The present invention relates generally to devices for magnetic resonance (MR) spectroscopy and/or imaging, and more particularly, to an enhanced coil design and a catheter suitable for use in MR spectroscopy and/or imaging.
In magnetic resonance (MR) scanners, the nuclear spins of a subject are aligned by an intense static (constant) magnet field B0, and perturbed by an oscillating (typically radiofrequency) magnetic field B1 (perpendicular to B0) generated by current flowing in one or more inductive structures, usually referred to as coils or RF coils. Following the perturbation, the nuclear spins emit oscillatory magnetic fields that are converted to oscillatory electrical signals by either the same RF coil or coils, or by a different coil or set of coils. These nuclear signals are detected by the MR scanners and converted to NMR spectra, which reveal chemical composition, or nuclear magnetic resonance images of the subject. The corresponding methodologies are generally known as magnetic resonance spectroscopy (MRS) and magnetic resonance imaging (MRI), respectively.
Normally, an RF coil forms an inductive component of a tuned resonant electrical circuit. It is the oscillatory magnetic field of the coil that excites the nuclear spins when an oscillatory electrical current flows through the electrical conductors of the coil. The spatial pattern of the magnetic field, i.e., the intensity and direction of the magnetic field at every point in space, generated by the coil determines the spatial pattern of excitation, and is itself determined by the spatial arrangement of the electrical conductors of the coil.
In the most general situation, as shown in
When the volume of interest is a relatively small part of the entire subject, and located in the vicinity of the subject's surface, an improvement in the filling factor may be achieved by employing a small RF coil placed against the subject, as shown in
When the volume of interest is an atherosclerotic plaque located in the wall of a coronary artery, even an externally placed surface coil having dimensions on the order of the plaque dimensions provides an extremely low filling factor because the plaque is likely to be far away from such a surface coil. If the surface coil is sized so that the plaque is well within the coil's sensitive volume, the surface coil diameter will need to be much larger than the plaque diameter, thus yielding a poor filling factor.
The shape and intensity distribution of the reception volume of the coil may be further tailored with specific arrangements of the electrical conductors forming the coil. This may be for enhancing the uniformity of the excitation throughout a volume of interest, or for more sharply defining the shape of the volume, or both. For example, the excitation volume of a solenoid coil is usually considered to be defined by the geometric volume of the cylinder on which the solenoid is wound. However, the magnetic field produced by the solenoid, which defines both its reception and excitation volumes, actually extends throughout all space. The field is strongest, and mostly confined, within the volume of the cylinder, but is present to some extent everywhere. The solenoid produces a moderately uniform field intensity and direction within its cylindrical volume. The intensity of the field on the solenoid axis varies by about a factor of two from the center of the cylinder to its ends, and the direction of the on-axis field is parallel to the axis. At large distances from the solenoid, the field is approximately dipolar in shape and varies approximately with the inverse third power of the distance.
A surface coil formed of a single loop of wire, which may be considered to be a solenoid of approximately zero length, has a much more drastic variation of field intensity than does a solenoid of finite length, with the on-axis intensity falling off roughly as the inverse third power of the distance from the plane of the loop. Alternatively, birdcage coils are designed to produce a highly uniform field within the geometrical volume, with the field direction perpendicular to the birdcage cylinder axis.
Another known RF coil design is a flat coil that includes a planar rectangular array of conductors interconnected so that a current flowing from one end of the coil to the other end has opposite directions in adjacent conductors.
Another type of RF coil is known as the shorted line, or slotted line, or transmission line, coil. A coaxial transmission line (coaxial cable) may be shorted at one end to create standing electromagnetic waves within the line. The line therefore becomes a resonant structure that can be tuned and matched to the characteristic impedance (typically, but not necessarily, 50 ohms) of the scanner's receiver, similar to a conventional RF coil. At an appropriate distance from the short, an opening, or aperture, is cut in the shield to expose the central conductor. The magnetic field within the line leaks out of the opening and permits the slotted line to be used as an intravascular coil for MR scanning. The cross sectional shape of the field is approximately defined by the length and width of the aperture. The intensity of the field in the vicinity of the center conductor falls roughly as the reciprocal of the distance from the center conductor, and faster with increasing distance.
