Radio network communication

Information

  • Patent Grant
  • 8145221
  • Patent Number
    8,145,221
  • Date Filed
    Friday, December 16, 2005
    18 years ago
  • Date Issued
    Tuesday, March 27, 2012
    12 years ago
  • CPC
  • US Classifications
    Field of Search
    • US
    • 455 509000
    • 455 464000
    • 455 067110
    • 455 411000
    • 455 453000
    • 455 067130
    • 455 444000
    • 455 436000
    • 455 446000
    • 455 449000
    • 455 517000
    • 455 524000
    • 455 450000
    • 455 451000
    • 455 452000
    • 455 455000
    • 455 512000
    • 455 440000
    • 455 452100
    • 455 437000
    • 455 438000
    • 455 439000
    • 455 441000
    • 455 442000
    • 455 443000
    • 455 452200
    • 455 445000
    • 455 447000
    • 370 338000
    • 370 469000
    • 370 237000
    • 370 343000
    • 370 453000
    • 370 392000
    • 370 329000
    • 370 252000
    • 370 310000
    • 370 520000
    • 370 401000
    • 370 450000
    • 370 452200
    • 370 241000
    • 370 408000
    • 370 328000
    • 370 235000
    • 370 230100
    • 370 331000
    • 370 260000
    • 370 389000
    • 370 254000
    • 370 340000
    • 370 336000
    • 370 242000
    • 370 232000
  • International Classifications
    • H04W36/00
    • H04W4/00
    • Term Extension
      432
Abstract
Techniques for enabling a radio access network to cause an access terminal in communication with the radio access network to send an update including information about a location of the access terminal.
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is related to U.S. application Ser. Nos. 11/037,896 filed on Jan. 18, 2005, 09/891,103, filed on Jun. 25, 2001, 10/848,597, filed on May 18, 2004, and 11/243,405, filed on Oct. 4, 2005, all of which are incorporated herein by reference.


This application is also related to U.S. application Ser. No. 11/303,773, titled “Radio Frequency Dragging Prevention,” and U.S. application Ser. No. 11/305,286, titled “Radio Network Control,” being filed concurrently with the present application, which are also incorporated herein by reference.


TECHNICAL FIELD

This description relates to radio network communication.


BACKGROUND

High Data Rate (HDR) is an emerging mobile wireless access technology that enables personal broadband Internet services to be accessed anywhere, anytime (see P. Bender, et al., “CDMA/HDR: A Bandwidth-Efficient High-Speed Wireless Data Service for Nomadic Users”, IEEE Communications Magazine, July 2000, and 3GPP2, “Draft Baseline Text for 1xEV-DO,” Aug. 21, 2000). Developed by Qualcomm, HDR is an air interface optimized for Internet Protocol (IP) packet data services that can deliver a shared forward link transmission rate of up to 2.46 Mbit/s per sector using only (1×) 1.25 MHz of spectrum. Compatible with CDMA2000 radio access (TIA/EIA/IS-2001, “Interoperability Specification (IOS) for CDMA2000 Network Access Interfaces,” May 2000) and wireless IP network interfaces (TIA/EIA/TSB-115, “Wireless IP Architecture Based on IETF Protocols,” Jun. 6, 2000, and TIA/EIA/IS-835, “Wireless IP Network Standard,” 3rd Generation Partnership Project 2 (3GPP2), Version 1.0, Jul. 14, 2000), HDR networks can be built entirely on IP technologies, all the way from the mobile Access Terminal (AT) to the global Internet, thus taking advantage of the scalability, redundancy and low-cost of IP networks.


An EVolution of the current 1xRTT standard for high-speed data-only (DO) services, also known as the 1xEV-DO protocol has been standardized by the Telecommunication Industry Association (TIA) as TIA/EIA/IS-856, “CDMA2000 High Rate Packet Data Air Interface Specification”, 3GPP2 C.S0024-0, Version 4.0, Oct. 25, 2002, which is incorporated herein by reference. Revision A to this specification has been published as TIA/EIA/IS-856, “CDMA2000 High Rate Packet Data Air Interface Specification”, 3GPP2 C.S0024-A, Version 2.0, June 2005. Revision A is also incorporated herein by reference.



FIG. 1 shows a 1xEV-DO radio access network 100 with radio node controllers 102 and 104 connected to radio nodes 108, 110, and 112 over a packet network 114. The packet network 114 can be implemented as an IP-based network that supports many-to-many connectivity between the radio nodes and the radio node controllers. The packet network 114 is connected to the Internet 116 via a packet data serving node 106. Other radio nodes, radio node controllers, and packet networks (not shown in FIG. 1) can be included in the radio access network 100. The packet network 114 may be several distinct networks connecting individual radio node controllers to their associated radio nodes, or it may be a single network as shown in FIG. 1, or a combination.


Typically, each radio node controller controls 25-100 radio nodes and each radio node supports 1-4 carriers each of 1.25 MHz of bandwidth. A carrier is a band of radio frequencies used to establish airlinks with access terminals. The geographic area of the radio access network that is served by any given radio node is referred to as a cell. Each cell can be divided into multiple sectors (typically 3 or 6) by using multiple sectorized antennas (the term “sector” is used both conventionally and in this document, however, even when there is only one sector per cell).


Access terminals 118 communicate with the network 100 over airlinks 120. Each access terminal may be a cellular phone, a laptop computer, a Personal Digital Assistant (PDA), a dual-mode voice/data handset, or another device, with built-in 1xEV-DO Rev-0 or Rev-A support. The airlink 120 between the network 100 and an access terminal 118 includes a control channel over which a serving radio node controller (i.e., the radio node controller on which a 1xEV-DO session of the access terminal 118) transmits messages and parameters that the access terminal 118 may need for access and paging operations. The messages and parameters (collectively referred to in this description as “control channel messages”) convey system parameters, access parameters, neighbor lists, paging messages, and channel assignment information to the access terminal 118.



