Radio network control

Information

  • Patent Grant
  • 8160020
  • Patent Number
    8,160,020
  • Date Filed
    Monday, June 25, 2001
    23 years ago
  • Date Issued
    Tuesday, April 17, 2012
    12 years ago
Abstract
In connection with a mobile wireless subnetwork having multiple radio network controllers and multiple radio nodes, a session established for an access terminal is associated with a serving radio network controller. The association is maintained as the access terminal moves from the coverage area of one radio node to the coverage area of another radio node within the same subnetwork. Access channel packets are routed from an access terminal having an existing session to the serving radio network controller by determining the IP address of the serving radio network controller using a session identifier.
Description
BACKGROUND

This invention relates to radio network control.


High Data Rate (HDR) is an emerging mobile wireless access technology that enables personal broadband Internet services to be accessed anywhere, anytime (see P. Bender, et al., “CDMA/HDR: A Bandwidth-Efficient High-Speed Wireless Data Service for Nomadic Users”, IEEE Communications Magazine, July 2000, and 3GPP2, “Draft Baseline Text for 1xEV-DO,” Aug. 21, 2000). Developed by Qualcomm, HDR is an air interface optimized for IP packet data services that can deliver a shared forward link transmission rate of up to 2.46 Mbit/s per sector using only (1X) 1.25 MHz of spectrum. Compatible with CDMA2000 radio access (TIA/EIA/IS-2001, “Interoperability Specification (IOS) for CDMA2000 Network Access Interfaces,” May 2000) and wireless IP network interfaces (TIA/EIA/TSB-115, “Wireless IP Architecture Based on IETF Protocols,” Jun. 6, 2000, and TIA/EIA/IS-835, “Wireless IP Network Standard,” 3rd Generation Partnership Project 2 (3GPP2), Version 1.0, Jul. 14, 2000), HDR networks can be built entirely on IP technologies, all the way from the mobile Access Terminal (AT) to the global Internet, thus taking full advantage of the scalability, redundancy and low-cost of IP networks.


HDR has been adopted by TIA (Telecommunications Industry Association) as a new standard in the CDMA2000 family, an EVolution of the current 1xRTT standard for high-speed data-only (DO) services, formally referred to as 1xEV-DO or IS-856.


IS-856 systems are typically implemented using the radio access network architecture shown in FIG. 1. Here the Access Terminal (AT) 10 may be a laptop computer, a Personal Digital Assistant (PDA), a dual-mode voice/data handset, or another device, with built-in IS-856 support.


The entire administrative service area of a wireless access provider may be divided into one or more subnetworks (or subnets) 12, 14. Each subnet 12 includes a set of Radio Nodes (RN's) 16, 18 and one or more Radio Network Controllers (RNC) 20, 22. The RN's are connected to RNC's over a backhaul network 24. In existing 2G and 3G wireless networks, each RN is connected to only 1 RNC using dedicated leased lines or ATM permanent virtual circuits (PVC's). Further, RNC's are connected to each other using dedicated leased lines or ATM PVC's. In a new generation of IP-based radio access networks, the backhaul can be implemented using a shared IP or metropolitan Ethernet network which supports many-to-many connectivity between RN's and RNC's.


Each RNC typically controls 25-100 RN's. Each RN typically supports 1-4 carriers each of 1.25 MHz of bandwidth. Further, each cell area (not shown) is typically divided into multiple sectors (typically 3 or 6) and the RN has one radio transceiver 27 for each sector.


Each RNC is connected over an IP network 26 to one or more Packet Data Serving Node's (PDSN's) 28 (see TIA references cited earlier). The RNC communicates with the PDSN over a standard interface termed the R-P (Radio-Packet) interface 30.


The R-P interface is further broken into 2 interfaces: the A10 interface used to carry data and the A11 interface used to carry signaling. A PDSN can be viewed as an edge router that supports mobility; it maintains link layer connectivity to AT's through the Access Network. The PDSN also interfaces to AAA servers 32 for Authentication, Authorization and Accounting (AAA).


In IS-856 radio access networks as currently defined by 3GPP2 in 1xEV-DO IOS Phase 1 (IS-878), each RN is uniquely associated with an RNC and each subnet contains only one RNC. As a result when an AT moves from the coverage area of one RNC to the coverage area of another, it performs a handoff.


Every time a dormant AT crosses a subnet boundary, it initiates a dormant handoff by sending a UATI_Request. The AT recognizes the need for a dormant handoff by monitoring the 128-bit SectorID being broadcast by the sectors. All sectors that belong to the same subnet have SectorID's that fall within a certain range. The 128-bit Universal Access Terminal Identifier (UATI) assigned to an AT in a given subnet falls within the same range. When the AT moves into the coverage area of another subnet, it compares its UATI with the SectorID being broadcast by its serving sector. When these do not belong to the same range, the AT knows that it has crossed a subnet boundary and initiates the dormant handoff by sending a UATI_Request.


A first purpose of a dormant handoff is to inform the PDSN to send packets arriving for that AT to the new serving RNC. Dormant handoffs involve a relocation of the R-P (A10) session from the old serving RNC to the new serving RNC. Without such handoffs, the PDSN would send packets to an old serving RNC. Since the old serving RNC does not know the location of the AT outside its subnet, AT's packets may be lost.


A second purpose of a dormant handoff is to transfer session information between RNC's. In IS-856, each RNC maintains certain session information about the AT. Such session information is needed for communication over the air interface. Session information includes the Universal Access Terminal Identifier (UATI), security keys for access channel authentication and encryption, and other protocol constants. Every time the AT crosses an RNC boundary (in this case a subnet), a new UATI needs to be assigned to the AT and the remaining session information needs to be transferred from the old serving RNC to the new serving RNC. Such a transfer requires a network link between the RNC's. Without such session transfer, every handoff between RNC's would result in a new and lengthy session establishment, taking up precious air resources and causing delays. When the footprint of an RNC is small, dormant handoffs occur frequently, resulting in excessive use of airlink resources (for the new UATI assignment), extra processing for the RNC's to implement the session transfer, and extra processing for the RNC and PDSN to relocate the A10 connection.


To address a similar situation in CDMA2000 networks, a new logical network element often referred to as a Packet Control Function (PCF) has been added. The PCF provides a single-interface to a PDSN and serves multiple RNC's. Therefore, when the AT crosses an RNC boundary, an A10 relocation is not required as explained below.


In CDMA2000 systems, mobility management is provided by the Mobile Switching Center (MSC)/Visitor Location Register (VLR). When an AT provides a location update to inform the network of its new location, this information is immediately forwarded to the serving MSC. Such location updates are provided by the AT when the it moves sufficiently away from the sector where it last provided a location update. When the PDSN receives a packet data for an AT, it sends the packet to the PCF. The PCF, recognizing that no traffic channel exists for this AT, in turn informs the RNC that last served this AT. That RNC then informs the MSC. The MSC, equipped with location information stored in the VLR, requests one or more RNC's to page the AT from a certain set of sectors. Once the AT responds with an Origination message to its serving RNC, the serving RNC sets up a so-called A8/A9 connection to the PCF. Soon after, the PCF starts forwarding the received packets to the serving RNC.


A similar procedure can be used in IS-856, by adding a similar PCF entity 50, as shown in FIG. 2. (A system like the one described here has been proposed in 3GPP2 for 1xEV-DO IOS Phase 2.) However, since IS-856 networks do not have an MSC, it is necessary to define a separate mobility management function (Mobility Manager 52) responsible for maintaining the location information for every AT that is being served by the RNC's under its control. Such a Mobility Manager can be integrated into the PCF, or can be a separate network entity. Any time the AT provides a location update by sending an IS-856 RouteUpdate message, its location information is immediately forwarded by the serving RNC to the Mobility Manager. When the PDSN receives a packet data for an AT, it sends the packet to the PCF, which in turn informs the Mobility Manager. The Mobility Manager, equipped with the location information requests, either directly or via the RNC that last received a location update from the AT, requests one or more RNC's to page the AT from a select set of sectors. Once the AT responds with a ConnectionRequest message, the serving RNC sets up a so-called A8/A9 connection to the PCF. Soon after, the PCF starts forwarding received packets to the serving RNC. This approach eliminates the need for relocating the A10 (R-P) session to the PDSN every time the AT crosses an RNC boundary, effectively expanding the size of the subnet to cover multiple RNC's.


The Mobility Manager function does not address the session transfer issue described earlier. For this purpose, another logical network element, a Session Manager 53 is introduced. Like the Mobility Manager, a Session Manager controls multiple RNC's, and maintains session information for all sessions handled by the RNC's that it controls. Like the Mobility Manager, the Session Manager may be a separate network element, may be combined with the Mobility Manager or may be integrated with the PCF.


When a new session is to be established, the serving RNC interacts with the Session Manager. The Session Manager provides the UATI to be assigned to the AT and stores the session parameters that the serving RNC has determined during the key exchange and configuration phases of the session set-up. Whenever the AT establishes a new connection with its serving RNC, the RNC retrieves the session information from the Session Manager. In the case where the Session Manager is integrated with the PCF, this can be accomplished during the A8/A9 connection set-up procedures. The RNC provides the latest session information back to the Session Manager when a connection is closed. Again, in the case where the Session Manager is integrated with the PCF, this can be accomplished during the A8/A9 connection tear-down procedures. Additional delays are caused by passing of session information back and forth between the Session Manager and the RNC during every connection set-up.


