CATV Entry Adapter and Method Utilizing Directional Couplers for MoCA Signal Communication, U.S. Appl. No. 12/704,833, filed Feb. 12, 2010. |
Newby, Ingress Noise Inhibiting Network Interface Device and Method for Cable Television Networks, U.S. Appl. No. 12/250,229, filed Oct. 13, 2008. |
Egan, Multi-Port Entry Adapter, Hub and Method for Interfacing a CATV Network and a MoCA Network, U.S. Appl. No. 12/255,008, filed Oct. 21, 2008, Office Action Summary, dated Nov. 11, 2011. |
Newby, Ingress Noise Inhibiting Network Interface Device and Method for Cable Television Networks, U.S. Appl. No. 12/250,229, filed Oct. 13, 2008, Office Action Summary, dated Jan. 23, 2012. |
Wells, Passive Multi-Port Entry Adapter and Method for Preserving Downstream CATV Signal Strength within In-Home Network, U.S. Appl. No. 12/563,719, filed Sep. 21, 2009. |
Wels, Passive Multi-Port Entry Adapter and Method for Preserving Downstream CATV Signal Strength within In-Home Network, U.S. Appl. No. 12/563,719, filed Sep. 21, 2009, Office Action Summary dated Mar. 6, 2012. |
Wells, Passive-Active Terminal Adapter and Method Having Automatic Return Loss Control, U.S. Appl. No. 12/175,366, filed Jul. 17, 2008. |
Alkan, Home Network Frequency Conditioning Device and Method, U.S. Appl. No. 13/180,100, filed Jul. 11, 2011. |
Safer, Home Network Frequency Conditioning Device, U.S. Appl. No. 13/178,149, filed Jul. 7, 2011. |
Shafer, Low-Pass Filter Circuit, U.S. Appl. No. 13/167,497, filed Jun. 23, 2011. |
Wells, Cable Television Entry Adapter, U.S. Appl. No. 13/245,510, filed Sep. 26, 2011. |
Alkan, Method and Apparatus for Reducing Isolation in a Home Network, U.S. Appl. No. 13/333,060, filed Dec. 21, 2011. |
Shafer, Upstream Bandwith Conditioning Device, U.S. Appl. No. 12/760,153, filed Apr. 14, 2010. |
Number | Date | Country | |
---|---|---|---|
20130342281 A1 | Dec 2013 | US |
Number | Date | Country | |
---|---|---|---|
61663953 | Jun 2012 | US |