FIG. 2 shows a network coverage area corresponding to the 1xEV-DO radio access network 100. In this example, the radio nodes serve coverage areas of different sizes. The large coverage areas served by radio nodes 108 and 110 are referred to as macro cells, while the smaller coverage areas served by radio node 112 is referred to as a pico cell. A macro cell covers a very large geographic area; for example, the metropolitan area of a city. A pico cell generally has a much smaller coverage area; for example, a single office building. The coverage area of a pico cell may partially or completely overlap the coverage area of a macro cell. The pico cell within the coverage area of the macro cell may operate on the same or different carrier frequency. An access terminal 118 in the pico cell coverage area may access the network either through the macro cell radio node 108 or the pico cell radio node 112. Accessing the network through the pico cell radio node 112 conserves the network resources of the macro cell and vice versa.


There are a number of different techniques that may be implemented by the 1xEV-DO radio access network 100 to determine when a handoff between the radio nodes of overlapping pico and macro cells is to take place. One example technique involves installing, in the coverage area of the macro cell radio node, a pilot beacon that transmits a pilot signal on the same carrier frequency as that of the macro cell radio node 108. A handoff can be triggered by the network upon detection of a carrier frequency change. However, these pilot beacons do not provide any actual carrier service to an access terminal and are therefore very limited in application. Additionally installation of each pilot beacon can be very expensive. Another example technique involves configuring an access terminal to constantly assume the presence of a pico cell and attempt to connect to it. However, such constant activity is very draining on the limited access terminal resources, including the access terminal's battery. Furthermore, this technique does not enable the network to determine instances in which it may be more beneficial to serve the access terminal via the macro cell radio node, although weaker pico cell signals may be available.


SUMMARY

In general, in one aspect, a radio access network causes an access terminal in communication with the radio access network to send an update including information about a location of the access terminal.


Implementations may include one or more of the following features. The radio access network causes the access terminal to send the update by broadcasting trigger information. The trigger information comprises a trigger that is specific to a cell of the radio access network. The radio access network causes the access terminal to send the update by unicasting query information. The query information comprises a query that is specific to a cell of the radio access network. The query information comprises a query that is specific to a carrier frequency on which a radio node of the radio access network or a different radio access network operates. The information comprises information about one or more radio nodes each operating on a carrier frequency on which the access terminal operates. The information comprises information about one or more radio nodes, at least one of which operates on a carrier frequency other than a carrier frequency on which the access terminal operates. The information comprises a sector identifier and a pilot strength associated with a sector of a macro cell. The information comprises a sector identifier and a pilot strength associated with a sector of a pico cell. The radio access network uses the information sent by the access terminal to determine whether a handoff between cells of the radio access network is to be performed.


In general, in one aspect, an access terminal performs a comparison of a recently-received cell-specific identifier with a previously-received cell-specific identifier; and takes action as a result of the comparison.


Implementations may include one or more of the following features. Each of the recently-received cell-specific identifier and the previously-received cell-specific identifier comprises a cell-specific route update trigger code. Taking action comprises sending a message to a radio access network. The message comprises a pilot strength of at least one sector of the radio access network that is visible to the access terminal. Taking action comprises replacing the previously-received cell-specific identifier with the recently-received cell-specific identifier.


In general, in one aspect, when an access terminal is communicating with a first cell of a network and is within a service area of both the first cell of the network and a second cell of the network, the network determines when to initiate a handoff of the access terminal from the first cell to the second cell.


Implementations may include one or more of the following features. The first cell comprises a macro cell and the second cell comprises a pico cell. The first cell comprises a pico cell and the second cell comprises a macro cell. The network initiates the handoff of the access terminal from the first cell to the second cell. The network maintains a communication channel of the access terminal. The network sends a TrafficChannelAssignment message. The network closes a communication channel of the access terminal The networks sends a Unicast Redirect message. The network uses information about the location of the access terminal. The information comprises a sector identifier of the first cell. The the information comprises a sector identifier of the second cell. The information comprises a pilot strength associated with a sector of the first cell. The information comprises a pilot strength associated with a sector of the second cell. The network compares the pilot strength of the first cell with the pilot strength of the second cell. The first cell and the second cell both operate on a common carrier frequency. The first cell operates on a carrier frequency and the second cell operates on a different carrier frequency


Advantages that can be seen in particular implementations of the invention include one or more of the following. When a macro and pico cell are controlled by the same radio network controller, the access terminal can be redirected from one to the other without experiencing an interruption in service. Allowing an access terminal to use the local resources of a pico cell when possible conserves the resources of the macro cell. The access terminal is also able to conserve its resources and battery power. Additionally, by implementing the techniques in the form of software that is easy to update as new cells are added to the radio access network and additional carrier frequencies are supported by the radio access network, the network operator does not have to install expensive hardware, such as pilot beacons, in the network in order to determine when handoffs between macro and pico cells are to be performed.


The details of one or more embodiments of the invention are set forth in the accompanying drawings and the description below. Other features, objects, and advantages of the invention will be apparent from the description and drawings, and from the claims.





DESCRIPTION OF DRAWINGS


FIGS. 1-2 each show a radio access network.



FIG. 3 shows a flowchart of a macro-pico handoff determination process.





DETAILED DESCRIPTION

In some implementations, the 1xEV-DO network 100 of FIG. 1 supports a triggering mechanism that enables the network to cause an access terminal, in communication with the network, to send an update with information about the access terminal's location.