The proposed 1xEV-DO Phase 2 architecture also produces frequent inter-RNC soft handoffs. This usually requires complex procedures that involve the old and new serving RNC's.


SUMMARY

In general, in one aspect, the invention features (a) in connection with a mobile wireless subnetwork including multiple radio network controllers and multiple radio nodes, associating a session established for an access terminal with a serving radio network controller, (b) maintaining the association as the access terminal moves from the coverage area of one radio node to the coverage area of another radio node within the same subnetwork, and (c) routing access channel packets from an access terminal having an existing session to the serving radio network controller by determining the IP address of the serving radio network controller using a session identifier.


Implementations of the invention may include the following features. The routing is performed by an RN or by a broker radio network controller in the subnetwork. An RN forwards a received access channel packet to the broker radio network controller. The serving radio network controller and the broker radio network controller are connected by a high-speed LAN. The serving radio network controller and the broker radio network controller are connected by a high-speed LAN. The session identifier includes the Universal Access Terminal Identifier (UATI) of the IS-standard. The radio node routes packets received from an access terminal without an existing session to a default RNC with whom the radio node is associated. A radio node receives paging requests from more than one radio network controller and forward link traffic channel packets from more than one radio network controller. A radio node sends reverse link traffic channel packets to more than one radio network controller. Traffic channel radio resources are managed in the radio nodes and a radio network controller requests radio resources from a radio node before adding any of its sectors to a traffic channel. The radio network controllers reside in different locations and are connected via a metropolitan-area network. The session association is transferred from one radio network controller in one subnetwork to another radio network controller in another subnetwork based upon a predetermined criterion. The session transfer is triggered by the access terminal upon detection of a subnet change or by the network. At the serving radio network controller, a packet data serving node is selected to serve the access terminal. At the serving radio network controller, a mobility manager maintains a current position of the access terminal.


An RNC Resource Control Agent assigns sessions to radio network controllers. The RNC Resource Control Agent resides on a separate server. An RNC Resource Control Agent also determines the association between the RN's and their default RNC's. The RNC Resource Control Agent also performs load balancing in assigning sessions to radio network controllers. The RNC Resource Control Agent also selects a new RNC in network-initiated dormant handoffs. The Radio Resource Control Agent function is distributed among the radio network controllers and radio nodes, and the radio network controllers and the radio nodes continuously communicate resource information to each other to enable individual network nodes to make session assignment decisions on their own. The Radio Resource Control Agent also maintains session information for all sessions under its control.


The radio network controllers also include a PDSN function that includes the Simple IP, Mobile IP and AAA client functions.


In general, in another aspect, the invention features the radio node configured to route access channel packets from an access terminal having an existing session to a serving radio network controller by determining the IP address of the serving radio network controller using a session identifier. Other advantages and features will become apparent from the following description, and from the claims.







DESCRIPTION


FIGS. 1 through 4 show networks.


Existing 3G wireless network architectures, including the ones discussed above for IS-856, assume a fixed association between RN's and RNC's. In other words, all traffic flowing from or to an RN always goes through the same RNC. This requires complex hierarchical structures to handle dormant handoffs between RNC's and requires frequent and delay-prone inter-RNC (soft) handoffs. Fixed associations between RN's and RNC's are needed in circuit-switched voice applications when point-to-point dedicated leased lines are used for backhaul connectivity between RN's and RNC's as illustrated in FIGS. 1 and 2.


Client/Server Architecture for RNC Clusters


First, as shown in FIG. 3, consider the case where a set of RNC's 60 are co-located in a data center and are connected together via a high-speed Local Area Network (LAN) 62 such as a Gigabit Ethernet LAN. In this case, RNC's connect to the network via LAN interfaces and a router 64 provides the connectivity to the external network. We refer to such a configuration as an RNC cluster (or pool). (Later, we will describe how the same concept can be extended to RNC's connected over a metropolitan-area network.) Such clustering is possible for packet data and Voice over IP (VoIP) applications. In the past, when the main traffic type carried through a wireless network was circuit-switched voice, such clustering using an Ethernet LAN was not feasible. RN's may connect to the router in the data center using dedicated leased lines 66. We assume that RN's and RNC's are all IP addressable. In other words, any RN served by the cluster can communicate directly at the IP level with any of the other RNC's in the cluster. But in this section we assume that no direct communication link exists between RN's that are served by a cluster and other RNC's outside the cluster.


When constructing an RNC cluster such as the one described above, it is important to avoid any handoff boundaries between individual RNC's so that the entire cluster can behave as if it were one big RNC. This would eliminate unnecessary handoffs due to mobility, thereby greatly improving scalability and reliability.


To accomplish this, suppose we define an IS-856 subnet 70 to be the entire footprint of the RNC cluster, not the footprint of just one RNC. In other words, all the RN's served by the cluster now belong to the same subnet. To simplify the system operation, we continue to associate each RN in the subnet with only one RNC in the cluster. This association is established when an RN is first powered. The detailed meaning of this association will be explained later.


Access Channel Packet Routing


Each sector in an RN can transmit to an AT over the forward traffic or control channels 72. Similarly, each sector in an RN can receive from an AT over the reverse traffic or access channels 74. The access channel and the reverse traffic channels are separated by code division multiplexing using a Long Code Mask, whereas the control channel and the forward traffic channels are separated by time-division multiplexing using a preamble. The preamble identifies a forward link physical layer packet as a control channel packet or as a traffic channel packet associated with a certain MAC Index. A MAC Index, an integer between 0 and 63, is unique within a sector and is assigned by the RN and RNC at the time of connection establishment. Similarly, the Long Code Mask identifies a reverse link physical layer packet as an access channel packet or a specific traffic channel packet. The Long Code Mask is based on the AT's UATI for the traffic channel, and is based on the SectorID of the serving sector for the access channel. The sending AT of an access channel packet and the recipient AT of a control channel packet are indicated in the ATI field of a MAC Layer header.


Whenever an RN receives a MAC Layer packet on one of its access channels, it always forwards the packet, without even looking at its content, to its Default RNC in the cluster with whom it is associated. As such, when a packet carrying a UATI_Request message is received from an AT, it is forwarded by the receiving RN to the Default RNC. The RN encapsulates the MAC Layer packet in an IP packet (possibly multiplexed with MAC Layer packets of other AT's) with a destination IP address equal to an IP address of the serving RNC. The IP packet is carried over the backhaul network to an aggregation router at the data center and the router forwards it to the serving RNC over the Ethernet LAN. All access channel packets include an address field that identifies the sending AT. When the sending AT has already been assigned a UATI by the subnet, the address field contains that UATI. When the sending AT does not yet have a UATI, the address field contains a Random Access Terminal Identifier (RATI), which is randomly selected by the AT. The first two bits of the address field indicate whether the address is a UATI or a RATI.


When the (Ethernet) I/O subsystem of an RNC receives a UATI_Request message from an AT with an address field that contains a RATI or an unrecognized UATI, the RNC assumes the role of the serving RNC to handle the session and assigns the session to one of its server cards. The AT is then assigned a UATI within some predetermined range. This range, which identifies the serving RNC to all other RNC's in the cluster, is known by all the RNC's in the cluster, but is not known by the AT. The range of the UATI's that belong to a certain RNC may further be subdivided to identify the server module within the serving RNC that is handling the session. The serving RNC also establishes an A10 connection with the PDSN in order to facilitate the data transfer between the AT and the PDSN. The A10 connection terminates on the server module handling the session.


Page Routing


While dormant, the AT sends RouteUpdate messages, as needed, to provide information about its current location. This mobility information is maintained at a Mobility Manager in the serving RNC. Since a subnet covers the entire footprint of the RNC cluster, when the AT crosses the boundary between two RNC's in the same cluster, it does not detect a subnet change and therefore does not initiate a dormant handoff. But when the AT sends an access channel message to an RN that is associated with a different RNC (broker RNC) in the cluster, the packet(s) carrying that message are sent by the RN to the broker RNC. The I/O subsystem in the broker RNC examines the address field of all arriving access channel packets and reads the UATI. From the UATI, the I/O subsystem determines by table look-up the identity of the serving RNC and forwards the access channel packet to that RNC over the high-speed LAN. When a UATI is served locally, the I/O subsystem first determines the server module that is handling the session and forwards the packet to that module using an internal bus of the serving RNC.


If packet data is received from the PDSN for a dormant AT, the packets are always forwarded over the A10 interface to a specific server module on the serving RNC. That server module then obtains the location information for that AT from the Mobility Manager in the serving RNC. The serving RNC then sends a paging message via a set of RN's that are determined based on the last Route Update message received from the AT. The paging message is sent via the control channel of one or more sectors that belong to the RNC cluster. The RN's transmitting the paging message may not be associated with the serving RNC (i.e., they may have a different Default RNC), but they need to be associated with one of the RNC's in the cluster.


