1. Field of the Invention
The present invention relates to a radio node apparatus made to construct a multi-hop radio system in an autonomous fashion, multi-hop radio system and multi-hop radio system constructing method.
2. Description of the Related Art
At present, the standard “IEEE802.11” for radio systems prescribes two modes as radio system modes: an ad hoc mode in which a group is made among radio nodes (each of which will be referred to hereinafter as a “radio node apparatus”), at which radio waves directly arrive, without interposing one specified base station (hereinafter referred to as an “AP (Access Point)”) so as to carry out direct communications and an infrastructure mode in which an AP is put to use and radio nodes (hereinafter referred to as an “STA (Station)”) existing in a range radio waves from the AP reach are connected into a star form with respect to the AP to be mutually communicable through the AP. The employment of such radio system technologies enables a radio node to attend and leave the communications in an ad hoc manner and further to make communications while moving. However, in the ad hoc mode, these communications require that the radio wave directly reaches a communication partner and, in the infrastructure mode, they require that the radio wave directly reaches the AP, while difficulty is experienced in making communications through only a radio link with respect to a partner at which the radio wave does not arrive.
Moreover, the patent document 1 (Japanese Patent Laid-Open No. 2001-237764 (FIG. 1)) discloses the potential of a radio system as one example of speeding-up of mobile communications, that is, it provides a method of constructing a multi-hop radio network among radio nodes as one means to enlarge a service offering area in a system where a communication area of a base station (AP) is smaller in comparison with that of mobile communications such as a PDC (Personal Digital Cellular). In the invention disclosed in the aforesaid patent document 1, each of radio nodes only establishes a channel up to a base station for the purpose of only making communications from each radio node to the base station on a star type network, wherein the base station is set as the highest-rank station between the base station and the radio nodes and each radio node uniquely determines a host connection-accepting (connected-to) radio node. In addition, the highest-rank station (base station) does not fully control the construction of a star-type multi-hop radio network but each radio node realizes a multi-hop radio network in an autonomous (or self-sustaining) fashion by selecting a host radio node, which minimizes the number of hops up to the base station, as an optimum connection-accepting radio node on the basis of the number of hops counted from the base station.
However, a radio system according to the standard “IEEE802.11” does not have an arrangement to carry out the multi-hop among a plurality of radio nodes and, although a plurality of radio nodes shown in
The present invention has been developed with a view to eliminating the above-mentioned problems, and it is therefore an object of the invention to provide a radio node apparatus capable of constructing a tree type multi-hop radio system in which mutual radio nodes determine a radio node which becomes a root node of a tree in an autonomous manner and the root node is set as a root in an autonomous manner, a multi-hop radio system and a multi-hop radio system constructing method.
For this purpose, in accordance with an aspect of the present invention, there is provided a radio node apparatus for use in a tree-structured multi-hop radio system including a plurality of radio node apparatus, at least a portion of which is used as a repeater for carrying out multi-hop communication at layer 2, comprising, a storage unit for storing state information, used for constructing the multi-hop radio system, including information for specifying a root radio node apparatus positioned at a summit of the multi-hop radio system, with which it has a connection, and the number of hops from the root ratio node apparatus, a collection unit for collecting state information transmitted from the radio node apparatus around itself, and a selection unit for selecting a host connection-accepting radio node apparatus on the basis of the information for specifying the root radio node apparatus and the number of hops included in the collected state information. This arrangement can construct a tree type multi-hop radio system in which a root node is set as a root in an autonomous manner.
As a preferable mode, in the radio node apparatus according to the present invention, the selection unit selects radio node apparatus as a candidate for the host connection-accepting radio node apparatus on the basis of the information for specifying the root radio node apparatus and sets, of the selected radio node apparatus, the radio node apparatus with the smallest number of hops (minimum value in terms of number of hops) as the candidate for the host connection-accepting radio node apparatus and makes a comparison between the root radio node apparatus specifying information, the number of hops in the candidate host connection-accepting radio node apparatus, set as the candidate, and the root radio node apparatus specifying information, the number of hops held in its own storage unit so as to, when a result of the comparison exceeds a predetermined comparison reference, select the candidate host connection-accepting radio node apparatus as the host connection-accepting radio node apparatus. This enables a group arrangement to be established on the basis of the root radio node apparatus specifying information (ID) in an autonomous fashion.