In the examples to follow, this triggering mechanism is used to facilitate handoffs between macro and pico cells within the coverage area of the network, where the macro cell radio nodes operate on carrier frequency C1 and the pico cell radio nodes operate on carrier frequency C2. In some cases, the macro cell and the pico cell are homed to the same radio node controller. In those cases in which the macro cell and the pico cell are homed to different radio node controllers, the network 100 of FIG. 1 may be implemented with a multi-homing architecture (e.g., as described in U.S. application Ser. No. 11/305,286, titled “Radio Network Control,”) or a clustering architecture.


In other examples, the triggering mechanism is used for a variety of other applications, such as hard handoffs and multi-carrier traffic allocations. The triggering mechanism can also be used in networks that implement radio frequency dragging prevention techniques, such as those described in U.S. application Ser. No. 11/303,773, titled “Radio Frequency Dragging Prevention.”


Referring to FIGS. 1-3, in some examples, each radio node controller of the 1xEV-DO network 100 of FIG. 1 has (or has access to) information about all of the operational pico cell(s) in the network 100. The information includes each pico cell's carrier frequency, PN Offset, and the macro cell(s) with which the pico cell's coverage area overlaps. The radio node of each macro cell with which a pico cell's coverage area overlaps is configured to periodically broadcast a cell-specific Route Update Trigger Code (“RUTriggerCode”) in overhead messages transmitted on the control channels of the macro cell radio node (302).


Each idle access terminal 118 periodically monitors a control channel of its serving radio node for overhead messages. Upon receipt (304) of an overhead message containing the cell-specific RUTriggerCode, the access terminal 118 compares (306) the recently-received RUTriggerCode with a RUTriggerCode stored in its memory. The RUTriggerCode stored in memory corresponds to the macro cell radio node that last served the access terminal. If the comparison yields a match, no action is taken (308). A non-match serves as an indicator that the idle access terminal has entered the coverage area of a new macro cell, and triggers the idle access terminal to send (310) a Route Update message back to the network by way of the macro cell radio node 108. The Route Update message typically identifies, to the radio node controller 102, the sectors that are visible to the idle access terminal, and for each visible sector, its associated pilot strength. The visible sectors generally include sectors of radio nodes that are operating on the same carrier frequency C1 as that of the idle access terminal. The sector identification and the relative pilot strengths enable the radio access network to keep track of the access terminal's approximate location within the footprint of the network. For example, if the idle access terminal 118 moves from the coverage area of macro cell B 206 into the coverage area of macro cell A 204, where the radio nodes 108, 110 of both macro cells operate on the same carrier frequency C1, the idle access terminal will report, as visible, the sectors of the macro cell radio node 108 in its Route Update message.


The radio node controller examines each Route Update message it receives to determine (312) whether the idle access terminal is in the coverage area of a macro cell with which a pico cell's coverage area overlaps. To do so, the serving radio node controller compares the sector identification information provided in the Route Update message with the information it has about the operational pico cell(s) within the network. If the determination yields a negative result (i.e., no pico cells within the coverage area of the macro cell 108), no action is taken (314). If the determination yields a positive result (i.e., there are one or more pico cells within the coverage area of the macro cell 108), the radio node controller sends (316) a specific query (referred to in this description as a Modified Route Update Request) to the access terminal. The query can be made on the access terminal's paging cycle to avoid excessive use of network resources. This query typically relates to those specific pico cells that are within the coverage area of the macro cell, including those pico cells having radio nodes that are operating on a different carrier frequency C2 than that of the macro cell radio node.


Upon receipt of the Modified Route Update Request, the idle access terminal will return (318) a Route Update message. In this Route Update message, the idle access terminal reports not only the sectors of radio nodes that are operating on the same carrier frequency C1 as that of the idle access terminal, but also the radio nodes that are operating on a different carrier frequency C2. In this manner, the network is made aware of the signal strengths of the sectors of pico cell radio nodes operating on a different carrier frequency C2 that are visible to the access terminal.


In instances in which the idle access terminal is at or near the boundary of a pico cell coverage area, the Route Update message will likely identify, as visible, one or more sectors associated with the pico cell radio node and one or more sectors associated with the macro cell radio node. The radio node controller uses the relative reported signal strengths to determine whether a macro-to-pico handoff is to be performed (320). In some implementations, the radio node controller examines the reported pilot strengths of each pico cell radio node to determine whether any one of the reported pilot strengths exceeds a configurable threshold for a configurable number of times. Generally, the network operator sets the configurable values such that macro-to-pico handoffs are not triggered when the macro cell coverage is sufficiently strong. By continuously evaluating which radio node would most efficiently serve the idle access terminal, handoffs can be reduced or minimized to those instances in which a macro-to-pico handoff would provide for efficient network resource utilization.


In some implementations, once a determination is made to trigger a macro-to-pico handoff, the radio node controller sends a Unicast Redirect message to the access terminal. Upon receipt of the message, the idle access terminal processes the Unicast Redirect message to seamlessly transition from the carrier on which it operates to the carrier frequency specified in the Unicast Redirect message. In this case, the idle access terminal operating on the carrier frequency C1 will operate on the carrier frequency C2 after the Unicast Redirect message is processed. The user disruption associated with the “switch carrier” process typically averages about 100-500 ms long and is not typically noticeable by the access terminal user, especially when the access terminal is idle.


In the case of an active access terminal in the coverage area of a macro cell 108, the active access terminal can be configured to send a Route Update message to the network when the pilot strength associated with the macro cell radio node 108 exceeds the Pilot_Add threshold. The Route Update message identifies, to the radio node controller 102, the sectors operating on carrier frequency C1 that are visible to the active access terminal, and for each visible sector, its associated pilot strength (310).


The radio node controller examines each Route Update message it receives to determine whether the active access terminal is in the coverage area of a macro cell with which a pico cell's coverage area overlaps in the same manner described above with reference to the idle access terminal example (314). If the determination is made that there are one or more pico cells within the coverage area of the macro cell, the radio node controller sends a Modified Route Update Request to the active access terminal (316), which returns the pilot strengths of the visible sectors of the one or more pico cells operating on carrier frequency C2 (318).


