This application relates to a radiofrequency circuit assembly and a dielectrically-loaded antenna for use in the assembly, the assembly and the antenna being for operation at a frequency in excess of 200 MHz.
Dielectrically-loaded antennas are disclosed in, for instance, U.S. Pat. Nos. 5,854,608, 5,945,963, 5,859,621, 6,690,336, 7,439,934 and 7,903,044. Each of these antennas has at least one pair of diametrically opposed helical antenna elements which are plated on a substantially cylindrical electrically insulative core made of a high relative dielectric constant material such as barium titanate. The material of the core occupies the major part of the volume defined by the core outer surface. Extending through the core from one end face to an opposite end face is an axial bore or passage containing a feed. At one end of the bore conductors of the feed are coupled to respective antenna elements which have associated connection conductors plated on the respective end face adjacent the end of the passage. At the other end of the passage, one of the feed conductors is connected to a conductor which links the antenna elements and, in each of these examples, is in the form of a conductive sleeve encircling part of the core to form a balun. Each of the antenna elements terminates on a rim of the sleeve and each follows a respective helical path from its connection to the feed.
In the above-mentioned U.S. Pat. No. 7,439,934 and related U.S. patent application Ser. Nos. 12/661,296 filed 15 Mar. 2010, and 13/317,097 filed 7 Oct. 2011, the feed structure incorporates a laminate board oriented perpendicularly to a feed line in the passage so as to lie face-to-face on the end face of the core. This laminate board incorporates an impedance matching network to provide an impedance match between the characteristic impedance of the feed line and the radiation resistance presented by the antenna elements.
U.S. Published Application No. 2011/0221650 (application Ser. No. 13/014,962, filed 27 Jan. 2011) discloses dielectrically-loaded antennas with quasi-coaxial laminate board feed structures in the core passage, the perpendicular laminate board overlying the end face of the core having a slot which receives an end portion of the laminate board in the core passage. This U.S. patent application also discloses methods for connecting the antenna to a printed circuit board bearing associated radiofrequency circuitry, e.g. a radiofrequency front-end amplifier.
Another prior patent application involving the combination of a dielectrically-loaded antenna and printed circuit board is U.S. Published Application No. 2008/0136738 (application Ser. No. 11/998,471 filed 28 Nov. 2007).
UK patent application GB1118159.1, filed on 20 Oct. 2011, discloses a radiofrequency assembly comprising the combination of a dielectrically loaded antenna and a printed circuit board mounting the antenna. The printed circuit board has a cut-out dimensioned to accommodate the antenna.
The disclosure of each of the above patent applications and patents is incorporated in the present application by reference.
Certain embodiments of the disclosed technology provide an improved antenna and printed circuit board combination.
In some embodiments of the disclosed technology, a radiofrequency circuit assembly comprises the combination of a dielectrically loaded antenna and a printed circuit board mounting the antenna, wherein the antenna comprises a solid electrically insulative core of a material having a relative dielectric constant greater than 5 and occupying the major part of the inner volume defined by the core outer surface, the core having a passage therethrough extending from a first core surface portion to a second, oppositely facing core surface portion, and a printed circuit feeder structure secured in the core passage and having exposed antenna mounting projections at opposite respective ends of the passage, at least one of the mounting projections bearing conductors for connecting the antenna to associated circuitry; the printed circuit board mounting the antenna has an aperture dimensioned to accommodate the antenna core with the passage extending substantially parallel to the plane of the board; wherein the aperture has inner edge portions surrounding the antenna core such that at least one of the inner edge portions and the core outer surface are substantially in close proximity or in contact; the antenna mounting projections at both ends of the passage engage respective inner edge portions of aperture so that the antenna core is supported by the printed circuit board between spaced-apart mounting locations adjacent the oppositely facing core surface portions, the board further comprising conductive areas at at least one of the mounting locations, electrically connecting the conductors of the feeder structure to circuitry on the board.
The aperture is preferably rectangular, and its side inner edge portions extend parallel to the side surface portion of the core, wherein the side inner edge portions are substantially in close proximity or in contact with the side surface portion of the core. Effectively, this prevents excessive movement of the antenna, and thereby providing a robust mounting structure.