In addition, preferably, the radio node apparatus according to the present invention further comprises a change unit for, when the selection unit selects the host connection-accepting radio node apparatus, rewriting, of the root radio node apparatus specifying information and the number of hops stored in the storage unit, the root radio node apparatus specifying information as the root radio node apparatus specifying information held in the host connection-accepting radio node apparatus and rewriting the value of the number of hops from the root radio node apparatus as a value obtained by adding 1 to the number of hops in the host connection-accepting radio node apparatus. This can reliably change the state information which varies according to connection.
Still additionally, preferably, in the radio node apparatus according to the present invention, the state information includes a group priority indicative of a connection priority of a group, with which it has a connection, and the selection unit checks the group priority with first priority to select the radio node apparatus with a higher group priority as the host connection-accepting radio node apparatus. This can more efficiently construct a tree type multi-hop radio system in which a root node is set as a root in self-sustaining manner.
Yet additionally, preferably, the radio node apparatus according to the present invention further comprises a change unit for, when the selection unit selects the host connection-accepting radio node apparatus, rewriting, of the group priority, the root radio node apparatus specifying information and the number of hops, the group priority and the root radio node apparatus specifying information as the group priority and the root radio node apparatus specifying information held in the host connection-accepting radio node apparatus, and rewriting the value of the number of hops from the root radio node apparatus as a value obtained by adding 1 to the number of hops in the host connection-accepting radio node apparatus. This can reliably change the state information which varies according to connection.
Moreover, in accordance with another aspect of the present invention, there is provided a tree-structured multi-hop radio system including a plurality of radio node apparatus, at least a portion of which is used as a repeater for carrying out multi-hop communication at layer 2, wherein said radio node apparatus stores, in a predetermined storage region, state information, used for constructing the multi-hop radio system, including information for specifying a root radio node apparatus positioned at a summit of the multi-hop radio system, with which it has a connection, and the number of hops from the root ratio node apparatus, collects state information transmitted from the radio node apparatus around itself, and selects a host connection-accepting radio node apparatus on the basis of the information for specifying the root radio node apparatus and the number of hops included in the collected state information. This arrangement can construct a tree type multi-hop radio system in which a root node is set as a root in an autonomous manner.
Still moreover, as a preferable mode, in the multi-hop radio system according to the present invention, the radio node apparatus selects radio node apparatus as candidates for the host connection-accepting radio node apparatus on the basis of the information for specifying the root radio node apparatus and sets, of the selected radio node apparatus, the radio node apparatus with the smallest number of hops as the candidate for the host connection-accepting radio node apparatus and makes a comparison between the root radio node apparatus specifying information, the number of hops in the candidate host connection-accepting radio node apparatus and the root radio node apparatus specifying information, the number of hops held in its own storage region so as to, when a result of the comparison exceeds a predetermined comparison reference, select the candidate host connection-accepting radio node apparatus as the host connection-accepting radio node apparatus. This enables a group arrangement to be established on the basis of the root radio node apparatus specifying information (ID) in an autonomous fashion.
Yet moreover, preferably, in the multi-hop radio system according to the present invention, when the radio node apparatus selects the host connection-accepting radio node apparatus, the radio node apparatus rewrites, of the root radio node apparatus specifying information and the number of hops stored in the storage region, the root radio node apparatus specifying information as the root radio node apparatus specifying information held in the host connection-accepting radio node apparatus and rewriting the value of the number of hops from the root radio node apparatus as a value obtained by adding 1 to the number of hops in the host connection-accepting radio node apparatus. This can reliably change the state information which varies according to connection.
In addition, preferably, in the multi-hop radio system according to the present invention, the state information includes a group priority indicative of a connection priority of a group, with which it has a connection, and the radio node apparatus checks the group priority with first priority to select the radio node apparatus with a higher group priority as the host connection-accepting radio node apparatus. This can more efficiently construct a tree type multi-hop radio system in which a root node is set as a root in self-sustaining manner.
Still additionally, preferably, in the multi-hop radio system according to the present invention, when the radio node apparatus selects the host connection-accepting radio node apparatus, the radio node apparatus rewrites, of the group priority, the root radio node apparatus specifying information and the number of hops stored in the storage region, the group priority and the root radio node apparatus specifying information as the group priority and the root radio node apparatus specifying information in the host connection-accepting radio node apparatus, and rewrites the value of the number of hops from the root radio node apparatus as a value obtained by adding 1 to the number of hops held in the host connection-accepting radio node apparatus. This can reliably change the state information which varies according to connection.