Connection Establishment


When it receives a ConnectionRequest message from the AT, either directly or via a broker RNC, the server module in the serving RNC examines the pilot strengths reported by the AT in the RouteUpdate message accompanying the ConnectionRequest message. To simplify system operation, we assume that each RN's radio resources are managed by a Radio Resource Control function in the RNC with whom the RN is associated. Therefore, when the serving RNC wants to establish a connection that involves RN's that are associated with other RNC's, it first communicates directly with the Radio Resource Control function on those RNC's to check for resource availability. Such communication occurs over the high-speed LAN. When sufficient radio resources are available, the serving RNC establishes the necessary traffic channel communication links with the RN's and sends a TrafficChannelAssignment message to the AT to initiate the connection set up. Once a traffic channel has been established packets flow directly between the RN's and the serving RNC without any involvement of any broker RNC. Such direct routing eliminates the delays typically found in soft handoff procedures that involve triangular routing through another RNC.


When a new connection involves an RN that is outside the footprint of the RNC cluster (different subnet), a soft handoff procedure is implemented. In this case, the serving RNC communicates with the RNC's outside the cluster over a metropolitan-area network to obtain radio resources. If the radio resources are available, the serving RNC establishes a communication link with that RN, but this time through the RNC outside the cluster. Such triangular routing is needed because here we assumed that there is no direct physical link between the serving RNC and the RN outside the subnet.


Dormant Handoffs/Subnet Change


When the AT crosses the boundary of an RNC cluster, it will detect a subnet change and initiate a dormant handoff between its serving RNC in the cluster and a new RNC outside the cluster. This handoff involves the assignment of a new UATI by the new RNC, the transfer of the IS-856 session from the old RNC to the new RNC and the relocation of the A10 interface from the old RNC to the new RNC.


Improved Client/Server Architecture


The scheme described so far can be improved in couple of areas. First, we can eliminate the triangular routing of access channel packets via a broker RNC by moving that routing function to the RN's. This will reduce delays in handling access channel packets, for example during connection set-up, at the expense of some increase in processing power at the RN. Eliminating triangular routing will also allow us to extend some of the benefits of RNC clusters to RNC's that are connected across a metropolitan-area network.


Second, as shown in FIG. 4, for backhaul networks 80 that support many-to-many connectivity between RN's and RNC's, two additional improvements are possible: A) We can extend a subnet beyond the boundaries of a single RNC cluster, by allowing the serving RNC to send Page Requests to RN's who are associated with an RNC that is not in the same cluster; B) We can move the Radio Resource Control function from the RNC's to the RN's, thereby further reducing delays in connection set-up procedures.


These improvements allow us better to exploit the flexibilities of IP and metropolitan Ethernet networks and result in a more distributed system where an AT may remain attached to its serving RNC regardless of its position, except when the distance between the AT and the serving RNC becomes excessive.


Avoiding Triangular Routing of Access Channel Packets


When powered on for the first time, an AT registers with the IS-856 network as follows: It acquires an IS-856 pilot being broadcast by one of the nearby sectors and synchronizes with the system. To initiate the session establishment, the AT sends a UATI_Request. As before, the AT uses a Random ATI (RATI) in the MAC Layer header to send this request.


The RN examines the address field of the access channel packet and recognizes that the originator of the message does not have an assigned UATI and forwards the packet to its Default RNC with whom it is associated, possibly when the RN is first installed. To examine the address field, the RN first extracts the MAC Layer capsule fragments from the received MAC Layer packets, and forms the MAC Layer capsule. It then reads the address field in the MAC Layer header.


After receiving the UATI_Request, the Default RNC assumes the role of the serving RNC and assigns a UATI to the AT. It then proceeds with the rest of session establishment, in particular the security key exchange and the protocol configurations. (Later, we will describe an improved version of this procedure to increase availability and to provide better load balancing.) The RNC also implements the PPP/CHAP procedure to authenticate the AT based on its Network Access Identifier (NAI). There is a one-to-one mapping between the NAI and the terminal's actual IMSI (International Mobile Subscriber Identity). This mapping is maintained in a AAA (Radius) server (not shown). The AAA server passes the AT's IMSI value to the serving RNC.


The PCF function in the serving RNC uses this IMSI value to select a PDSN as described in the IS-2001 standard and establishes an A10 connection to that PDSN. In the A11 Registration message, the PCF function provides the IMSI value of the AT along with its own SID/NID/PZID identifier to the PDSN. The AT and the PDSN then set up a PPP link, perform Simple IP or Mobile IP set-up and execute user-level authentication.


Each RN keeps a routing table for the mapping between the UATI and the serving RNC. This routing table may be provided to the RN by a network management system. As in the previous system, each RNC owns the UATI values that fall within a certain range. Whenever the RN receives an Access Channel packet, it determines from the UATI value in the MAC Layer Header the identity of the serving RNC, and routes the packet to that RNC by placing an IP address of the serving RNC in the destination address field of the IP header. This approach allows access channel packets to be delivered from any RN directly to the serving RNC in the cluster.


Avoiding Handoffs Between RNC's which are not Co-Located


Now suppose we replace the point-to-point lines between RN's and RNC clusters, by a many-to-many backhaul network that allows any RN to communicate directly with any RNC, regardless of the location of the RNC's. In such networks we will of course benefit from the direct routing of access channel packets from the RN to the serving RNC, by avoiding the triangular routing across the metropolitan-area network.


As before, mobility management for a given AT is handled entirely by the serving RNC. The AT is configured to provide distance-based location update in dormant mode. In other words, whenever the serving sector is more than a certain distance away from the sector where it last sent a RouteUpdate message, the AT sends a new RouteUpdate message to the serving sector over the Access Channel. The RouteUpdate message is forwarded by the RN to the serving RNC which then keeps track of the location of the AT.


When the serving RNC wants to page an AT, it first determines the RN or RN's from which it wants to send the page, depending on the time and position indicated in the most recent RouteUpdate message received from the AT. It is assumed here that the serving RNC knows the IP addresses of all the RN's in the radio access network. The serving RNC sends the paging message to the appropriate set of RN's directly. These RN's then page the AT over their respective control channels.


All sectors in an IS-856 network broadcast in their overhead channel their SectorID and Subnet Mask. For a relatively small network, one can set the Subnet Mask to 0, thereby implying that the entire network is one big subnet. In this scenario, the AT never detects a subnet change. Therefore, the AT remains attached to the original serving RNC and never triggers a dormant inter-RNC handoff. The A10 connection to the PDSN also remains fixed regardless of the position of the AT.


If the radio access network covers a geographically large area, it may be prudent to force a dormant inter-RNC handoff, when the AT moves too far away from the serving RNC. In this case, the Subnet Mask should be chosen greater than 0. Then, when the AT crosses the subnet boundary, a dormant handoff occurs and the A10 connection is relocated. Further, the AT is assigned a new UATI and session parameters are transferred from the old serving RNC to the new serving RNC.


Faster Connection Using Distributed Radio Resource Control


Now we describe how moving the Radio Resource Control from the RNC's to the RN's reduces the set-up time for connections that involve multiple RNC's. Whenever the AT sends a ConnectionRequest message over the access channel along with a RouteUpdate message to initiate a new connection, the message is immediately forwarded from the receiving RN to the serving RNC. The serving RNC examines the RouteUpdate message to determine a likely set of sectors that may be included in the Active Set. The serving RNC then corresponds directly with the RN's where these sectors reside, to request traffic channel and backhaul resources. The RN's either decline, or accept and allocate the needed radio resources. If resources are available from a sufficient set of RN's, the serving RNC accepts the connection request, and sends a TrafficChannel assignment message over the Control Channel to the AT. The AT then starts transmitting on the Reverse Traffic Channel (RTC). Once it acquires the RTC, the RN sends an RTCAck message to the AT to indicate the acquisition of the RTC signal. The AT then responds with a TrafficChannelComplete message to indicate the completion of the Connection set-up.


In this procedure each RN controls its own radio resources, both with respect to hardware resources available on the RN, as well as the management of interference across its sectors. As a result, the admission control function is split between the RN and the serving RNC. RN's provide local admission control for the sectors they control while the serving RNC provides a global admission control. Similarly, when a sector in a given connection is inactive for some period of time, it can initiate the procedure for closing the connection by sending a request to the serving RNC to close the connection. The serving RNC then makes a global decision on whether to remove that sector from the connection, close the entire connection or do nothing.


Packet Routing Between RN and RNC—in More Detail


When a sector in the RN receives a MAC Layer packet on a reverse traffic channel, it forwards the packet to an I/O card after adding a Stream Identifier that includes the UATI of the sending AT along with its own SectorID. The I/O card uses the UATI value to look up the IP address of the serving RNC. It then encapsulates the MAC Layer packet together with its Stream Identifier in an IP packet whose destination address is set to the IP Address of the serving RNC. The I/O module in the serving RNC, upon receiving the packet, reads the UATI value to determine the server module that handles this session. It then passes the packet along with the Stream Identifier to that server module for further processing.