The radio node controller uses the relative reported signal strengths to determine whether a macro-to-pico handoff is to be performed (320). In the implementations in which the macro cell and the pico cell are homed to the same vendor, the radio node controller examines the reported pilot strengths of each pico cell radio node to determine whether any one of the reported pilot strengths satisfies a condition (e.g., exceeds a configurable threshold for a configurable number of times). The pico cell associated with the reported strength that satisfies the condition is referred to as the target pico cell. Once a determination is made to trigger a macro-to-pico handoff, the radio node controller allocates airlink resources for the radio node of the target pico cell, and sends a TrafficChannelAssignment message to the active access terminal over the control channel of each of the visible sectors associated with the target pico cell. Upon receipt of the TrafficChannelAssignment message, the active access terminal processes the TrafficChannelAssignment message to seamlessly transition from the carrier on which it operates to the carrier frequency C2 of the target pico cell while remaining active.


In the implementations in which the macro and pico cells are homed to different vendors, the radio node controller determines when a macro-to-pico handoff is to be triggered as described above, then sends a Unicast Redirect message to the active access terminal to effect the handoff. The access terminal closes its current connection with the network via the macro cell's radio node and opens a new connection with the network via the target pico cell's radio node. The user disruption associated with the “close connection-open connection” process typically averages about 1 second long.


The triggering mechanism can also be used to facilitate a transition from a pico cell to the macro cell. Generally, once an access terminal has transitioned to a local pico cell, it will continue to access the network via the pico cell node while it remains parked, or within the coverage area of that pico cell. Once the access terminal becomes mobile, moving out of the coverage area of the pico cell, it will transition back to the macro cell.


An idle or active access terminal in the coverage area of a pico cell will periodically report the pilot strengths of visible sectors to the network using a Route Update Message. In the idle case, the pico cell can include the macro cell's sector identification in its neighbor list, as described in U.S. application Ser. No. 11/303,733 titled “Radio Frequency Dragging Prevention”. In those instances in which the radio node controller determines that the reported pilot strength of the serving pico cell radio node is below a configurable threshold (or the reported pilot strength of a macro cell radio node is exceeds a configurable threshold) for a configurable number of times, the radio node controller sends a Unicast Redirect message to the access terminal to effect pico-to-macro handoff that involves a carrier frequency change from C2 (that of the pico cell radio node) to C1 (that of the macro cell radio node). In the active case, the radio node controller sends a TrafficChannelAssignment message to the access terminal to effect a seamless pico-to-macro handoff between cells homed to the same vendor. When the cells are homed to different vendors, a Unicast Redirect message can be used, resulting in a brief disruption of service.


Although the techniques described above employ the 1xEV-DO air interface standard, the techniques are also applicable to other CDMA and non-CDMA air interface technologies involving handoffs or multi-carrier traffic allocation.


The techniques described above can be implemented in digital electronic circuitry, or in computer hardware, firmware, software, or in combinations of them. The techniques can be implemented as a computer program product, i.e., a computer program tangibly embodied in an information carrier, e.g., in a machine-readable storage device or in a propagated signal, for execution by, or to control the operation of, data processing apparatus, e.g., a programmable processor, a computer, or multiple computers. A computer program can be written in any form of programming language, including compiled or interpreted languages, and it can be deployed in any form, including as a stand-alone program or as a module, component, subroutine, or other unit suitable for use in a computing environment. A computer program can be deployed to be executed on one computer or on multiple computers at one site or distributed across multiple sites and interconnected by a communication network.


Method steps of the techniques described herein can be performed by one or more programmable processors executing a computer program to perform functions of the invention by operating on input data and generating output. Method steps can also be performed by, and apparatus of the invention can be implemented as, special purpose logic circuitry, e.g., an FPGA (field programmable gate array) or an ASIC (application-specific integrated circuit). Modules can refer to portions of the computer program and/or the processor/special circuitry that implements that functionality.


Processors suitable for the execution of a computer program include, by way of example, both general and special purpose microprocessors, and any one or more processors of any kind of digital computer. Generally, a processor will receive instructions and data from a read-only memory or a random access memory or both. The essential elements of a computer are a processor for executing instructions and one or more memory devices for storing instructions and data. Generally, a computer will also include, or be operatively coupled to receive data from or transfer data to, or both, one or more mass storage devices for storing data, e.g., magnetic, magneto-optical disks, or optical disks. Information carriers suitable for embodying computer program instructions and data include all forms of non-volatile memory, including by way of example semiconductor memory devices, e.g., EPROM, EEPROM, and flash memory devices; magnetic disks, e.g., internal hard disks or removable disks; magneto-optical disks; and CD-ROM and DVD-ROM disks. The processor and the memory can be supplemented by, or incorporated in special purpose logic circuitry.


A number of embodiments of the invention have been described. Nevertheless, it will be understood that various modifications may be made without departing from the spirit and scope of the invention, and, accordingly, other embodiments are within the scope of the following claims.