The spacing between the side edges and the side surface portion of the core may be less than 0.5 mm.
The printed circuit board comprises an electrically conductive layer which extends to a distance from at least one of the side inner edge portions of the aperture. The distance between the electrically conductive layer and the at least one of the said side inner edge portions is set such that the performance of antenna is not materially affected by the electrically conductive layer. Preferably the distance is between 1 mm to 3 mm.
The conductive layer lies in a plane generally parallel to the antenna axis and the conductive layer is a ground plane.
In a preferred embodiment, the antenna is a backfire multifilar helical antenna for receiving and/or transmitting circularly polarised waves. In this case the core is cylindrical, having first and second oppositely directed core surface portions oriented perpendicularly to the axis of the cylinder, and a cylindrical side surface portion bearing radiating elements as plated helical conductors. The feeder structure comprises a printed circuit transmission line in the core passage coupled, at end of the passage, to the radiating elements and, at the opposite end of the passage, to conductive areas on the printed circuit board mounting the antenna. A matching network may be included as part of the feeder structure, typically located on a laminate board overlying the transverse core surface portion where the feeder structure is coupled to the helical antenna elements.
In the preferred embodiment, the feeder structure comprises two laminate board parts: a longitudinal laminate board part forming a transmission line which is housed in the core passage, and a lateral laminate board part extending laterally from the distal end of the core passage over the adjacent transversely oriented core surface portion. Conductors on the lateral laminate board part are electrically connected to conductors on this adjacent core surface portion so as to couple the antenna elements to the transmission line via, if present, the matching network.
In the case where the lateral laminate board part lies in a plane perpendicular to the core axis and is a laminate board component which is separately formed from that of the longitudinal laminate board part, the lateral laminate board part has a slot receiving a distal end portion of the longitudinal laminate board part. At least one conductor on the lateral laminate board part is electrically connected to a conductor on the longitudinal laminate board part at an edge of the slot.
In the preferred embodiment, the antenna mounting projections comprise mounting tabs which include lateral outer extensions of the lateral laminate board part, which extensions project beyond the side surface portion of the antenna. At the other end of the passage, the longitudinal laminate board part projects beyond the respective end of the passage to form another mounting tab. Accordingly, with the longitudinal laminate board part fixed in the core passage, the core is effectively suspended between two spaced-apart mounting locations where the mounting tabs are secured to the printed circuit board mounting the antenna.
It is preferred that each of the antenna mounting tabs has a surface portion which is bonded to a major face of the printed circuit board mounting the antenna, these mounting projection surface portions being coplanar so that the connections to the printed circuit board are all made on one side of the latter. The connections between the mounting tab and the printed circuit board are preferably solder joints, both mounting tabs and printed circuit board having plated conductive areas in registry with each other.
In the case of the lateral laminate board part comprising a laminate board oriented perpendicularly to the longitudinal laminate board part and to the axis of the core, the mounting tabs of the lateral laminate board part may comprise integral oppositely projecting fingers which have coplanar surface portions secured to the printed circuit board major face.
In certain embodiments of the disclosed technology, a dielectrically-loaded antenna has an operating frequency in excess of 200 MHz and comprises: an electrically insulative core of a solid material which has a relative dielectric greater than 5 and occupies the major part of the interior volume defined by the core outer surface, the core outer surface comprising oppositely directed distal and proximal outer surface portions, a side surface portion extending between the distal and proximal surface portions, and a passage extending through the core from the distal surface portion to the proximal surface portion; a three-dimensional antenna element structure disposed on or adjacent the side surface portion of the core; and a feeder structure comprising a longitudinal laminate board part housed in the core passage and a lateral laminate board part extending laterally from one end of the core passage over the distal surface portion of the core; wherein the feeder structure has exposed antenna mounting projections at opposite respective ends of the core passage, at least one of the projections having a conductive surface for connecting the antenna to associated circuitry; and wherein the mounting projections include distal mounting projections forming extensions of the lateral laminate board, which extensions project laterally in opposite directions beyond the said side surface portion of the core.