Furthermore, in accordance with a further aspect of the present invention, there is provided a method of constructing a tree-structured multi-hop radio system including a plurality of radio node apparatus, at least a portion of which is used as a repeater for carrying out multi-hop communication at layer 2, comprising a step in which, for selecting a host connection-accepting radio node, an arbitrary radio node apparatus of the plurality of radio node apparatus broadcasts a state information acquiring request to the plurality of radio node apparatus, other than the arbitrary radio node apparatus, each of which has state information including the total number of radio node apparatus connected to a tree-structured group with which each of the plurality of radio node apparatus has a connection, the number of hops from a root node positioned at a summit of the tree-structured group, identification information on the root node and its own identification information, a step in which the arbitrary radio node apparatus of the plurality of radio node apparatus receives the state information from the plurality of radio node apparatus other than the arbitrary radio node apparatus, and a step in which the arbitrary radio node apparatus of the plurality of radio node apparatus makes a comparison between the total number of radio node apparatus included in the received state information and the total number of radio node apparatus included in its own state information to select the radio node apparatus having the state information including the total number of radio node apparatus larger than the total number of radio node apparatus included in its own state information for selecting and connecting, of the selected radio node apparatus, the radio node apparatus having the smallest number of hops included in the state information as the host connection-accepting radio node apparatus. This arrangement can construct a tree-structured multi-hop radio system in which a root node is set as a root in an autonomous manner, and can make a connection with a group having more radio node apparatus to arrange a group having more communicable radio nodes with high efficiency.
Still furthermore, preferably, in the multi-hop radio system constructing method according to the present invention, the state information acquiring request is broadcasted only when the arbitrary radio node apparatus of the plurality of radio node apparatus is a root node of a group. This can minimize the variation of the tree structure at connection and disconnection.
Yet furthermore, preferably, the multi-hop radio system constructing method according to the present invention further comprises a step in which the radio node apparatus connected as the host connection-accepting radio node apparatus receives the state information transmitted from the radio node apparatus connected thereto and holds the total number of radio node apparatus, included in the received state information, for each of the radio node apparatus connected thereto. This can facilitate a decision on the number of radio nodes changed at connection and disconnection, which makes easy the management of the number of radio nodes in the entire group.
Moreover, preferably, the multi-hop radio system constructing method according to the present invention further comprises a step in which the radio node apparatus connected as the host connection-accepting radio node apparatus outputs, to radio node apparatus in a group with which it has a connection, an after-connection state change notification including at least identification information the an arbitrary radio node apparatus of the plurality of radio node apparatus connected thereto and the total number of radio node apparatus included in the state information transmitted from the radio node apparatus connected thereto. With this arrangement, it is possible to correctly seize the number of radio nodes in the entire system even in the case of changes of a plurality of connections (information). In addition, because of the employment of the identification information on the radio node which is an object of change, the double management is preventable by distinguishing between changes of a plurality of connections (information).
Still moreover, preferably, the multi-hop radio system constructing method according to the present invention further comprises a step in which an arbitrary radio node apparatus of the plurality of radio node apparatus which selects the host connection-accepting radio node apparatus and makes connection therewith receives the state information transmitted from the host connection-accepting radio node apparatus and, on the basis of the received state information, outputs, to a subordinate radio node apparatus connected thereto, an after-connection connection change notification including identification information on a root node after connection, its own identification information, the total number of radio node apparatus included in the received state information and the value obtained by adding 1 to the number of hops included in the received state information. With this arrangement, when a root node is connected to a large group, it is possible to correctly notify the change of connection (information) to a radio node subject thereto.
Still moreover, preferably, the multi-hop radio system constructing method according to the present invention further comprises a step in which, when an arbitrary radio node apparatus of the plurality of radio node apparatus which selects the host connection-accepting radio node apparatus and makes connection therewith is disconnected from the host connection-accepting radio node apparatus, the host connection-accepting radio node apparatus outputs, to the radio node apparatus in the group with which it has a connection, an after-disconnection state change notification including at least identification information on the arbitrary radio node apparatus of the plurality of radio node apparatus disconnected therefrom and the number of radio node apparatus connected as a subordinate to the arbitrary radio node apparatus of the plurality of radio node apparatus disconnected therefrom. With this arrangement, even if a disconnection occurs, it is possible to correctly grasp the number of radio nodes in the group thereafter.
Yet moreover, preferably, the multi-hop radio system constructing method according to the present invention further comprises a step in which, when an arbitrary radio node apparatus of the plurality of radio node apparatus which selects the host connection-accepting radio node apparatus and makes connection therewith is disconnected from the host connection-accepting radio node apparatus, the radio node apparatus disconnected from the host connection-accepting radio node apparatus outputs, to the radio node apparatus connected thereto as a subordinate, an after-disconnection connection change notification including its own identification information, identification information of the root node after the disconnection, a value obtained by subtracting the number of radio node apparatus connected thereto as a subordinate from the total number of radio node apparatus included in the state information before the disconnection, and a value “1” indicative of the number of hops. With this arrangement, even if a disconnection occurs, it is possible to correctly grasp the number of radio nodes in the group including the radio nodes disconnected and separated.