Claims
  • 1. A method performed by a radio network controller of a radio access network when an access terminal is in communication with a macro cell radio node of the radio access network and the access terminal is within a service area of the macro cell radio node and a service area of a private access point of the radio access network, the service area of the macro cell radio node and the service area of the private access point overlapping one another, the method comprising: receiving first information from the access terminal;comparing at least part of the first information with private access point location information to determine whether one or more private access points are within the coverage area of the macro cell radio node;causing a request to be sent to the access terminal upon a determination that one or more private access points are within the coverage area of the macro cell radio node, wherein the request is configured to obtain second information from the access terminal;determining whether to initiate a handoff of the access terminal from the macro cell radio node to the private access point by using at least part of the second information provided by the access terminal in response to the request; andsending a signal to the access terminal that initiates the handoff if the radio network controller determines to handoff the access terminal from the macro cell radio node to the private access point.
  • 2. The method of claim 1, wherein the macro cell radio node and the private access point operate on different carrier frequencies.
  • 3. The method of claim 1, wherein the macro cell radio node and the private access point operate on a common carrier frequency.
  • 4. The method of claim 1, wherein the first information was sent by the access terminal in response to a RUTrigger message.
  • 5. The method of claim 1, wherein the first information comprises signal strengths.
  • 6. The method of claim 1, wherein the first information comprises a signal strength of the macro cell radio node.
  • 7. The method of claim 1, wherein the request is sent via a radio node.
  • 8. The method of claim 7, wherein the radio node comprises the macro cell radio node.
  • 9. The method of claim 1, further comprising: initiating the handoff.
  • 10. The method of claim 1, wherein the first information comprises location information from the access terminal; and wherein the second information comprises additional location information from the access terminal about at least one private access point having a service area that overlaps the service area of the macro cell radio node.
  • 11. The method of claim 10, wherein the at least one private access point comprises any private access points operating on a same carrier frequency as the macro cell radio node.
  • 12. The method of claim 10, wherein the at least one private access point further comprises any private access points operating on a different carrier frequency as the macro cell radio node.
  • 13. The method of claim 10, wherein the location information comprises a signal strength of a sector of the private access point.
  • 14. The method of claim 1, wherein the second information comprises a signal strength of a sector of at least one private access point having a service area that overlaps the service area of the macro cell radio node.
  • 15. The method of claim 1, wherein the at least one private access point comprises the private access point.
  • 16. A radio network controller, comprising: a processor; andmemory for storing instructions that are executable by the processor when an access terminal is in communication with a macro cell radio node of the radio access network and the access terminal is within a service area of the macro cell radio node and a service area of a private access point of the radio access network, the service area of the macro cell radio node and the service area of the private access point overlapping one another, the instructions to: receive first information from the access terminal;compare at least part of the first information with private access point location information to determine whether one or more private access points are within the coverage area of the macro cell radio node;cause a request to be sent to the access terminal upon a determination that one or more private access points are within the coverage area of the macro cell radio node, wherein the request is configured to obtain second information from the access terminal;determine whether to initiate a handoff of the access terminal from the macro cell radio node to the private access point by using at least part of the second information provided by the access terminal in response to the request; andsend a signal to the access terminal that initiates the handoff if the radio network controller determines to handoff the access terminal from the macro cell radio node to the private access point.