When a sector in the RN receives a MAC Layer packet on the access channel, it first reads the UATI in the ATI field of the MAC Layer Header and then forwards the packet to an I/O card after adding a Stream Identifier that includes the UATI of the sending AT along with the serving sector's SectorID. The I/O card in the RN again uses the UATI value to look up the IP address of the serving RNC. It encapsulates the MAC Layer packet together with its Stream Identifier in an IP packet whose destination address is set to the IP Address of the serving RNC. The I/O module in the serving RNC, upon receiving the packet, reads the UATI value to determine the server module that serves this session. It then passes the MAC Layer packet along with the Stream Identifier to that server module for further processing.


When a server module in the serving RNC has a MAC Layer packet ready for transmission on a forward traffic channel, it first sends it to the I/O card in the serving RNC along with a Stream Identifier that includes the transmitting sector's SectorID (or a representation of it), the UATI of the receiving AT and a MAC Index identifying the connection. The I/O card in the serving RNC then uses the UATI value to look up the IP address of the RN to which to send the packet. It encapsulates the MAC Layer packet together with a Stream Identifier in an IP packet whose destination address is set to the IP Address of the RN. The RN, upon receiving the packet, reads the SectorID value in the Stream Identifier to determine the sector that will transmit the packet. It then passes the MAC Layer packet along with the Stream Identifier to the appropriate modem card, which schedules the MAC Layer packet for transmission on the Forward Link using the MAC Index as the preamble.


Similarly, on the forward link, when a server module in the serving RNC has a MAC Layer packet ready for transmission on the Control Channel of a particular sector, it first sends the packet to an I/O card in the serving RNC along with a Stream Identifier that includes the UATI of the receiving AT, the transmitting sector's SectorID (or a representation of it) and a MAC Index identifying the packet as a control channel packet. The I/O card in the serving RNC then uses the UATI value to determine the IP address of the RN to which to send the packet. It then encapsulates the MAC Layer packet together with its Stream Identifier in an IP packet whose destination address is set to the IP Address of the RN. The RN, upon receiving the packet, reads the SectorID value in the Stream Identifier to determine the sector that will transmit the packet. It then passes the MAC Layer packet along with the SectorID and MAC Index to the appropriate modem card. The modem card schedules the packet for transmission on the control channel.


Failure Recovery & Load Balancing


The client/server architecture described earlier can be further extended to increase the overall reliability of the wireless network. (Note, the RNC may be a carrier-class equipment with internal redundancy to handle failure of its various cards/modules. The situation we consider here is one where the equipment either does not have redundancy for every card/module or where the redundant component also fails.)


Failure Recovery without Session Preservation


First, consider an approach where each RN, upon power-up, first communicates with a primary RNC Resource Control Agent who may reside in one or more of the RNC's. The primary Resource Control Agent assigns each RN to a Default RNC. The RN then routes all new session requests to that Default RNC.


When an RNC becomes completely unreachable due to some failure, all AT's that are being served by that RNC will ultimately recognize that their IS-856 sessions have been lost. Each of these AT's will initiate a new session by sending a UATI_Request over the Access Channel. Every RN who receives one of these requests will route them to its default RNC. If at any time, the RN cannot reach its default RNC, it will immediately request a new default RNC from the primary RNC Resource Control Agent. If the primary RNC Resource Control Agent is also not reachable, it will send a similar request to a secondary RNC Resource Control Agent. Once the UATI_Request is received by the Default RNC, it will immediately establish a new IS-856 session with the AT and will further initiate the procedure to set up a new A10 connection with a PDSN.


Assignment of a new Default RNC may also be initiated by the RNC Resource Control Agent. This can be accomplished by having the RNC Resource Control Agent continuously monitor the health of all the RNC's in the subnetwork. Upon detecting the failure of an RNC, the RNC Resource Control Agent immediately communicates with all affected RN's and assigns them to new Default RNC's. In assigning RN's to Default RNC's, the RNC Resource Control Agent may perform load balancing to ensure that user sessions are evenly distributed across all available RNC's.


Load Balancing Session Assignment


The above method can be further enhanced by making the RNC Resource Control Agent ultimately responsible for assigning user sessions to RNC's. In this case, when a Default RNC or possibly the RN itself receives a new UATI_Request, it asks the RNC Resource Control Agent to assign the session to an RNC. The RNC Resource Control Agent assigns the session to an RNC based on resource availability, loading and the distance between the RNC and the RN presently serving the AT. This approach provides better load balancing among RNC's, allowing user sessions to be distributed across RNC's more dynamically, while also taking into account the current position of the AT. In case of an RNC failure, all new session requests will arrive at the RNC Resource Control Agent who will then assign these sessions to new RNC's, again based on loading and other considerations.


The RNC Resource Control Agent may also be used to trigger dormant handoffs for load balancing or other purposes. In Phase 1 IS-856 networks, a dormant inter-RNC handoff is always triggered by the AT upon detection of a subnet change. As we discussed earlier, lack of an immediate dormant handoff may result in lost paging data.


In the improved IS-856 networks shown in FIGS. 3 and 4, a dormant handoff can be initiated by the network based on the location of the AT. Upon receipt of a RouteUpdate, when a serving RNC determines that a transfer of a user session to another RNC is desired (for load balancing or other reasons), it sends a Dormant Handoff request to the RNC Resource Control Agent who assigns the session to a new RNC. The new serving RNC then assigns a new UATI and performs a session transfer from the previous serving RNC.


In a more distributed implementation of the RNC Resource Control Agent concept, RNC's can constantly communicate with the RN's and other RNC's to provide routing information (including their loading) to all the RN's, thereby allowing the RN's to route incoming session requests to the correct RNC without going through a RNC Resource Control Agent. A drawback of this approach is that significant backhaul signaling traffic would be created as a result of exchanging such dynamic loading information.


Failure Recovery with Session Preservation


In some networks, it may be necessary to recover user session information in case of an RNC failure. This would eliminate the air link congestion that hundreds of new session requests could create shortly after an RNC failure. In order to preserve sessions in case of failure of an RNC, a copy of such information (for all sessions in the subnetwork) can be stored in the RNC Resource Control Agent.


When an RNC fails and the AT initiates a new session, its new session request will reach the RNC Resource Control Agent. The RNC Resource Control Agent then not only assigns a new serving RNC to each session, but also provides the session information thereby avoiding lengthy session establishment procedures. Once a new UATI is successfully assigned to the AT, communication with the network may resume. The RNC Resource Control Agent further provides information related to the A10 interface, in order to allow the RNC establish an A10 session with the same PDSN, thereby avoiding the setting up of new PPP and Mobile/Simple IP sessions.


A similar recovery procedure can be applied within the RNC, by setting up an RNC Resource Control Agent inside the RNC. The RNC Resource Control Agent may then run on a specific redundant card, with a hot standby. The RNC Resource Control Agent is then responsible for allocating sessions to server modules. In case a server module fails, the session is internally reallocated to another server module. In principle, the operation of this system is the same as the one operating across the network. Moreover, in this case, it is not necessary to reestablish the A10 session to the PDSN, since the external IP address of the PCF seen by the PDSN can be maintained.


Integrated RNC & PDSN


Another benefit of the client-server architecture described above is the ability to combine the RNC and PDSN functions in a single network element. In hierarchical 3G packet data networks, a PDSN represents the highest point in the hierarchy, and therefore can support multiple RNC's. A new generation of PDSN's are expected to supports hundreds of thousands of users, and several RNC's.


In existing radio access networks with dedicated point-to-point links between RN's and RNC's, migrating the PDSN function to the RNC would be undesirable, because this would reduce the number of sessions that could be supported, resulting in frequent costly handoffs between PDSN's that involve new PPP and Simple/Mobile IP registrations.


In the client/server architecture described here handoffs between RNC's occur much less frequently therefore allowing the integration of the PDSN function into the RNC. Such an approach also simplifies the networking between the RNC and the PDSN, and further increases scalability and reliability.


In an RNC with an integrated PDSN, so-called PDSN server modules are added to handle the PDSN function. This includes PPP termination, Simple IP and/or Mobile IP foreign agent and the AAA client functions. As long as the AT remains within a subnet (say an RNC cluster), no inter-PDSN handoffs would be required.


If an integrated RNC/PDSN fails, all sessions supporting an AT (including the air interface, PPP and Simple/MobileIP sessions) are transferred to another RNC/PDSN thereby avoiding any new session establishment between the AT and the wireless network.


Other embodiments are within the scope of the following claims.