In addition, preferably, in the multi-hop radio system constructing method according to the present invention, after the disconnection, the radio node apparatus disconnected holds the identification information on the root node before the disconnection and, in selecting a new host connection-accepting radio node apparatus, makes a comparison between the held identification information on the root node before the disconnection and the identification information on the root node held in the radio node apparatus which is a candidate for the host connection-accepting radio node apparatus and, when they coincide with each other, makes a connection with the radio node apparatus which is the candidate for the host connection-accepting radio node apparatus on a preferential basis. With this arrangement, even if the radio node apparatus once falls into a disconnected state and immediately returns to the original condition, it is possible to maintain the tree without changing the connection arrangement.
Still additionally, preferably, the multi-hop radio system constructing method according to the present invention further comprises a step in which the radio node apparatus disconnected therefrom operates as a root node of a new group. This arrangement enables a new group to be established while maintaining the tree structure even at disconnection.
Furthermore, in accordance with a further aspect of the present invention, there is provided a radio node apparatus for use in a tree-structured multi-hop radio system including a plurality of radio node apparatus, at least a portion of which is used as a repeater for carrying out multi-hop communication at layer 2, for section of a host connection-accepting radio node apparatus, the radio node apparatus comprising a transmission unit for broadcasting a state information acquiring request to the plurality of radio node apparatus, other than this radio node apparatus, each of which has state information including the total number of radio node apparatus connected to a tree-structured group with which each of the plurality of radio node apparatus makes a connection, the number of hops from a root node positioned at a summit of the tree-structured group, identification information on the root node and its own identification information, a reception unit for receiving the state information from the plurality of radio node apparatus other than it, and a control unit for making a comparison between the total number of radio node apparatus included in the received state information and the total number of radio node apparatus included in its own state information to select the radio node apparatus having the state information including the total number of the radio node apparatus larger than the total number of radio node apparatus included in its own state information and further to select and connect, of the selected radio node apparatus, the radio node apparatus having the smallest number of hops included in the state information as the host connection-accepting radio node apparatus. With this arrangement, it is possible to construct a tree type multi-hop radio system in which a root node is set as a root in an autonomous manner and further to make a connection with a group having more radio nodes for forming a group with more communicable radio nodes with high efficiency.
Still furthermore, preferably, in the radio node apparatus according to the present invention, only when this radio node apparatus is a root node of the group, the transmission unit broadcasts the state information acquiring request. This can minimize the variation of the tree structure at connection and disconnection.
Yet furthermore, preferably, in the radio node apparatus according to the present invention, in the case of the connection as the host connection-accepting radio node apparatus, the reception unit receives the state information transmitted from the radio node apparatus connected thereto, and the control unit holds the total number of radio node apparatus included in the received state information for each of the radio node apparatus connected thereto. This arrangement facilitates the decision on the number of radio nodes changed at connection and disconnection, and makes smooth the management of the number of radio nodes in the entire group.
Moreover, preferably, in the radio node apparatus according to the present invention, in the case of the connection as the host connection-accepting radio node apparatus, the control unit outputs, to the radio node apparatus in the group with which it has a connection, an after-connection state change notification including at least the identification information on the radio node apparatus connected thereto and the total number of radio node apparatus included in the state information transmitted from the radio node apparatus connected thereto. This arrangement enables appreciating the number of radio nodes as the entire system even if changes of a plurality of connections (information) take place, and can prevent the double management from being done because of the distinguishing between the changes of a plurality of connections (information).
Still moreover, preferably, in the radio node apparatus according to the present invention, in the case of making a selection of the host connection-accepting radio node apparatus and making a connection therewith, the reception unit receives the state information transmitted from the host connection-accepting radio node apparatus and, on the basis of the received state information, the control unit outputs, to the radio node apparatus connected thereto as a subordinate, an after-connection connection change notification including the identification information on the root node after the connection, its own identification information, the total number of radio node apparatus included in the received state information and a value obtained by adding 1 to the number of hops included in the received state information. This arrangement can correctly notify a change to the radio nodes subject thereto when a root node is connected to a large group.
