The present invention relates to an antenna device; in particular, to a radiofrequency (RF) antenna device.
For controlling a magnitude of radiation generated by a hand-held electronic device to a user, a proximity sensor (P-sensor) is added on an antenna structure for wireless wide area network (WWAN) thereof for detecting a distance between the user and the antenna structure, such that a protection mechanism can be activated by using the P-sensor to reduce the radiation of the antenna structure, thereby reducing the magnitude of radiation generated by the hand-held electronic device to the user.
Moreover, the conventional antenna structure needs to have a capacitance member arranged between a radiating body and a ground, such that the radiating body can be used as a capacitance electrode of the P-sensor by electrically connecting to the P-sensor through the capacitance member. In other words, in order for the radiating body to be the capacitance electrode of the P-sensor, the capacitance member disposed on the radiating body is a necessary component for the conventional antenna structure. However, having the capacitance member disposed on the radiating body may influence the RF radiating efficiency of the radiating body, increase the cost of the conventional antenna structure, and complicate the manufacturing process of the conventional antenna structure.
The present disclosure provides a radiofrequency antenna device for effectively improving the drawbacks associated with conventional antenna structures.
The present disclosure provides a radiofrequency antenna device including a carrier, an antenna structure, a high-frequency blocking unit, and a proximity sensor. The antenna structure includes a supporting frame, a grounding conductor, an insulating adhesive layer, a radiating body, and a feeding conductor. The supporting frame is disposed on the carrier. The grounding conductor includes a first coupling segment and a second coupling segment spaced apart from the first coupling segment. A part of the first coupling segment is disposed on the supporting frame, and the second coupling segment is disposed on the carrier for grounding. The insulating adhesive layer is sandwiched between the first coupling segment and the second coupling segment to adhere the first coupling segment to the second coupling segment. The insulating adhesive layer does not influence a coupling between the first coupling segment and the second coupling segment. The radiating body is disposed on the supporting frame and connected to the first coupling segment. The feeding conductor is disposed on the supporting frame and is configured to transmit a radiofrequency signal to the radiating body. The radiating body is configured to be a capacitance electrode for detecting an external object, and a capacitance value between the radiating body and the external object is variable according to a distance between the radiating body and the external object. The high-frequency blocking unit is disposed on the carrier and is electrically connected to the first coupling segment. The proximity sensor is disposed on the carrier and electrically connected to the high-frequency blocking unit. The proximity sensor is electrically connected to the first coupling segment through the high-frequency blocking segment.
The present disclosure also provides a radiofrequency antenna device including an antenna structure, a high-frequency blocking unit, and a proximity sensor. The antenna structure includes a grounding conductor, a radiating body, and a feeding conductor. The grounding conductor includes a first coupling segment and a second coupling segment spaced apart from the first coupling segment. The second coupling segment is configured for grounding. The radiating body is connected to the first coupling segment. The feeding conductor is configured to transmit a radiofrequency signal to the radiating body. The radiating body is configured to be in a capacitance electrode mode to detect an external object, and a capacitance value between the detecting segment and the external object is variable according to a distance between the radiating body and the external object. The high-frequency blocking unit is electrically connected to the first coupling segment. The proximity sensor is electrically connected to the high-frequency blocking unit. The proximity sensor is electrically connected to the first coupling segment through the high-frequency blocking segment.
In summary, the RF antenna device in the present disclosure is provided with the first coupling segment and the second coupling segment, which can couple with each other, so that the RF antenna device does not require any capacitance member, which may influence the RF radiating effect of the antenna structure. Thus, the RF radiating efficiency of the antenna structure can be improved, the cost of the RF antenna device can be reduced, and the manufacturing method of the RF antenna device can be simplified.
In order to further appreciate the characteristics and technical contents of the present invention, references are hereunder made to the detailed descriptions and appended drawings in connection with the present invention. However, the appended drawings are merely shown for exemplary purposes, and should not be construed as restricting the scope of the present invention.
References are hereunder made to the detailed descriptions and appended drawings in connection with the present invention. However, the appended drawings are merely provided for exemplary purposes, and should not be construed as restricting the scope of the present invention.
Reference is made to
The RF antenna device 100 in the present embodiment includes a carrier 1, an antenna structure 2, a high-frequency blocking unit 3 disposed on the carrier 1, and a proximity sensor (P-sensor) 4 disposed on the carrier 1 and electrically connected to the antenna structure 2 through the high-frequency blocking unit 3. The carrier 1 can be, but is not limited to, an independent substrate, a circuit board, or a rear cover of an electronic apparatus.
As shown in
As shown in
Moreover, the second coupling segment 232 is disposed on the carrier 1 for grounding and is configured to couple with the first coupling segment 231. The first coupling segment 231 and the second coupling segment 232 in the present embodiment are arranged to face each other. The second coupling segment 232 is preferably arranged on a projecting area defined by orthogonally projecting the adjusting portion 2311 onto the carrier 1, but the present disclosure is not limited thereto.