The printed circuit board mounting the antenna typically carries a receiver front end, which may include a low-noise amplifier or a complete receiver, for instance, a GPS receiver chip. In this way, the combination of the antenna and the printed circuit board mounting the antenna may constitute a rugged self-contained receiver module for mounting in a variety of devices. The printed circuit board may also include a transmitter for generating RF power signals to be fed to the antenna.
The disclosed technology will now be described by way of example with reference to the drawings in which:
Referring to
As best seen in
At the other end of the bore 14B, the longitudinal laminate board 16 has a distal end portion 16D (see
The longitudinal laminate board 16 forms part of a composite feed structure which also includes a lateral laminate board 18 which, in this embodiment, comprises a plated disc lying in face-to-face contact on the distal end surface portion 14D of the core, the plane of the board lying perpendicular to the core axis. As disclosed in U.S. 2011/0221650, the lateral laminate board 18 has a central slot 18S dimensioned to receive the distal end portion 16D of the longitudinal laminate board 16, as shown in
Referring to
Referring again to
The orientation of the longitudinal laminate board 16 with respect to the conductive pattern on the core end face 14D, together with the dimensions of the lateral laminate board 18, are such that when the lateral laminate board 18 is fitted to the longitudinal laminate board 16 with the distal portion 16D of the latter housed in the slot 18S, the peripheral plated conductor areas 18P of the lateral laminate board 18 are in face-to-face contact with the arcuate conductors on the core distal end face 14D.
The distal end portion 16D of the longitudinal laminate board 16 carries conductive connecting pads 16DP, only one of which is visible in
Since, during manufacture of the antenna 10, solder paste is screen-printed on the proximally facing conductive areas 181, 18P of the lateral laminate board 18, subsequent heating of the assembled antenna components in a reflow oven causes the solder interconnection of the connecting pads 16DP on the distal end portion 16D of the longitudinal laminate board, as well as the arcuate conductors on the core end face 14D, on the one hand, with the correspondingly located plated areas of the slot side walls 18SW and peripheral conductors 18P of the lateral laminate board 18 on the other hand. As a result, the antenna elements 10A-10D are coupled in pairs to the inner and outer conductors of the feed line and the lateral laminate board 18 is rigidly secured to the longitudinal laminate board 16 to form a unitary feed structure, and to the core.
At their proximal ends, the antenna elements 10A-10D are connected to a common virtual ground conductor 20 which is annular and in the form of a plated sleeve 20. The sleeve 20 is conductively continuous with a plated conductive covering of the proximal end surface portion 14P of the core. Conductive pads 16PP on the lateral extensions of the longitudinal laminate board part 16 (see
In certain embodiments, the above-described antenna 10 is mounted to a printed circuit board to form a radiofrequency circuit assembly. More particularly, the antenna 10 is mounted in an aperture 12C of the printed circuit board. As shown in
At least one side of the printed circuit board 12 is plated over the majority of its area to form a ground plane 21. In this instance, the ground plane 21 extends to a distance from one of the aperture side edges 12CS2 and the distance of the aperture side edge 12CS2 from the ground plane is chosen such that the performance (such as the circular polarisation performance and the gain) of the antenna is not affected by the presence of the ground plane. However, it would be appreciated that this distance varies according to the application. In one example, the distance, d, of the aperture side edge 12CS2 from the ground plane is between 1 mm to 3 mm.
In the region of the conductive sleeve 20 and the proximal end surface portion 14P of the antenna core, the ground plane may be much closer to the antenna core since they are substantially non-radiating.
In this embodiment, the distance between the ground plane 21 and the aperture side edge 12CS2 near the distal end of the antenna 10 is much smaller. This is acceptable because the voltage in each of the antenna elements 10A-10D is at a minimum at the distal end of the antenna; and therefore the performance of the antenna is not affected by the presence of the ground plane 21 near the distal end of the antenna 10.
In this embodiment, the ground plane of the printed circuit board 12 does not extend over the distal end of the antenna 10, i.e. leaving the part of the outer surface of the antenna facing the maximum of the radiation pattern clear of adjacent conductive material. Put another way, the conductive parts of the printed circuit board 12 do not extend over the distal face of the antenna.