Yet moreover, preferably, in the radio node apparatus according to the present invention, in a case in which a disconnection takes place from the radio node apparatus which makes a selection as the host connection-accepting radio node apparatus and makes a connection therewith, the control unit outputs, to the radio node apparatus in the group with which it has a connection, an after-disconnection state change notification including at least the identification information on the radio node apparatus which has made the connection and disconnection and the number of radio node apparatus connected as a subordinate to the radio node apparatus which has made the connection and disconnection. With this arrangement, even if a disconnection take place, it is possible to appreciate the number of radio nodes in the group thereafter.
In addition, preferably, in the radio node apparatus according to the present invention, in a case in which the radio node apparatus which has made a selection as the host connection-accepting radio node apparatus and a connection therewith makes a disconnection from the host connection-accepting radio node apparatus, the control unit outputs, to the radio node apparatus connected as its own subordinate, an after-disconnection connection change notification including the identification information on this radio node apparatus which has made the disconnection, the identification information on the root node before the disconnection, a value obtained by subtracting the number of radio node apparatus connected as its own subordinate from the total number of radio node apparatus included in the state information before disconnection and value “1” indicative of the number of hops. With this arrangement, it is possible to appreciate the number of radio nodes in the group including the radio node disconnected and separated therefrom.
Still additionally, preferably, in the radio node apparatus according to the present invention, in a case in which the radio node apparatus which has made a selection as the host connection-accepting radio node apparatus and a connection therewith is disconnected from the host connection-accepting radio node apparatus, the control unit holds, after the disconnection, the identification information on the root node before the disconnection in a predetermined storage region and, in selecting a new host connection-accepting radio node apparatus, makes a comparison between the held identification information on the root node before the disconnection and the identification information on the root node held in the radio node apparatus which is a candidate for the host connection-accepting radio node apparatus and, if they coincide with each other, makes a connection with the radio node apparatus which is the candidate for the host connection-accepting radio node apparatus on a preferential basis. With this arrangement, even if the radio node apparatus once falls into a disconnected state and immediately returns to the original condition, it is possible to maintain the tree without changing the connection arrangement.
Yet additionally, preferably, in the radio node apparatus according to the present invention, in a case in which the radio node apparatus which has made a selection as the host connection-accepting radio node apparatus and a connection therewith is disconnected from the host connection-accepting radio node apparatus, the control unit makes this radio node apparatus, disconnected, operate as a root node of a new group. With this arrangement, even at disconnection, it is possible to form a new group while maintaining the tree structure.
The radio node apparatus, multi-hop radio system and multi-hop radio system constructing method according to the present invention have the above-described arrangements, thus constructing a tree type multi-hop radio system in which radio nodes mutually determine a radio node which is a root node of a tree structure in an autonomous fashion so that the root node is set as a root in an autonomous fashion.
Referring to FIGS. 1 to 6A and 6B, a description will be given hereinbelow of a radio node apparatus and multi-hop radio system according to a first embodiment of the present invention.
First of all, referring to
The storage unit 101 stores, for constructing a tree-structured multi-hop radio system, a node priority on employment as a root radio node apparatus (which will hereinafter be referred to equally as a “root node”), a group priority indicative of a connection priority of a group with which it has a connection, information for specifying a root node of a multi-hop radio system with which it has a connection, and the number of hops from a root node. The information on the group priority, the root node specifying information and the number of hops from the root node will be referred to equally as “state information”. Referring to
A value indicative of a priority on connection as a root node is set at the node priority and the root node can be set artificially. In particular, although restriction is not imposed on the size (number of bits), in the radio node apparatus 100 according to the first embodiment of the present invention, for convenience of explanation only, values of two bits are taken, and 0 signifies a high priority while 3 represents a low priority. Moreover, any root node ID can be taken if it is a value unique to a radio node, and in the radio node apparatus 100 according to the first embodiment of the present invention, an MAC address of the radio node is put to use. As the number of hops, 1 is allocated to a root node, and it is incremented by 1 at every hop. As the initial values, the node priority stands at a value set in each radio node, the group priority stands at the node priority, the root node ID is set as its own MAC address, and the number of hops (which will hereinafter be referred to equally as “hop number”) is set as H=1.
For selection of host connection-accepting (connected-to) radio node (which is an object of connection), the transmission unit 102 transmits an acquisition request (which will hereinafter be referred to equally as a “state information request”) to surrounding radio nodes around it for a group priority, a root node ID and the hop number (number of hops) which are held in each of the surrounding radio nodes. With reference to
As
The collection unit 103 collects the group priority, the root node ID and the hop number transmitted from each of the surrounding radio nodes in accordance with the transmitted state information request. As a method of collecting the state information, although this embodiment employs the above-mentioned method in which the transmission unit 102 broadcasts a state information request and receives a state information response thereto, it is also appropriate to employ a method in which surrounding radio nodes periodically broadcast state information in the form of beacon and the collection unit 103 receives and collects them. Moreover, the collection unit 103 collects the state information, for example, for a specified period of time t and lists them.