  • 17. A machine-readable storage medium storing instructions, the machine-readable storage medium being a tangible medium, the instructions being executable by a processor on a radio network controller when an access terminal is in communication with a macro cell radio node of the radio access network and the access terminal is within a service area of the macro cell radio node and a service area of a private access point of the radio access network, the service area of the macro cell radio node and the service area of the private access point overlapping one another, the instructions to: receive first information from the access terminal;compare at least part of the first information with private access point location information to determine whether one or more private access points are within the coverage area of the macro cell radio node;cause a request to be sent to the access terminal upon a determination that one or more private access points are within the coverage area of the macro cell radio node, wherein the request is configured to obtain second information from the access terminal;determine whether to initiate a handoff of the access terminal from the macro cell radio node to the private access point by using at least part of the second information provided by the access terminal in response to the request; andsend a signal to the access terminal that initiates the handoff if the radio network controller determines to handoff the access terminal from the macro cell radio node to the private access point.
  • 18. A method performed by a radio network controller of a radio access network when an access terminal is in communication with a private access point of the radio access network and the access terminal is within a service area of the private access point and a service area of a macro cell radio node of the radio access network, the service area of the private access point and the service area of the macro cell radio node overlapping one another, the method comprising: receiving first information from the access terminal;comparing at least part of the first information with private access point location information to determine whether one or more private access points are within the coverage area of the macro cell radio node;causing a trigger message to be sent to the access terminal upon a determination that one or more private access points are within the coverage area of the macro cell radio node;receiving second information from the access terminal in response to the trigger message, the second information comprising a signal strength of the private access point and a signal strength of the macro cell radio node; anddetermining whether to initiate a handoff of the access terminal from the private access point to the macro cell radio node by: comparing the signal strength of the private access point to the signal strength of the macro cell radio node; andif the signal strength of the private access point is below a first threshold or the signal strength of the macro cell radio node is above a second threshold, then: initiating the handoff by sending a signal to the access terminal.
  • 19. A radio network controller, comprising: a processor; andmemory for storing instructions that are executable by the processor when an access terminal is in communication with a private access point of the radio access network and the access terminal is within a service area of the private access point and a service area of a macro cell radio node of the radio access network, the service area of the private access point and the service area of the macro cell radio node overlapping one another, the instructions to: receive first information from the access terminal;compare at least part of the first information with private access point location information to determine whether one or more private access points are within the coverage area of the macro cell radio node;cause a trigger message to be sent to the access terminal upon a determination that one or more private access points are within the coverage area of the macro cell radio node;receive second information from the access terminal in response to the trigger message, the second information comprising a signal strength of the private access point and a signal strength of the macro cell radio node; anddetermine whether to initiate a handoff of the access terminal from the private access point to the macro cell radio node by: comparing the signal strength of the private access point to the signal strength of the macro cell radio node; and,if the signal strength of the private access point is below a first threshold or the signal strength of the macro cell radio node is above a second threshold, then: initiating the handoff by sending a signal to the access terminal.
  • 20. A machine-readable storage medium storing instructions, the machine-readable storage medium being a tangible medium, the instructions being executable by a processor on a radio network controller when an access terminal is in communication with a private access point of the radio access network and the access terminal is within a service area of the private access point and a service area of a macro cell radio node of the radio access network, the service area of the private access point and the service area of the macro cell radio node overlapping one another, the instructions to: receive first information from the access terminal;compare at least part of the first information with private access point location information to determine whether one or more private access points are within the coverage area of the macro cell radio node;cause a trigger message to be sent to the access terminal upon a determination that one or more private access points are within the coverage area of the macro cell radio node;receive second information from the access terminal in response to the trigger message, the second information comprising a signal strength of the private access point and a signal strength of the macro cell radio node; anddetermine whether to initiate a handoff of the access terminal from the private access point to the macro cell radio node by: comparing the signal strength of the private access point to the signal strength of the macro cell radio node; and,if the signal strength of the private access point is below a first threshold or the signal strength of the macro cell radio node is above a second threshold, then: initiating the handoff by sending a signal to the access terminal.