Claims
  • 1. A method comprising: enabling many-to-many communication among radio network controllers and radio nodes through a packet network,establishing a first session for a first access terminal on a first radio network controller through a first radio node, wherein the first session is established when the first access terminal is dormant, andmaintaining the first session on the first radio network controller as the first access terminal moves from a coverage area of the first radio node to any portion of a coverage area of a second radio node through which a second access terminal has a second session on a second radio network controller, wherein the first session is maintained when the first access terminal is dormant;wherein when the first access terminal is dormant, the first access terminal has the first session established on the first radio network controller and does not have any traffic channel established with any radio network controller; andwherein when the second access terminal is dormant, the second access terminal has the second session established on the second radio network controller and does not have any traffic channel established with any radio network controller.
  • 2. The method of claim 1 also comprising: establishing a first traffic channel between the first access terminal and the first radio network controller of the network through the first radio node when the first access terminal is in the coverage area of the first radio node,establishing a second traffic channel between the second access terminal and the second radio network controller of the network through the second radio node when the second access terminal is in the coverage area of the second radio node, andmaintaining the first traffic channel between the first access terminal and the first radio network controller without requiring the first traffic channel to pass through another radio network controller when the first access terminal moves from the coverage area of the first radio node to any portion of the coverage area of the second radio node.
  • 3. The method of claim 2 further comprising: sending an access channel message from the first access terminal to the first radio network controller through the second radio node.
  • 4. The method of claim 2 further comprising: signaling between the first radio network controller and the second radio network controller.
  • 5. The method of claim 2 further comprising: routing access channel packets received from the first access terminal at the second radio node to the first radio network controller by determining an Internet protocol address of the first radio network controller.
  • 6. The method of claim 5 wherein the Internet protocol address is determined using a session identifier.
  • 7. The method of claim 6 further comprising: storing in the second radio node information to map a session identifier of the first access terminal to an Internet protocol address of the first radio network controller; andusing the stored information at the second radio node to determine the Internet protocol address of the first radio network controller using a session identifier included in an access channel message received from the first access terminal.
  • 8. The method of claim 1 further comprising: establishing, through the first radio node, a third session for a third access terminal on a selected one of either the first radio network controller or a second radio network controller.
  • 9. The method of claim 8 further comprising: selecting the selected one of either the first radio network controller or the second radio network controller based at least on a loading of the first and second radio network controllers.
  • 10. The method of claim 8 further comprising: selecting the selected one of either the first radio network controller or the second radio network controller based at least on the routing distance between the first radio node and the first and second radio network controllers.
  • 11. The method of claim 2 further comprising: employing a chassis-based hardware platform with multiple server cards to implement each of the first and second radio network controllers.
  • 12. The method of claim 11 further comprising: routing incoming packets to server cards based on session identifiers using an I/O card.
  • 13. The method of claim 12 wherein the session identifiers comprise 1xEV-DO UATI.
  • 14. The method of claim 1 further comprising: establishing a first association between the first radio node and the first radio network controller, andestablishing a second association between the first radio node and the second radio network controller.
  • 15. The method of claim 4 wherein the signaling occurs when the first access terminal moves towards any portion of the coverage area of the second radio node.
  • 16. The method of claim 6 wherein the session identifier comprises a 1xEV-DO UATI.
  • 17. The method of claim 7 further comprising: encapsulating at least one of the access channel messages in an Internet protocol packet with a destination address equal to the Internet protocol address of the first radio network controller.
  • 18. The method of claim 8 further comprising: maintaining the third session on the selected one of either the first radio network controller or the second radio network controller as the third access terminal moves from the coverage area of the first radio node.
  • 19. The method of claim 14 further comprising: establishing a third association between the second radio node and the first radio network controller, andestablishing a fourth association between the second radio node and the second radio network controller.
  • 20. The method of claim 2 wherein when the first access terminal is in the coverage area of the first radio node, data packets received at the first radio node on the first traffic channel from the first access terminal are sent to a network address of the first radio network controller over the network.
  • 21. The method of claim 2 wherein when the first access terminal is in the coverage area of the first radio node, data packets destined for the first access terminal are sent by the first radio network controller to a network address of the first radio node over the network.
  • 22. The method of claim 2 wherein when the second access terminal is in any portion of the coverage area of the second radio node, data packets received at the second radio node on the second traffic channel from the second access terminal are sent to a network address of the second radio network controller over the network.
  • 23. The method of claim 2 wherein when the second access terminal is in any portion of the coverage area of the second radio node, data packets destined for the second access terminal are sent by the second radio network controller to a network address of the second radio node over the network.
  • 24. The method of claim 2 wherein when the first access terminal is in any portion of the coverage area of the second radio node, data packets received at the second radio node from the first access terminal are sent to the network address of the first radio network controller over the network without traversing the second radio network controller.
  • 25. The method of claim 2 wherein when the first access terminal is in any portion of the coverage area of the second radio node, data packets destined for the first access terminal are sent by the first radio network controller to the network address of the second radio node over the network without traversing the second radio network controller.
  • 26. The method of claim 1, wherein the first radio node receives paging requests from more than one radio network controller.
  • 27. The method of claim 1, wherein establishment of the first session follows powering on of the first access terminal and permits establishment of a first traffic channel between the first access terminal and the first radio network controller of the network when the first access terminal is no longer dormant.
  • 28. The method of claim 1, wherein the first traffic channel is established in response to a connection request message sent by the first access terminal.
  • 29. The method of claim 2, 1, 3, 4, 5, 6, or 7, wherein the first radio network controller comprises a default controller for the first radio node, the method further comprising: routing, by the first radio node, data packets received from a third access terminal that does not have an existing session to the first radio network controller.
  • 30. The method of claim 2 or 1, wherein the first or second radio node receives forward link traffic channel packets from more than one radio network controller.
  • 31. The method of claim 2 or 1, wherein the first or second radio node sends reverse link traffic channel packets to more than one radio network controller.
  • 32. The method of claim 2 or 1, wherein traffic channel radio resources are managed in the first and second radio nodes and the first or second radio network controller requests radio resources from the first or second radio node before adding any of its sectors to any traffic channel.
  • 33. The method of claim 2 or 1, wherein the first and second radio network controllers reside in different locations and are connected by a metropolitan-area network.
  • 34. The method of claim 1, 8 or 9, in which the first session is transferred from the first radio network controller in one subnetwork to another radio network controller in another subnetwork based upon a predetermined criterion.
  • 35. The method of claim 34, wherein the session transfer is triggered by the first access terminal upon detection of a subnetwork change.
  • 36. The method of claim 34, wherein the session transfer is triggered by a radio network controller.
  • 37. The method of claim 2, 1, or 3 further comprising: at the first radio network controller, selecting a packet data serving node to serve the first access terminal.
  • 38. The method of claim 2 further comprising: at the first radio network controller, using a mobility manager to maintain a current location information of the first access terminal.
  • 39. The method of claim 8, 9, or 10 further comprising: using an RNC resource control agent to assign sessions to the first and second radio network controllers.
  • 40. The method of claim 39, wherein the RNC resource control agent resides on a separate server.
  • 41. The method of 2, 5, or 14, wherein each radio node in the radio access network is associated with a default radio network controller, the method further comprising: determining, by an RNC resource control agent, an association between a radio node and its default radio network controller.
  • 42. The method of claim 39 further comprising: performing, by the RNC resource control agent, load balancing in assigning sessions to radio network controllers.