For example, as shown in
As shown in
As shown in
The feeding conductor 26 is formed on the flexible plate 22 and is disposed on the top surface 211 and the long side surface 213′ of the supporting frame 21 (as shown in
As shown in
The high-frequency blocking unit 3 is disposed on the carrier 1 and is electrically connected to the first coupling segment 231. The high-frequency blocking unit 3 in the present embodiment can be a component or a structure having an inductance function (e.g., an inductance member and a corresponding wire or a microstrip). The high-frequency blocking unit 3 in the present embodiment is electrically and detachably connected to the first coupling segment 231 by using the electrical connector 27. Moreover, the P-sensor 4 is disposed on the carrier 1 and is electrically connected to the high-frequency blocking unit 3. The P-sensor 4 is electrically connected to the first coupling segment 231 through the high-frequency blocking segment 3, thereby further being electrically connected to the radiating body 25.
The structural features of the RF antenna device 100 of the present embodiment have been disclosed in the above description, and the following description discloses the operation of the RF antenna device 100. The radiating body 25 is configured to be a capacitance electrode (or in a capacitance electrode mode) for detecting an external object (e.g. a person). That is to say, the radiating body 25 can be used as a capacitance electrode of the P-sensor 4 for obtaining a capacitance value between the radiating body 25 and the external object. Specifically, the capacitance value is variable according to a distance between the radiating body 25 and the external object.
Moreover, when the radiating body 25 is in the capacitance electrode mode, the first coupling segment 231 and the second coupling segment 232 are in an open-circuit mode for preventing a detecting signal from flowing into the second coupling segment 232. When the feeding conductor 26 couples with the radiating body 25 through an RF signal and the RF signal flows into the radiating body 25, the high-frequency blocking unit 3 is in an open-circuit mode for preventing the RF signal from flowing into the P-sensor 4.
Specifically, when a detecting signal travels in the radiating body 25 of the antenna structure 2, the first coupling segment 231 and the second coupling segment 232 have a high impedance (such as an open-circuit) and the high-frequency blocking unit 3 has a low impedance (such as a short-circuit), so that the radiating body 25 can be used as a capacitance electrode of the P-sensor 4. When an RF signal transmitted from the feeding conductor 26 travels in the radiating body 25 of the antenna structure 2, the first coupling segment 231 and the second coupling segment 232 have a low impedance (such as a short-circuit) and the high-frequency blocking unit 3 has a high impedance (such as an open-circuit), so that the high-frequency blocking unit 3 can be used to effectively isolate the P-sensor 4 from the RF signal traveling in the radiating body 25, and the feeding conductor 26, the grounding conductor 23, and the radiating body 25 can be coupled through the RF signal so as to construct a mono-pole antenna.
Accordingly, when an external object is far from the antenna structure 2, an electronic apparatus (not shown) including the RF antenna device 100 of the present disclosure has an RF transmission function. When an external object is close to the antenna structure 2, a capacitance value between the radiating body 25 of the antenna structure 2 and the external object is increased, causing the P-sensor 4 to emit a corresponding signal to the electronic apparatus so as to reduce an intensity of a near field electromagnetic radiation. Thus, the radiation of RF signals (e.g., Specific Absorption Rate) generated by the electronic apparatus can satisfy a standard of each country if a user closely operates the electronic apparatus.
In addition, in other embodiments of the present disclosure, the RF antenna device 100 is devoid of at least one of the carrier 1, the supporting frame 21, the flexible plate 22, and the insulating adhesive layer 24, and the RF antenna device 100 can be used by cooperating with another component. Specifically, if the RF antenna device 100 is devoid of the insulating adhesive layer 24, the first coupling segment 231 and the second coupling segment 232 can be arranged on the same plane and be spaced apart by air from each other (as shown in
In summary, the RF antenna device 100 in the present embodiment is provided with the insulating adhesive layer 24 to connect the first coupling segment 231 to the second coupling segment 232, and the first coupling segment 231 and the second coupling segment 232 can couple with each other, so that the RF antenna device 100 does not need to have any capacitance member, which may influence the RF radiating effect of the antenna structure 2. Thus, the RF radiating efficiency of the antenna structure 2 can be improved, the cost of the RF antenna device 100 can be reduced, and the manufacturing method of the RF antenna device 100 can be simplified.
Moreover, the first coupling segment 231, the radiating body 25, and the feeding conductor 26 are formed on the flexible plate 22, and the flexible plate 22 is bent to cover the supporting frame 21, so that the manufacturing method of the antenna structure 2 can also be can be simplified.
The descriptions illustrated supra set forth simply the preferred embodiments of the present invention; however, the characteristics of the present invention are by no means restricted thereto. All changes, alterations, or modifications conveniently considered by those skilled in the art are deemed to be encompassed within the scope of the present invention delineated by the following claims.
Number | Name | Date | Kind |
---|---|---|---|
8996080 | You | Mar 2015 | B2 |
9502768 | Huang | Nov 2016 | B2 |
9774079 | Liu | Sep 2017 | B2 |
20170069954 | Lui | Mar 2017 | A1 |
Number | Date | Country | |
---|---|---|---|
20180294549 A1 | Oct 2018 | US |