US Referenced Citations (275)
Number Name Date Kind
5128938 Borras Jul 1992 A
5239675 Dudczak Aug 1993 A
5377224 Hudson Dec 1994 A
5574996 Raith Nov 1996 A
5754945 Lin et al. May 1998 A
5790528 Muszynski Aug 1998 A
5815813 Faruque Sep 1998 A
5828661 Weaver et al. Oct 1998 A
5852630 Langberg et al. Dec 1998 A
5857154 Laborde et al. Jan 1999 A
5884177 Hanley Mar 1999 A
5930714 Abu-Amara et al. Jul 1999 A
5937345 McGowan et al. Aug 1999 A
5940762 Lee et al. Aug 1999 A
5960349 Chheda Sep 1999 A
5974318 Satarasinghe Oct 1999 A
5983282 Yucebay Nov 1999 A
5991635 Dent et al. Nov 1999 A
6011970 McCarthy Jan 2000 A
6014564 Donis et al. Jan 2000 A
6016429 Khafizov et al. Jan 2000 A
6023625 Myers Feb 2000 A
6032033 Morris et al. Feb 2000 A
6047186 Yu et al. Apr 2000 A
6049715 Willhoff et al. Apr 2000 A
6052594 Chuang et al. Apr 2000 A
6061560 Saboorian et al. May 2000 A
6069871 Sharma et al. May 2000 A
6091953 Ho et al. Jul 2000 A
6101394 Illidge Aug 2000 A
6111857 Soliman et al. Aug 2000 A
6112089 Satarasinghe Aug 2000 A
6119024 Takayama Sep 2000 A
6122513 Bassirat Sep 2000 A
6151512 Chheda et al. Nov 2000 A
6167036 Beven Dec 2000 A
6178328 Tang et al. Jan 2001 B1
6192246 Satarasinghe Feb 2001 B1
6198719 Faruque et al. Mar 2001 B1
6198910 Hanley Mar 2001 B1
6208615 Faruque et al. Mar 2001 B1
6219539 Basu et al. Apr 2001 B1
6223047 Ericsson Apr 2001 B1
6233247 Alami et al. May 2001 B1
6252862 Sauer et al. Jun 2001 B1
6256300 Ahmed et al. Jul 2001 B1
6266529 Chheda Jul 2001 B1
6272148 Takagi et al. Aug 2001 B1
6285875 Alajoki et al. Sep 2001 B1
6289220 Spear Sep 2001 B1
6320898 Newson et al. Nov 2001 B1
6345185 Yoon et al. Feb 2002 B1
6366961 Subbiah et al. Apr 2002 B1
6370357 Xiao et al. Apr 2002 B1
6370381 Minnick et al. Apr 2002 B1
6393482 Rai et al. May 2002 B1
6400712 Phillips Jun 2002 B1
6404754 Lim Jun 2002 B1
6408182 Davidson et al. Jun 2002 B1
6418306 McConnell Jul 2002 B1
6424834 Chang et al. Jul 2002 B1
6430168 Djurkovic et al. Aug 2002 B1
6438376 Elliott et al. Aug 2002 B1
6438377 Savolainen Aug 2002 B1
6445922 Hiller et al. Sep 2002 B1
6459696 Carpenter et al. Oct 2002 B1
6473399 Johansson et al. Oct 2002 B1
6477159 Yahagi Nov 2002 B1
6480476 Willars Nov 2002 B1
6480718 Tse Nov 2002 B1
6507741 Bassirat Jan 2003 B1
6522885 Tang et al. Feb 2003 B1
6539030 Bender et al. Mar 2003 B1
6542481 Foore et al. Apr 2003 B2
6542752 Illidge Apr 2003 B1
6545984 Simmons Apr 2003 B1
6560453 Henry et al. May 2003 B1
6580699 Manning et al. Jun 2003 B1
6590879 Huang et al. Jul 2003 B1
6611695 Periyalwar Aug 2003 B1
6618585 Robinson et al. Sep 2003 B1
6621811 Chang et al. Sep 2003 B1
6628637 Li et al. Sep 2003 B1
6651105 Bhagwat et al. Nov 2003 B1
6687237 Lee et al. Feb 2004 B1
6701148 Wilson et al. Mar 2004 B1
6701149 Sen et al. Mar 2004 B1
6711144 Kim et al. Mar 2004 B1
6731618 Chung et al. May 2004 B1
6738625 Oom et al. May 2004 B1
6741862 Chung et al. May 2004 B2
6754191 Paranchych et al. Jun 2004 B1
6757319 Parsa et al. Jun 2004 B1
6768903 Fauconnier et al. Jul 2004 B2
6771962 Saifullah et al. Aug 2004 B2
6781999 Eyuboglu et al. Aug 2004 B2
6813498 Durga et al. Nov 2004 B1
6826402 Tran Nov 2004 B1
6834050 Madour et al. Dec 2004 B1
6842630 Periyalwar Jan 2005 B2
6847821 Lewis et al. Jan 2005 B1
6877104 Shimono Apr 2005 B1
6909887 Fauconnier et al. Jun 2005 B2
6944452 Coskun et al. Sep 2005 B2
6975869 Billon Dec 2005 B1
6996056 Chheda et al. Feb 2006 B2
6999784 Choi et al. Feb 2006 B1
7035636 Lim et al. Apr 2006 B1
7042858 Ma et al. May 2006 B1
7047009 Laroia et al. May 2006 B2
7072663 Ramos et al. Jul 2006 B2
7079511 Abrol et al. Jul 2006 B2
7085251 Rezaiifar Aug 2006 B2
7110785 Paranchych et al. Sep 2006 B1
7130626 Bender et al. Oct 2006 B2
7130668 Chang et al. Oct 2006 B2
7139575 Chen et al. Nov 2006 B1
7162247 Baba et al. Jan 2007 B2
7170871 Eyuboglu et al. Jan 2007 B2
7177650 Reiger et al. Feb 2007 B1
7200391 Chung et al. Apr 2007 B2
7212822 Vicharelli et al. May 2007 B1
7236764 Zhang et al. Jun 2007 B2
7242958 Chung et al. Jul 2007 B2
7251491 Jha Jul 2007 B2
7277446 Abi-Nassif et al. Oct 2007 B1
7298327 Dupray et al. Nov 2007 B2
7299168 Rappaport et al. Nov 2007 B2
7299278 Ch'ng Nov 2007 B2
7349699 Kelly et al. Mar 2008 B1
7398087 McConnell et al. Jul 2008 B1
7408887 Sengupta et al. Aug 2008 B2
7408901 Narayanabhatla Aug 2008 B1
7411996 Kim et al. Aug 2008 B2
7453912 Laroia et al. Nov 2008 B2
7457265 Julka et al. Nov 2008 B2
7486696 Garg et al. Feb 2009 B2
7512110 Sayeedi et al. Mar 2009 B2
7546124 Tenneti et al. Jun 2009 B1
7751835 Sharma et al. Jul 2010 B2
7751858 Chou Jul 2010 B2
20020025820 Fauconnier et al. Feb 2002 A1
20020031107 Li et al. Mar 2002 A1
20020032034 Tiedemann et al. Mar 2002 A1
20020035699 Crosbie Mar 2002 A1
20020104399 Ma et al. Mar 2002 A1
20020067707 Morales et al. Jun 2002 A1
20020068570 Abrol et al. Jun 2002 A1
20020082018 Coskun Jun 2002 A1
20020085719 Crosbie Jul 2002 A1
20020102976 Newbury et al. Aug 2002 A1
20020136226 Christoffel et al. Sep 2002 A1
20020145990 Sayeedi Oct 2002 A1
20020193110 Julka et al. Dec 2002 A1
20020196749 Eyuboglu et al. Dec 2002 A1
20030003913 Chen et al. Jan 2003 A1
20030438748 Zhang et al. Jan 2003
20030026240 Eyuboglu et al. Feb 2003 A1
20030031201 Choi Feb 2003 A1
20030067970 Kim et al. Apr 2003 A1