  • 43. The method of claim 39, further comprising: selecting, by the RNC resource control agent, a Previously Presented RNC in network-initiated dormant handoffs.
  • 44. The method of claim 39, wherein the RNC resource control agent function is distributed among the radio network controllers and radio nodes, and the radio network controllers and the radio nodes continuously communicate resource information to each other to enable individual network nodes to make session assignment decisions on their own.
  • 45. The method of claim 39, further comprising: maintaining, by the RNC resource control agent, session information for all sessions under the RNC resource control agent's control.
  • 46. The method of claim 2, 5, or 8, wherein the radio network controllers also include a PDSN function.
  • 47. The method of claim 46, wherein the PDSN function includes Simple IP, Mobile IP and AAA client functions.
  • 48. The method of claim 46, 2, 5, or 8 wherein a radio network controller is co-located with a radio node.
  • 49. The method of claim 35 wherein the subnetwork is a 1xEV-DO subnet.
  • 50. A method comprising: enabling a radio node to simultaneously serve both a first access terminal and a second access terminal, the first access terminal having a first session established on a first radio network controller and the second access terminal having a second session established on a second radio network controller, the radio node being interconnected with the radio network controllers using a packet network, wherein the radio node is enabled to simultaneously serve both the first access terminal and the second access terminal when the first access terminal is dormant;wherein when the first access terminal is dormant, the first access terminal has the first session established on the first radio network controller and does not have any traffic channel established with any radio network controller; andwherein when the second access terminal is dormant, the second access terminal has the second session established on the second radio network controller and does not have any traffic channel established with any radio network controller.
  • 51. The method of claim 50 further comprising: maintaining the first session on the first radio network controller as the first access terminal moves from a coverage area of the radio node.
  • 52. The method of claim 50 further comprising: maintaining the second session on the second radio network controller as the second access terminal moves from a coverage area of the radio node.
  • 53. The method of claim 50 further comprising: signaling between the first radio network controller and the second radio network controller.
  • 54. The method of claim 50 further comprising: routing access channel packets received from the first and second access terminals by determining an Internet protocol address of the respective radio network controllers.
  • 55. The method of claim 54 wherein the Internet protocol address is determined using a session identifier.
  • 56. The method of claim 55 further comprising: storing in the radio node information to map a session identifier of the first access terminal to an Internet protocol address of the first radio network controller,using the stored information at the radio node to determine the Internet protocol address of the first radio network controller using a session identifier included in an access channel message received from the first access terminal.
  • 57. The method of claim 55 wherein the session identifiers comprise 1xEV-DO UATI.
  • 58. The method of claim 50 further comprising: establishing, through the radio node, a third session for a third access terminal on a selected one of either the first radio network controller or the second radio network controller.
  • 59. The method of claim 58 further comprising: selecting the selected one of either the first radio network controller or the second radio network controller based at least on a loading of the first and second radio network controllers.
  • 60. The method of claim 58 further comprising: selecting the selected one of either the first radio network controller or the second radio network controller based at least on the routing distance between the first radio node and the first and second radio network controllers.
  • 61. The method of claim 50 further comprising: establishing a first association between the first radio node and the first radio network controller, andestablishing a second association between the first radio node and the second radio network controller.
  • 62. The method of claim 50 also comprising: at the radio node,routing access channel packets received from a third access terminal to a selected one of either the first radio network controller or the second radio network controller by determining an Internet protocol address of a serving radio network controller associated with the third access terminal.
  • 63. The method of claim 62 wherein the Internet protocol address is determined using a session identifier.
  • 64. The method of claim 63 wherein the session identifier comprises a 1xEV-DO UATI.
  • 65. The method of claim 62 further comprising: at the radio node, storing information to map a session identifier of the third access terminal to an Internet protocol address of the serving radio network controller.
  • 66. The method of claim 62 further comprising: encapsulating at least one of the access channel packets in an Internet protocol packet with a destination address equal to the Internet protocol address of the serving radio network controller.
  • 67. The method of claim 62, further comprising: selecting the selected one of either the first radio network controller or the second radio network controller as the serving radio network controller based at least on a loading of the first and second radio network controllers.
  • 68. The method of claim 67, wherein the selecting is performed when an access channel packet of the access channel packets comprises a 1xEV-DO Random Access Terminal Identifier (RATI).
  • 69. The method of claim 62 further comprising: selecting the selected one of either the first radio network controller or the second radio network controller as the serving radio network controller based at least on respective routing distances between the radio node and each of the first and second radio network controllers.
  • 70. The method of claim 62 wherein the radio node receives forward link traffic channel packets from more than one radio network controller.
  • 71. The method of claim 62 wherein the radio node sends reverse link traffic channel packets to more than one radio network controller.
  • 72. The method of claim 62 wherein traffic channel radio resources are managed in the radio node, the radio node supports sectors, and the first or second radio network controller requests radio resources from the radio node before adding any of the radio node's sectors to any traffic channel.
  • 73. A system comprising: a first radio network controller;a second radio network controller; anda first radio node interconnected with the first and second radio network controllers using a packet network, the first radio node enabled to simultaneously serve both a first access terminal and a second access terminal, the first access terminal having a first session established on a first radio network controller and the second access terminal having a second session established on a second radio network controller, wherein the first radio node is enabled to simultaneously serve both the first access terminal and the second access terminal when the first access terminal is dormant;wherein when the first access terminal is dormant, the first access terminal has the first session established on the first radio network controller and does not have any traffic channel established with any radio network controller; andwherein when the second access terminal is dormant, the second access terminal has the second session established on the second radio network controller and does not have any traffic channel established with any radio network controller.
  • 74. The system of claim 73 also comprising a second radio node, wherein: the first and second radio nodes are each configured to receive data from and transmit data to each of the first and second access terminals when the respective access terminal is located in a coverage area associated with the respective radio node;the first and second radio network controllers are each configured to receive data from and transmit data to the respective first and second access terminals through the first or second radio nodes; andthe packet network enables many-to-many communication among the first and second radio network controllers and the first and second radio nodes, wherein: a first traffic channel is established between the first access terminal and the first radio network controller of the network through the first radio node when the first access terminal is in the coverage area of the first radio node,a second traffic channel is established between the second access terminal and the second radio network controller of the network through the second radio node when the second access terminal is in the coverage area of the second radio node, andthe first traffic channel is maintained between the first access terminal and the first radio network controller without requiring the first traffic channel to pass through another radio network controller when the first access terminal moves from the coverage area of the first radio node to any portion of the coverage area of the second radio node.
  • 75. The system of claim 74 wherein the network comprises an Internet protocol network.
  • 76. The system of claim 75 wherein the first and second radio network controllers and the first and second radio nodes are associated with a single subnetwork.
  • 77. The system of claim 73 further comprising: a second radio node enabled to establish a third session for a third access terminal on a selected one of either the first radio network controller or the second radio network controller.