The selection unit 104 selects a host connection-accepting radio node on the basis of the group priorities, root node IDs and hop numbers collected in this way. With reference to
A comparison is made between the state information values to select the radio node having the smallest value. That is, the radio node whose group priority, set at high-order bits, is high, i.e., the radio node whose group priority Pri stands at the smallest value, is set as a candidate on a preferential basis. In a case in which there are pluralities of radio nodes having the smallest group priority Pri, the radio node connected to a tree based on a root node having the smallest value in terms of root node ID is set as a candidate. If the selection of the candidate radio node is nonetheless unfeasible, of the radio nodes connected to the same root node, the radio node having the smallest number of hops is selected as a candidate for a host connection-accepting radio node. Incidentally, if the hop number still cannot solve the problem of the selection of the radio node which is a candidate for the host connection-accepting radio node, one of the radio nodes can be selected on the basis of the strength of the reception of the state information response or a comparison between frame transmission-requesting MAC addresses at the reception of the state information response. Moreover, if there is neither group priority nor node priority, the radio node connected to a tree based on a root node having the smallest root node ID value is set as a candidate. If the selection of the candidate radio node is still difficult, of the radio nodes connected to the same root node, the radio node having the smallest number of hops is selected as the candidate for the host connection-accepting radio node.
In a case in which a radio node is selected as a candidate for the host connection-accepting radio node in the step S402, the selection unit 104 makes a comparison between its own state information value (group priority, root node ID, hop number) and the state information value (group priority, root node ID, hop number) held in the radio node which is the candidate for the host connection-accepting radio node so as to make a decision as to whether or not its own state information value exceeds the value of the radio node which is the candidate for the host connection-accepting radio node (step S403). If so (that is, in a case in which the other side connection priority is higher than its own connection priority), the radio node which is the candidate for the host connection-accepting radio node is determined as the host connection-accepting radio node (step S404). Moreover, a connection request is issued to the determined host connection-accepting radio node (step S405). Upon receipt of a connection response to the effect that the connection is possible with respect to the connection request, the aforesaid change unit 105 changes, of its own state information value, the group priority and the root node ID to those of the host connection-accepting radio node and changes the hop number to a value obtained by adding 1 to the hop number of the host connection-accepting radio node. On the other hand, if the decision in the step S403 shows that its own value is not larger than the value of the radio node which is the candidate for the host connection-accepting radio node, the radio node set as the candidate for the host connection-accepting radio node is removed from the candidate and abandoned (step S406), and the selection processing comes to an end. Incidentally, the above-mentioned “exceed a predetermined comparison reference” signifies that, for example, when a comparison is made between its own state information value (group priority, root node ID, hop number)- and the state information value (group priority, root node ID, hop number) held in the radio node which is the candidate for the host connection-accepting radio node, its own state information is larger than the value of the candidate for the host connection-accepting radio node. Moreover, if no group priority and node priority exist, a comparison is made in terms of the root node ID and the hop number.
Since, as mentioned above, the connection is preferentially made in accordance with priority in a state where the node priority of the radio node which serves as a root node is set as a group priority, an aggregation is made as a tree based on a root node having a high node priority. Moreover, even in the case of a fully independent group, in this group, a root node is determined on the basis of the group priority and the root node ID in an autonomous fashion so that an independent tree is constructible and operable. Still moreover, even if there is no setting of priority, a root node can be selected in an autonomous fashion through the comparison between the root node IDs so as to construct a tree.
Secondly, referring to
In
The state information of each of the radio nodes in the group A is changed to the group priority Pri=0 and to the root node ID R-ID=3. Moreover, in a case in which three radio nodes on the side where the radio nodes 2, 6 and 7 converge (hereinafter referred to equally as a “group B”) cannot be connected to a tree in which the radio node 3 is used as a root node, a different independent tree is formed. In the group B, the radio node 2 has the highest priority so that a tree is structured in a state where the radio node 2 forms a root node, and the state information is changed to the group priority Pri=1 and to the root node ID R-ID=2. Thus, each radio node independently determines a root node and a group are formed among the radio nodes connectable to each other, thereby constructing an ad hoc multi-hop radio system.