20030095513 Woodmansee et al. May 2003 A1
20030100311 Chung et al. May 2003 A1
20030469105 Zhang et al. May 2003
20030114162 Chheda et al. Jun 2003 A1
20030117948 Ton et al. Jun 2003 A1
20030125039 Lachtar et al. Jul 2003 A1
20030195016 Periyalwar Oct 2003 A1
20040008649 Wybenga et al. Jan 2004 A1
20040015607 Bender et al. Jan 2004 A1
20040038700 Gibbs Feb 2004 A1
20040068668 Lor et al. Apr 2004 A1
20040081111 Bae et al. Apr 2004 A1
20040179492 Zhang et al. Sep 2004 A1
20040203771 Chang et al. Oct 2004 A1
20040214574 Eyuboglu et al. Oct 2004 A1
20040218556 Son et al. Nov 2004 A1
20040224687 Rajkotia Nov 2004 A1
20050021616 Rajahalme et al. Jan 2005 A1
20050648187 Schmidt et al. Jan 2005
20050025116 Chen et al. Feb 2005 A1
20050053034 Chiueh Mar 2005 A1
20050111429 Kim et al. May 2005 A1
20050113117 Bolin et al. May 2005 A1
20050124343 Kubo Jun 2005 A1
20050148297 Lu et al. Jul 2005 A1
20050181795 Mark et al. Aug 2005 A1
20050207368 Nam Sep 2005 A1
20050213555 Eyuboglu et al. Sep 2005 A1
20050713958 Akhtar et al. Sep 2005
20050715281 Fong Sep 2005
20050233746 Laroia et al. Oct 2005 A1
20050728848 Novak et al. Oct 2005
20050243749 Mehrabanzad et al. Nov 2005 A1
20050245279 Mehrabanzad et al. Nov 2005 A1
20050751848 Fong Dec 2005
20060758743 Novak et al. Jan 2006
20060030323 Ode et al. Feb 2006 A1
20060067422 Chung Mar 2006 A1
20060067451 Pollman et al. Mar 2006 A1
20060126509 Abi-Nassif Jun 2006 A1
20060126554 Motegi et al. Jun 2006 A1
20060126556 Jiang et al. Jun 2006 A1
20060804343 Fong Jun 2006
20060805670 Novak et al. Jun 2006
20060148460 Mukherjee et al. Jul 2006 A1
20060159045 Ananthaiyer et al. Jul 2006 A1
20060820683 Novak et al. Jul 2006
20060820705 Novak et al. Jul 2006
20060182063 Ma et al. Aug 2006 A1
20060183497 Paranchych et al. Aug 2006 A1
20060822018 Novak et al. Aug 2006
20060203766 Kim et al. Sep 2006 A1
20060209760 Saito et al. Sep 2006 A1
20060209882 Han et al. Sep 2006 A1
20060824848 Novak et al. Sep 2006
20060825360 Novak et al. Sep 2006
20060240782 Pollman et al. Oct 2006 A1
20060828312 Novak et al. Oct 2006
20060829426 Novak et al. Oct 2006
20060259628 Vadlapudi et al. Nov 2006 A1
20060264218 Zhang et al. Nov 2006 A1
20060291420 Ng Dec 2006 A1
20060294214 Chou Dec 2006 A1
20060294241 Cherian et al. Dec 2006 A1
20070022396 Attar et al. Jan 2007 A1
20070026884 Rao Feb 2007 A1
20070058628 Palnati et al. Mar 2007 A1
20070077948 Sharma et al. Apr 2007 A1
20070097916 Eyuboglu et al. May 2007 A1
20070099632 Choksi May 2007 A1
20070105527 Nylander et al. May 2007 A1
20070115896 To et al. May 2007 A1
20070140172 Garg et al. Jun 2007 A1
20070140184 Garg et al. Jun 2007 A1
20070140185 Garg et al. Jun 2007 A1
20070140218 Nair et al. Jun 2007 A1
20070153750 Baglin et al. Jul 2007 A1
20070155329 Mehrabanzad et al. Jul 2007 A1
20070160008 Burgess Jul 2007 A1
20070197220 Willey Aug 2007 A1
20070220573 Chiussi et al. Sep 2007 A1
20070230419 Raman et al. Oct 2007 A1
20070238442 Mate et al. Oct 2007 A1
20070238476 Sharma et al. Oct 2007 A1
20070242648 Garg et al. Oct 2007 A1
20070248042 Harikumar et al. Oct 2007 A1
20080003988 Richardson Jan 2008 A1
20080009328 Narasimha Jan 2008 A1
20080013488 Garg et al. Jan 2008 A1
20080062925 Mate et al. Mar 2008 A1
20080065752 Ch'ng et al. Mar 2008 A1
20080069020 Richardson Mar 2008 A1
20080069028 Richardson Mar 2008 A1
20080070574 Vikberg et al. Mar 2008 A1
20080076398 Mate et al. Mar 2008 A1
20080117842 Rao May 2008 A1
20080119172 Rao et al. May 2008 A1
20080120417 Harikumar et al. May 2008 A1
20080139203 Ng et al. Jun 2008 A1
20080146232 Knisely Jun 2008 A1
20080151843 Valmikam et al. Jun 2008 A1
20080159236 Ch'ng et al. Jul 2008 A1
20080162924 Chinitz et al. Jul 2008 A1
20080162926 Xiong et al. Jul 2008 A1
20080253550 Ch'ng et al. Oct 2008 A1
20080254792 Ch'ng Oct 2008 A1
20080273493 Fong et al. Nov 2008 A1
20080287130 Laroia et al. Nov 2008 A1
20090034440 Samar et al. Feb 2009 A1
20090082020 Ch'ng et al. Mar 2009 A1
20090088155 Kim Apr 2009 A1
20090103494 Ma et al. Apr 2009 A1
20090116445 Samar et al. May 2009 A1
20090129334 Ma et al. May 2009 A1
20090156218 Garg et al. Jun 2009 A1
Foreign Referenced Citations (61)
Number Date Country
199872855 Dec 1998 AU
199884574 Feb 1999 AU
200121976 Jun 2001 AU
735575 Jul 2001 AU
2003202721 Oct 2003 AU
2295922 Mar 2004 CA
1265253 Aug 2000 CN
1653844 Oct 2004 CN
101015224 Aug 2007 CN
625863 Nov 1994 EP
0904369 Mar 1999 EP
983694 Mar 2000 EP
983705 Mar 2000 EP
995278 Apr 2000 EP
995296 Apr 2000 EP
1005245 May 2000 EP
1011283 Jun 2000 EP
1014107 Jun 2000 EP
1397929 Mar 2004 EP
1491065 Dec 2004 EP
1751998 Feb 2007 EP
1896980 Mar 2008 EP
1897383 Mar 2008 EP
2447585 Aug 2008 GB
2452688 Mar 2009 GB
2447585 Oct 2010 GB
1101334 Oct 2007 HK
2007-538476 Dec 2007 JP
2008-547329 Dec 2008 JP
2008-547358 Dec 2008 JP
9833373 Aug 1998 KR
2004046069 Jun 2004 KR
2004089744 Oct 2004 KR
787289 Dec 2007 KR
199910613 Mar 2002 MX
WO9748191 Dec 1997 WO
WO 9808353 Feb 1998 WO
WO 9809460 Mar 1998 WO
WO9853618 Nov 1998 WO
WO9853620 Nov 1998 WO
WO9903245 Jan 1999 WO
WO9904511 Jan 1999 WO
WO0060891 Oct 2000 WO
WO0145308 Jun 2001 WO
WO02071633 Sep 2002 WO
WO02071652 Sep 2002 WO
WO03001820 Jan 2003 WO
WO03009576 Jan 2003 WO
WO03081938 Oct 2003 WO
WO2004064434 Jul 2004 WO
WO2005012520 Dec 2005 WO
WO2005115026 Dec 2005 WO
WO2006081527 Aug 2006 WO
WO 2007002659 Jan 2007 WO
WO2007028122 Mar 2007 WO
WO2007028252 Mar 2007 WO
WO2007044099 Apr 2007 WO
WO2007045101 Apr 2007 WO
WO 2007075446 Jul 2007 WO
WO 2007078766 Jul 2007 WO
WO2007078766 May 2011 WO
Related Publications (1)
Number Date Country
20070140185 A1 Jun 2007 US