  • 78. A method comprising: in a radio access network, serving traffic channels between at least two access terminals and at least two different radio network controllers through a single radio node without regard to which portion of a coverage area of the radio node each of the at least two access terminals is located, wherein data packets between an access terminal of the at least two access terminals and a radio network controller of the at least two different radio network controllers do not traverse any other radio network controller, the single radio node being interconnected with the at least two radio network controllers using a packet network, andmaintaining a session on the radio network controller of the at least two different radio network controllers when the access terminal of the at least two access terminals moves from any portion of a coverage area of the single radio node to any portion of a coverage area of another radio node, wherein the session is maintained when the access terminal is dormant;wherein when the access terminal is dormant, the access terminal has the session established on the radio network controller and does not have any traffic channel established with any radio network controller.
  • 79. The method of claim 78, wherein the serving comprises: maintaining a first traffic channel between the access terminal and the radio network controller when the access terminal moves from any portion of the coverage area of the single radio node to any portion of the coverage area of the another radio node.
  • 80. The method of claim 78 further comprising: signaling between the at least two different radio network controllers.
  • 81. The method of claim 78 further comprising: routing access channel packets received from the access terminal by determining an Internet protocol address of a serving radio network controller of the at least two different radio network controllers.
  • 82. The method of claim 81 wherein the Internet protocol address is determined using a session identifier.
  • 83. The method of claim 82 further comprising: storing, in the single radio node, information to map the session identifier of the access terminal to the Internet protocol address of the serving radio network controller; andusing the stored information to determine the Internet protocol address of the serving radio network controller using the session identifier included in an access channel message received from the access terminal.
  • 84. The method of claim 78 further comprising: establishing, through the single radio node, another session for another access terminal of the at least two access terminals on a selected one of the at least two radio network controllers.
  • 85. The method of claim 84 further comprising: selecting the selected one of the at least two radio network controllers based at least on a loading of the at least two radio network controllers.
  • 86. The method of claim 84 further comprising: selecting the selected one of the at least two radio network controllers based at least on the routing distance between the radio node and the at least two radio network controllers.
  • 87. The method of claim 84 wherein the session identifiers comprise 1xEV-DO UATI.
  • 88. The method of claim 78 further comprising: establishing a first association between the radio node and a first radio network controller of the at least two radio network controllers, andestablishing a second association between the radio node and a second radio network controller of the at least two radio network controllers.
  • 89. A system comprising: radio nodes;radio network controllers; anda packet network interconnecting the radio nodes and the radio network controllers;the system enabling serving of traffic channels between at least two access terminals and at least two different radio network controllers through a single radio node without regard to which portion of a coverage area of the radio node each of the at least two access terminals is located, wherein data packets between a first access terminal of the at least two access terminals and a first radio network controller of the radio network controllers do not traverse any other radio network controller,the system also enabling the first access terminal to maintain a first session on the first radio network controller when the first access terminal moves from any portion of the coverage area of the radio node to any portion of a coverage area of another radio node through which a second access terminal of the at least two access terminals has a second session on a second radio network controller of the radio network controllers, wherein the first access terminal is enabled to maintain the first session on the first radio network controller when the first access terminal is dormant;wherein when the first access terminal is dormant, the first access terminal has the first session established on the first radio network controller and does not have any traffic channel established with any radio network controller; andwherein when the second access terminal is dormant, the second access terminal has the second session established on the second radio network controller and does not have any traffic channel established with any radio network controller.
  • 90. A method comprising: at a radio network controller in communication with a first radio node and a second radio node through a packet network that enables many-to-many communication,establishing a first traffic channel with a first access terminal through the first radio node when the first access terminal is in a coverage area of the first radio node,maintaining the first traffic channel with the first access terminal without requiring the first traffic channel to pass through another radio network controller when (a) the first access terminal moves from a coverage area of the first radio node to any portion of a coverage area of the second radio node, and(b) a second traffic channel exists between a second access terminal, in any portion of the coverage area of the second radio node, and a second radio network controller; andestablishing a first session for the first access terminal through the first radio node when the first access terminal is in the coverage area of the first radio node, andmaintaining the first session as the first access terminal moves from the coverage area of the first radio node;wherein the first session is established and the first session is maintained when the access terminal is dormant; andwherein when the first access terminal is dormant, the first access terminal has the first session established through the first radio node and does not have any traffic channel established with any radio network controller.
  • 91. The method of claim 90 further comprising: receiving an access channel message from the first access terminal through the second radio node.
  • 92. An apparatus comprising: means for establishing a first session with a first radio network controller for a first access terminal through a packet network that enables many-to-many communication and a first radio node when the first access terminal is in a coverage area of the first radio node, wherein the first session is established when the first access terminal is dormant, andmeans for maintaining the first session as the first access terminal moves from the coverage area of the first radio node to any portion of a coverage area of a second radio node through which a second access terminal has a second session on a second radio network controller, wherein the first session is maintained when the first access terminal is dormant;wherein when the first access terminal is dormant, the first access terminal has the first session established on the first radio network controller and does not have any traffic channel established with any radio network controller; andwherein when the second access terminal is dormant, the second access terminal has the second session established on the second radio network controller and does not have any traffic channel established with any radio network controller.
  • 93. The apparatus of claim 92 also comprising: means for establishing a first traffic channel through the first radio network controller with the first access terminal through the packet network and the first radio node when the first access terminal is in the coverage area of the first radio node, andmeans for maintaining the first traffic channel with the first access terminal without requiring the first traffic channel to pass through another radio network controller when(a) the first access terminal moves from the coverage area of the first radio node to any portion of a coverage area of a second radio node, and(b) a second traffic channel exists between the second access terminal, in any portion of the coverage area of the second radio node, and the second radio network controller.
  • 94. The apparatus of claim 92 further comprising: means for receiving an access channel message from the first access terminal through the second radio node and the packet network.
  • 95. An apparatus comprising: means for enabling a radio node to simultaneously serve both a first access terminal and a second access terminal, the first access terminal having a first session established on a first radio network controller and the second access terminal having a second session established on a second radio network controller, the radio node being interconnected with the radio network controllers using a packet network, wherein the radio node is enabled to simultaneously serve both the first access terminal and the second access terminal when the first access terminal is dormant;wherein when the first access terminal is dormant, the first access terminal has the first session established on the first radio network controller and does not have any traffic channel established with any radio network controller; andwherein when the second access terminal is dormant, the second access terminal has the second session established on the second radio network controller and does not have any traffic channel established with any radio network controller.
  • 96. The apparatus of claim 95 further comprising: means for routing access channel packets received from a third access terminal to a selected one of either the first radio network controller or the second radio network controller, through a packet network enabling many-to-many communication, by determining an Internet protocol address of a serving radio network controller associated with the third access terminal.
  • 97. The apparatus of claim 96 further comprising: means for storing information to map a session identifier of the third access terminal to an Internet protocol address of the serving radio network controller.
  • 98. The apparatus of claim 96 further comprising: means for encapsulating at least one of the access channel packets in an Internet protocol packet with a destination address equal to the Internet address of the serving radio network controller.
  • 99. The apparatus of claim 96 further comprising: means for selecting the selected one of either the first radio network controller or the second radio network controller as the serving radio network controller based at least on a loading of the first and second radio network controllers.