Furthermore, referring to
Following this, at the periodical updating of the radio nodes 6 and 7, the radio nodes 6 and 7 recognize that they are connectable to the radio node 10 holding the state information [0, 3, 4] lower in group priority Pri than their own state information [1, 2, 2], and make a connection with the radio node 10. Thus, the radio node 2 is connected to the radio node 6. When multi-hop radio systems, which are in a separated condition from each other, become connectable to each other in this way, a connection to a tree based on a root node having a higher priority takes place through the use of the state information. Therefore, when the group priorities of the radio nodes connected to an external network are set at a higher value, the radio nodes can aggregate into a tree connected to the external.
Referring to FIGS. 7 to 16, a description will be given hereinbelow of a multi-hop radio system constructing method and radio node apparatus according to a second embodiment of the present invention.
First, referring to
Furthermore, referring to
For example, the radio node x′ making the state information request is a radio node which is still in a non-connected condition after activated and a root node after a formation of a tree of an ad hoc group, and the radio node x′ issues the state information request periodically. In this case, the radio node which is still in a non-connected condition after activated operates as a root node of a group comprising only one radio node. Moreover, with respect to the response to the state information request, the radio node which has received the state information request makes the response without distinguishing between the root node and the other radio nodes.
The above-mentioned state information will be described hereinbelow with reference to
Furthermore, referring to
If there exist only a radio node(s) having a node number smaller than the node number in the state information of the radio node 700, that is, when the radio node 700 is a root node covering many radio nodes as subordinates, the operational flow comes to an end without making a connection to the other radio node. On the other hand, if there is a radio node other than the radio nodes having a node number smaller than the node number in the state information of the radio node 700, that is, when there is a radio node having the same radio node number as that of the radio node 700, the control unit 703 makes a comparison between the node ID included in the state information of the radio node 700 and the smallest root node ID in the related radio nodes (step S1004). In this case, with respect to the comparison between IDs, the MAC addresses of the apparatus are used as the IDs and, therefore, the comparison can be made between numerical values.
The control unit 703 makes a decision, on the basis of a result of the comparison, as to whether or not there exists only a radio node(s) having a root node ID larger than the node ID (its own node ID) of the radio node 700 (step S1005). If a decision is made that there exists only a radio node(s) having a root node ID larger than the node ID of the radio node 700, the operational flow comes to an end without making a connection to the other radio node. Thus, in a case in which groups having the same scale approach each other, it is possible to distinguish between the connecting side and the connected side according to the magnitude of the root node ID. Moreover, it is possible to prevent a loop from occurring due to a connection to a radio node subject thereto. On the other hand, if the decision shows the presence of another radio node outside of only the radio node(s) having a root node ID larger than the node ID of the radio node 700, the control unit 703 selects, as a host connection-accepting radio node, of the related radio nodes, a radio node having the smallest hop number and the smallest node ID (step S1006). Still moreover, the control unit 703 issues a connection request to the relevant radio node. Incidentally, it is also possible that the transmission unit 701 carries out the transmission of the connection request in place of the control unit 703. Thus, the connection is made to, of the groups having a tree structure, a group having a large scale so as to construct a group with a larger scale. This enables the communications among more radio nodes.
In addition, with reference to
First, the radio node 4′, which requests the connection, transmits a connection request, in which its own state information is handled as a parameter, to the host connection-accepting radio node 2′ (step S1101). The radio node 2′ returns a connection response to the radio node 4′ (step S1102). Following this, the radio node 2′ adds the newly connected radio node 4′ to a connection management table indicative of the number of nodes further connected for each of the radio nodes connected to itself and adds the node number (number of nodes) in the state information of the radio node 4′, which has received through the connection request, to the node number in its own state information so as to change the node number in the state information and, then, transmits a state change notification to the radio nodes 1′ and 3′ (step S1103 and S1104). The connection management table and the state change notification will be mentioned later.
Upon receipt of the state change notification, each of the radio nodes 1′ and 3′ changes the node number in its own state information through the use of a change node number (quantity of change) indicated in a parameter. Moreover, the radio node 1′, when receiving state notification information from the radio node 2′ which is a subordinate when viewed from itself, also changes the corresponding node number of the radio node 2′ in its own connection management table. On the other hand, the radio node 4′, which has confirmed the connection through the connection response, carries out the change processing as follows through the use of a parameter in the state information of the radio node 2′ selected. First, the radio node 4′ sets, as a new node number, a value obtained by adding the node number received from the radio node 2′ to its own node number. Subsequently, the radio node 4′ sets, as a new hop number, a value obtained by adding 1 to the hop number of the radio node 2′.