As shown in
On the same face of the printed circuit board 12, there are plated conductive pads 12D adjacent the base edge 12CP of the aperture 12C, as seen in
Referring to
On the underside of the proximal extension 16P of the antenna feed structure longitudinal laminate board 16 there are conductive areas (not shown in the drawings) located so as to be in registry with the conductive pads 12BP on the printed circuit board 12. During manufacture of the assembly, solder paste is applied to a pad 12BP and a portion of the ground plane 21 adjacent the conductive pads 12BP so that when the assembly is passed through the reflow oven with the longitudinal laminate board proximal extension 16P overlying the printed circuit board 12 adjacent the base edge 12B of the aperture 12C, solder joints are formed between the pad 12BP and the portion of the ground plane 21 on the board 12 and the conductive areas on the underside of the feed structure longitudinal laminate board extension 16P.
As a consequence of the projection of the proximal extension 16P of the feed structure longitudinal laminate board 16 and the laterally extending fingers 18F of the feeder structure lateral laminate board 18, and of their juxtaposition with portions of the printed circuit board 12 adjacent the aperture 12C, they provide antenna mounting tabs at opposite respective ends of the core passage or bore 14B so that the antenna has longitudinally or axially spaced-apart mountings. The antenna core is, therefore, effectively suspended between spaced-apart mounting locations on the printed circuit board 12, providing mechanical robustness. The mounting tabs formed by the proximal laminate board extension 16P and the laterally projecting laminate board fingers 18F are, in this preferred embodiment, bonded to a major face of the printed circuit board 12 by conductive, i.e. solder, joints. The conductive joints between the longitudinal laminate board proximal extension 16P and the conductive pad 12BP on the upper face of the printed circuit board 12 constitute electrical connections between the antenna feed structure and circuitry (not shown) on the printed circuit board 12.
It is not necessary for the antenna mounting tabs formed by the proximal extension 16P and the lateral extensions 18F to be secured to the printed circuit board 12 by solder joints. Other fastening techniques may be used, including non-conductive bonding.
While, in the preferred embodiment, the surface portions of the mounting tabs formed by the proximal extension 16P and the lateral fingers 18F overlying the printed circuit board 12 are co-planar and bonded to a single planar surface of the board 12, alternative configurations are possible, including attachment to opposite sides of the printed circuit board mounting the antenna, or seating of the tabs or other projecting elements in recesses or notches in the board, to give just two examples.
The above-described assembly constitutes a robust self-contained module for incorporation in portable communication equipment in particular, such equipment including handheld devices with global positioning system receivers, in devices for two-way satellite communication, in tracking devices, and so on. Falling within the scope of the disclosed technology are assemblies including antennas other than quadrifilar helical antennas. For instance, antennas with cubiod-shaped dielectric cores may be used, as well as helical antennas with less than or more than four helical elements. Examples of such antennas for receiving and/or transmitting linearly polarised or circularly polarised waves for terrestrial or satellite systems are disclosed in the above-mentioned prior patent publications. The printed circuit board 12 may simply carry a low noise amplifier, a transmitter output stage, or filters but, advantageously, may include a complete integrated circuit receiver 30 (as shown in
Having illustrated and described the principles of the disclosed technology, it will be apparent to those skilled in the art that the disclosed embodiments can be modified in arrangement and detail without departing from such principles. In view of the many possible embodiments to which the principles of the disclosed technologies can be applied, it should be recognized that the illustrated embodiments are only preferred examples of the technologies and should not be taken as limiting the scope of the invention. Rather, the scope of the invention is defined by the following claims and their equivalents. We therefore claim all that comes within the scope and spirit of these claims and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
1212505.0 | Jul 2012 | GB | national |
This application claims the benefit of U.S. Provisional Application No. 61/693,296, filed on Aug. 26, 2012, and entitled “RADIOFREQUENCY CIRCUIT ASSEMBLY”, and also claims priority to United Kingdom Patent Application 1212505.0, filed on Jul. 13, 2012, and entitled “RADIOFREQUENCY CIRCUIT ASSEMBLY”, both of which are hereby incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61693296 | Aug 2012 | US |