  • 100. The apparatus of claim 96 further comprising: means for selecting the selected one of either the first radio network controller or the second radio network controller as the serving radio network controller based at least on respective routing distances between the radio node and each of the first and second radio network controllers.
  • 101. The apparatus of claim 100 wherein the means for selecting comprises means for selecting the selected one of either the first radio network controller or the second radio network controller as the serving radio network controller in response to an access channel packet of the access channel packets that comprises a 1xEV-DO Random Access Terminal Identifier (RATI).
US Referenced Citations (256)
Number Name Date Kind
5128938 Borras Jul 1992 A
5239675 Dudczak Aug 1993 A
5377224 Hudson Dec 1994 A
5574996 Raith Nov 1996 A
5754945 Lin et al. May 1998 A
5790528 Muszynski Aug 1998 A
5815813 Faruque Sep 1998 A
5828661 Weaver et al. Oct 1998 A
5852630 Langberg et al. Dec 1998 A
5857154 Laborde et al. Jan 1999 A
5884177 Hanley Mar 1999 A
5930714 Abu-Amara et al. Jul 1999 A
5937345 McGowan et al. Aug 1999 A
5940762 Lee et al. Aug 1999 A
5960349 Chheda et al. Sep 1999 A
5974318 Satarasinghe Oct 1999 A
5983282 Yucebay Nov 1999 A
5991635 Dent et al. Nov 1999 A
6011970 McCarthy Jan 2000 A
6014564 Donis et al. Jan 2000 A
6016429 Khafizov et al. Jan 2000 A
6023625 Myers Feb 2000 A
6032033 Morris et al. Feb 2000 A
6047186 Yu et al. Apr 2000 A
6049715 Willhoff et al. Apr 2000 A
6052594 Chuang et al. Apr 2000 A
6061560 Saboorian et al. May 2000 A
6069871 Sharma et al. May 2000 A
6091953 Ho et al. Jul 2000 A
6101394 Illidge Aug 2000 A
6111857 Soliman et al. Aug 2000 A
6112089 Satarasinghe Aug 2000 A
6119024 Takayama Sep 2000 A
6122513 Bassirat Sep 2000 A
6151512 Chheda et al. Nov 2000 A
6167036 Beven Dec 2000 A
6178328 Tang et al. Jan 2001 B1
6192246 Satarasinghe Feb 2001 B1
6198719 Faruque et al. Mar 2001 B1
6198910 Hanley Mar 2001 B1
6208615 Faruque et al. Mar 2001 B1
6219539 Basu et al. Apr 2001 B1
6223047 Ericsson Apr 2001 B1
6233247 Alami et al. May 2001 B1
6252862 Sauer et al. Jun 2001 B1
6256300 Ahmed et al. Jul 2001 B1
6266529 Chheda Jul 2001 B1
6272148 Takagi et al. Aug 2001 B1
6285875 Alajoki et al. Sep 2001 B1
6289220 Spear Sep 2001 B1
6320898 Newson et al. Nov 2001 B1
6345185 Yoon et al. Feb 2002 B1
6366961 Subbiah et al. Apr 2002 B1
6370357 Xiao et al. Apr 2002 B1
6370381 Minnick et al. Apr 2002 B1
6393482 Rai et al. May 2002 B1
6400712 Phillips Jun 2002 B1
6404754 Lim Jun 2002 B1
6408182 Davidson et al. Jun 2002 B1
6418306 McConnell Jul 2002 B1
6424834 Chang et al. Jul 2002 B1
6430168 Djurkovic et al. Aug 2002 B1
6438376 Elliott et al. Aug 2002 B1
6438377 Savolainen Aug 2002 B1
6445922 Hiller et al. Sep 2002 B1
6459696 Carpenter et al. Oct 2002 B1
6473399 Johansson et al. Oct 2002 B1
6477159 Yahagi Nov 2002 B1
6480476 Willars Nov 2002 B1
6480718 Tse Nov 2002 B1
6507741 Bassirat Jan 2003 B1
6522885 Tang et al. Feb 2003 B1
6539030 Bender et al. Mar 2003 B1
6542481 Foore et al. Apr 2003 B2
6542752 Illidge Apr 2003 B1
6545984 Simmons Apr 2003 B1
6560453 Henry et al. May 2003 B1
6580699 Manning et al. Jun 2003 B1
6590879 Huang et al. Jul 2003 B1
6611695 Periyalwar Aug 2003 B1
6618585 Robinson et al. Sep 2003 B1
6621811 Chang et al. Sep 2003 B1
6628637 Li et al. Sep 2003 B1
6651105 Bhagwat et al. Nov 2003 B1
6687237 Lee et al. Feb 2004 B1
6701148 Carter et al. Mar 2004 B1
6701149 Bagchi et al. Mar 2004 B1
6711144 Kim et al. Mar 2004 B1
6731618 Chung et al. May 2004 B1
6738625 Oom et al. May 2004 B1
6741862 Chung et al. May 2004 B2
6754191 Paranchych et al. Jun 2004 B1
6757319 Parsa et al. Jun 2004 B1
6768903 Fauconnier et al. Jul 2004 B2
6771962 Saifullah et al. Aug 2004 B2
6781999 Eyuboglu et al. Aug 2004 B2
6813498 Durga et al. Nov 2004 B1
6826402 Tran Nov 2004 B1
6834050 Madour et al. Dec 2004 B1
6842630 Periyalwar Jan 2005 B2
6847821 Lewis et al. Jan 2005 B1
6877104 Shimono Apr 2005 B1
6909887 Fauconnier et al. Jun 2005 B2
6944452 Coskun et al. Sep 2005 B2
6975869 Billon Dec 2005 B1
6996056 Chheda et al. Feb 2006 B2
6999784 Choi et al. Feb 2006 B1
7035636 Lim et al. Apr 2006 B1
7042858 Jia et al. May 2006 B1
7047009 Laroia et al. May 2006 B2
7072663 Ramos et al. Jul 2006 B2
7079511 Abrol et al. Jul 2006 B2
7085251 Rezaiifar Aug 2006 B2
7110785 Paranchych et al. Sep 2006 B1
7130626 Bender et al. Oct 2006 B2
7130668 Chang et al. Oct 2006 B2
7139575 Chen et al. Nov 2006 B1
7162247 Baba et al. Jan 2007 B2
7170871 Eyuboglu et al. Jan 2007 B2
7177650 Reiger et al. Feb 2007 B1
7200391 Chung et al. Apr 2007 B2
7212822 Vicharelli May 2007 B1
7236764 Zhang et al. Jun 2007 B2
7242958 Chung et al. Jul 2007 B2
7251491 Jha Jul 2007 B2
7277446 Abi-Nassif et al. Oct 2007 B1
7298327 Dupray et al. Nov 2007 B2
7299168 Rappaport et al. Nov 2007 B2
7299278 Ch'ng Nov 2007 B2
7349699 Kelly et al. Mar 2008 B1
7398087 McConnell et al. Jul 2008 B1
7408887 Sengupta et al. Aug 2008 B2
7408901 Narayanabhatla Aug 2008 B1
7411996 Kim et al. Aug 2008 B2
7453912 Laroia et al. Nov 2008 B2
7457265 Julka et al. Nov 2008 B2
7486696 Garg et al. Feb 2009 B2
7512110 Sayeedi et al. Mar 2009 B2
7546124 Tenneti et al. Jun 2009 B1
7751858 Chou Jul 2010 B2
20020025820 Fauconnier et al. Feb 2002 A1
20020031107 Li et al. Mar 2002 A1
20020032034 Tiedemann et al. Mar 2002 A1
20020035699 Crosbie Mar 2002 A1
20020067707 Morales et al. Jun 2002 A1
20020068570 Abrol et al. Jun 2002 A1
20020082018 Coskun et al. Jun 2002 A1
20020085719 Crosbie Jul 2002 A1
20020102976 Newbury et al. Aug 2002 A1
20020136226 Christoffel et al. Sep 2002 A1
20020145990 Sayeedi Oct 2002 A1
20020193110 Julka et al. Dec 2002 A1
20020196749 Eyuboglu et al. Dec 2002 A1
20030003913 Chen et al. Jan 2003 A1
20030026240 Eyuboglu et al. Feb 2003 A1
20030031201 Choi Feb 2003 A1
20030067970 Kim et al. Apr 2003 A1
20030095513 Woodmansee et al. May 2003 A1
20030100311 Chung et al. May 2003 A1
20030114162 Chheda et al. Jun 2003 A1
20030117948 Ton et al. Jun 2003 A1
20030125039 Lachtar et al. Jul 2003 A1
20030195016 Periyalwar Oct 2003 A1
20040008649 Wybenga et al. Jan 2004 A1
20040015607 Bender et al. Jan 2004 A1
20040038700 Gibbs Feb 2004 A1
20040068668 Lor et al. Apr 2004 A1
20040081111 Bae et al. Apr 2004 A1
20040179492 Zhang et al. Sep 2004 A1
20040203771 Chang et al. Oct 2004 A1
20040214574 Eyuboglu et al. Oct 2004 A1
20040218556 Son et al. Nov 2004 A1
20040224687 Rajkotia Nov 2004 A1
20050021616 Rajahalme et al. Jan 2005 A1
20050025116 Chen et al. Feb 2005 A1
20050053034 Chiueh Mar 2005 A1
20050111429 Kim et al. May 2005 A1
20050113117 Bolin et al. May 2005 A1
20050124343 Kubo Jun 2005 A1
20050148297 Lu et al. Jul 2005 A1
20050181795 Mark et al. Aug 2005 A1
20050207368 Nam Sep 2005 A1
20050213555 Eyuboglu et al. Sep 2005 A1
20050233746 Laroia et al. Oct 2005 A1
20050243749 Mehrabanzad et al. Nov 2005 A1
20050245279 Mehrabanzad et al. Nov 2005 A1
20060030323 Ode et al. Feb 2006 A1
20060067422 Chung Mar 2006 A1
20060067451 Pollman et al. Mar 2006 A1
20060126509 Abi-Nassif Jun 2006 A1
20060126554 Motegi et al. Jun 2006 A1
20060126556 Jiang et al. Jun 2006 A1
20060148460 Mukherjee et al. Jul 2006 A1
20060159045 Ananthaiyer et al. Jul 2006 A1
20060182063 Jia et al. Aug 2006 A1
20060183497 Paranchych et al. Aug 2006 A1
20060203766 Kim et al. Sep 2006 A1
20060209760 Saito et al. Sep 2006 A1
20060209882 Han et al. Sep 2006 A1
20060240782 Pollman et al. Oct 2006 A1
20060259628 Vadlapudi et al. Nov 2006 A1
20060264218 Zhang et al. Nov 2006 A1
20060291420 Ng Dec 2006 A1
20060294214 Chou Dec 2006 A1
20060294241 Cherian et al. Dec 2006 A1
20070022396 Attar et al. Jan 2007 A1
20070026884 Rao Feb 2007 A1
20070058628 Palnati et al. Mar 2007 A1
20070077948 Sharma et al. Apr 2007 A1
20070097916 Eyuboglu et al. May 2007 A1
20070099632 Choksi May 2007 A1
20070105527 Nylander et al. May 2007 A1
20070115896 To et al. May 2007 A1
20070140172 Garg et al. Jun 2007 A1
20070140184 Garg et al. Jun 2007 A1
20070140185 Garg et al. Jun 2007 A1
20070140218 Nair et al. Jun 2007 A1
20070153750 Baglin et al. Jul 2007 A1
20070155329 Mehrabanzad et al. Jul 2007 A1
20070160008 Burgess Jul 2007 A1
20070197220 Willey Aug 2007 A1
20070220573 Chiussi et al. Sep 2007 A1
20070230419 Raman et al. Oct 2007 A1
20070238442 Mate et al. Oct 2007 A1
20070238476 Raman et al. Oct 2007 A1
20070242648 Garg et al. Oct 2007 A1
20070248042 Harikumar et al. Oct 2007 A1
20080003988 Richardson Jan 2008 A1
20080009328 Narasimha Jan 2008 A1
20080013488 Garg et al. Jan 2008 A1
20080062925 Mate et al. Mar 2008 A1
20080065752 Ch'ng et al. Mar 2008 A1
20080069020 Richardson Mar 2008 A1
20080069028 Richardson Mar 2008 A1
20080070574 Vikberg et al. Mar 2008 A1
20080076398 Mate et al. Mar 2008 A1
20080117842 Rao May 2008 A1
20080119172 Rao et al. May 2008 A1
20080120417 Harikumar et al. May 2008 A1
20080139203 Ng et al. Jun 2008 A1
20080146232 Knisely Jun 2008 A1
20080151843 Valmikam et al. Jun 2008 A1
20080159236 Ch'ng et al. Jul 2008 A1
20080162924 Chinitz et al. Jul 2008 A1
20080162926 Xiong et al. Jul 2008 A1
20080253550 Ch'ng et al. Oct 2008 A1
20080254792 Ch'ng Oct 2008 A1
20080273493 Fong et al. Nov 2008 A1
20080287130 Laroia et al. Nov 2008 A1
20090034440 Samar et al. Feb 2009 A1
20090082020 Ch'ng et al. Mar 2009 A1
20090088155 Kim Apr 2009 A1
20090103494 Jia et al. Apr 2009 A1
20090116445 Samar et al. May 2009 A1
20090129334 Fong et al. May 2009 A1
20090156218 Garg et al. Jun 2009 A1
Foreign Referenced Citations (61)
Number Date Country
199872855 Dec 1998 AU
199884574 Feb 1999 AU
200121976 Jun 2001 AU
735575 Jul 2001 AU
2003202721 Oct 2003 AU
2295922 Mar 2004 CA
1265253 Aug 2000 CN
1653844 Oct 2004 CN
101015224 Aug 2007 CN
625863 Nov 1994 EP
0904369 Mar 1999 EP
983694 Mar 2000 EP
983705 Mar 2000 EP
995278 Apr 2000 EP
995296 Apr 2000 EP
1005245 May 2000 EP
1011283 Jun 2000 EP
1014107 Jun 2000 EP
1397929 Mar 2004 EP
1491065 Dec 2004 EP
1751998 Feb 2007 EP
1896980 Mar 2008 EP
1897383 Mar 2008 EP
2447585 Aug 2008 GB
2452688 Mar 2009 GB
2447585 Oct 2010 GB
1101334 Oct 2007 HK
2007-538476 Dec 2007 JP
2008-547329 Dec 2008 JP
2008-547358 Dec 2008 JP
9833373 Aug 1998 KR
2004046069 Jun 2004 KR
2004089744 Oct 2004 KR
787289 Dec 2007 KR
199910613 Mar 2002 MX
WO 9748191 Dec 1997 WO
WO 9808353 Feb 1998 WO
WO 9809460 Mar 1998 WO
WO 9853618 Nov 1998 WO
WO 9853620 Nov 1998 WO
WO 9903245 Jan 1999 WO
WO 9904511 Jan 1999 WO
WO 0060891 Oct 2000 WO
WO 0145308 Jun 2001 WO
WO 02071633 Sep 2002 WO
WO 02071652 Sep 2002 WO
WO03001820 Jan 2003 WO
WO 03009576 Jan 2003 WO
WO 03081938 Oct 2003 WO
WO 2004064434 Jul 2004 WO
WO 2005012520 Dec 2005 WO
WO2005115026 Dec 2005 WO
WO 2006081527 Aug 2006 WO
WO2007002659 Jan 2007 WO
WO 2007028122 Mar 2007 WO
WO 2007028252 Mar 2007 WO
WO2007044099 Apr 2007 WO
WO 2007045101 Apr 2007 WO
WO 2007075446 Jul 2007 WO
WO 2007078766 Jul 2007 WO
WO2007078766 May 2011 WO
Related Publications (1)
Number Date Country
20020196749 A1 Dec 2002 US