Moreover, the radio node 4′ changes the root node ID to a “radio node 1′” which is a parameter in the state information of the radio node 2′. After the completion of the change processing, the radio node 4′ transmits a connection change notification to the radio node 5′ connected to its subordinate (step S1105). Upon receipt of the connection change notification, the radio node 5′ changes the node number in its own state information through the use of the change node number indicated in a parameter. Moreover, the radio node 5′ changes the hop number to a value obtained by adding 1 to the hop number indicated in the parameter, and further changes the root node ID. The connection change notification will be mentioned later. Let it be assumed that the above-described change processing in the radio nodes 1′ to 5′ is conducted by the control unit 703 of each of the radio nodes 1′ to 5′.
Secondly, referring to
In addition, referring to
Still additionally, referring to
When the radio node 4′ connected as a subordinate is separated due to disconnection, the radio node 2′ removes the related data on the radio node 4′ from the its own connection management table and sets, as a new node number, a value obtained by subtracting the node number corresponding to the radio node 4′ in the connection management table before the removal from the node number held as the state information. Following this, the radio node 2′ sets the node number corresponding to the radio node 4′ in the connection management table before the removal as the change node number and outputs it as a state change notification to the radio nodes 1′ and 3′ (steps S1401 and S1402). Upon receipt of the state change notification, each of the radio nodes 1′ and 3′ performs the subtraction on the node number in its own state information. Moreover, upon receipt of the state change notification from the radio node 2′, likewise, the radio node 1′ performs the subtraction on the node number of the radio node 2′ in its own connection management table.
On the other hand, the radio node 4′ carries out the following change as state information change processing. First, the radio node 4′ changes the root node ID to its own node ID. Subsequently, the radio node 4′ changes the node number to the value of the total number of nodes held in its own connection management table and calculates a subtraction value, and changes the hop number to 1. Thus, the radio node 4′ operates as a root node in a new group. Following this, the radio node 4′ outputs a connection change notification, mentioned later, to the subordinate radio node 5′ connected thereto (step S1403). Upon receipt of the connection change notification, the radio node 5′ carries out a change of the root node ID and a subtraction of a change node number through the use of a parameter included in the connection change notification and sets, as a new hop number, a value obtained by adding 1 to the hop number in the received parameter.
Moreover, the aforesaid connection change notification will be described hereinbelow with reference to
On the other hand, the respective components of a connection change notification (step S1403 in
Furthermore, in a case in which a disconnection occurs in the radio link between the radio node 2′ and the radio node 4′, when the radio node 4′ newly becomes a root node and seeks a connection-accepting radio node, the radio node 4′ can hold, as a cache, the root node ID of the group to which it has connected so far. The radio node 4′ can hold a timer so that the cache is made clear after the elapse of a set period of time. If there is a root node ID in the cache, for the selection of a host connection-accepting radio node, a comparison is made between root node IDs of the received state information and a connection to a group having the same root node ID as that cached is made on a preferential basis. At this time, even if the node number is smaller than that of the group to which it pertains, the connection to the group having the same root node ID is made on a preferential basis. Thus, even if a disconnection once occurs, when the restoration immediately takes place to the original state, it is possible to maintain the tree without changing the connection arrangement.
Referring to
As described above, in the multi-hop radio system constructing method and radio node apparatus according to the second embodiment of the present invention, the state information has a parameter indicative of the total number of nodes included in a group, and this parameter is used in selecting a host connection-accepting radio node so that a connection can be made to a group having more nodes to increase the radio nodes with which it is communicable. In addition, each radio node manages, for each subordinate radio node connected thereto, the number of radio nodes connected as subordinates to this radio node and, hence, when a variation occurs in node number of the group due to new connection, disconnection or the like, it can quickly notify the occurrence of variation in node number to the entire group. Moreover, a radio node which requests state information is only a root node, thus minimizing the variation of the tree structure at connection, disconnection or the like and considerably reducing the change procedure.
The radio node apparatus, multi-hop radio system and multi-hop radio system constructing method according to the present invention can construct a tree type multi-hop radio system in which mutual radio nodes determine a radio node which becomes a root node of a tree in an autonomous manner and the root node is set as a root in an autonomous manner. Accordingly, the present invention is valuably applicable to a radio node apparatus which constructs a multi-hop radio system in an autonomous manner, a multi-hop radio system and a multi-hop radio system constructing method.
Number | Date | Country | Kind |
---|---|---|---|
2004-231597 | Aug 2004 | JP | national |
2004-231608 | Aug 2004 | JP | national |