Conventional intravascular coils often take the form of simple loops of wire. The geometrically simplest type of an intravascular coil is essentially a bare wire (such as the guide wire of a catheter), or a length of small diameter coaxial cable with a length of the shield removed from the end (the “loopless antenna”). The current return path of a loopless antenna is via the capacitance between the bare wire and the shield of the coaxial cable. Although this is a rather poor coil compared to a true loop or solenoid, it has the advantage that it can be made very small so that it fits easily into blood vessels, and it still gives a strongly improved filling factor compared to any coil that is placed external to the body. It has, however, the disadvantage that its volume of sensitivity is concentrated near the exposed wire. The loopless antenna, and guidewires used as coils, are therefore most sensitive to the blood (which is usually not of interest in intravascular MR scanning), and less sensitive to vessel walls (which are usually of most interest in intravascular MR scanning). An additional problem caused by this greater sensitivity to blood rather than vessel walls is that the blood MR signal, being enhanced relative to the vessel wall signal, tends to dominate and obscure signals from the vessel wall. A third problem associated with such conventional intravascular coils is that motion artifacts due to the flow of the blood also tend to obscure signals from the vessel wall. A fourth problem caused by the increased sensitivity to volumes that are not of interest is that electrical noise is unnecessarily detected from these volumes of tissue which cannot be removed from the image or spectrum, thereby reducing the signal-to-noise ratio.
Normally, the coils employed for MR spectroscopy and imaging form the inductive components of tuned resonant electrical circuits. For effective use, the circuits must be accurately tuned to the Larmor (precession) frequency of the nuclear spins that are excited and detected. The electrical cables connecting the coils to other components of the tuned resonant circuit can introduce signal loss that can adversely affect the signal to noise ratio of the detected signal. For example, because of the confined space within a blood vessel, a coaxial cable utilized to connect a coil to an external scanner is typically of small diameter and therefore of high attenuation, which causes loss of signal to noise ratio. Some or all of the tuning capacitors of some conventional intravascular coils are fixed in value so that they can be placed near the coil. These values are typically selected as a compromise among the full range of values that would be needed to all possible tuning conditions. This, however, limits the available tuning conditions of the coil, which can in turn degrade the performance of the coil. For example, intravascular coils, when placed in blood vessels, are in constant motion because of the heart beat, the pulsatile flow of blood, and other voluntary and/or involuntary motions of the subject. Such motions cause the optimal tuning conditions to be continuously changing during a scan, thus requiring a continuous adjustment of the tuning capacitors if optimal tuning is desired. The optimal tuning conditions may also change as the catheter containing the coil is advanced through a vessel or is pulled back. Hence, the inability to adjust the capacitance can result in operating the intravascular coil under conditions of highly compromised tuning, which in turn can result in a low signal-to-noise ratio.
Alternatively, some or all of the tuning components of an intravascular coil can be placed outside the body of the subject, and hence at a substantial distance from the coil, so that the capacitance can be adjusted. This approach, however, can result in a severe loss of signal-to-noise ratio because of the high attenuation of a small diameter cable that needs to be employed to connect the coil to the external capacitors.
Thus, there is a need for a coil for use in MR spectroscopy and/or imaging that can allow scanning biological tissue such as arterial plaques, blood clots, or the brain cortex.
There is also a need for such a coil that can provide enhanced filling factors for imaging curved surfaces while reducing its sensitivity to materials disposed outside these surfaces, particularly when utilized as an intravascular coil for MR spectroscopy or imaging of arterial plaques or blood clots, or when used externally to scan the brain cortex.
There is further a need for an intravascular catheter having a coil for performing MR spectroscopy and/or imaging that can be continuously tuned while disposed in a blood vessel.
Moreover, there is a need for an intravascular catheter having a coil for MR spectroscopy in which signals detected by the coil can be amplified and transmitted to an external circuitry with minimal attenuation.
In one aspect, the present invention provides a coil for transmitting and detecting magnetic excitations. A coil of the invention can include a meanderline, also referred to as zigzag or serpentine, conductive structure having a plurality of conductive segments that form a substantially cylindrical profile to generate non-vanishing magnetic fields, in response to a current flow through the coil, in a substantially annular region surrounding the conductive segments, and substantially vanishing magnetic fields outside the annular region. For example, the substantially vanishing magnetic field can be weaker than the average magnetic field generated in the annular region by about 10 dB, or preferably by about 20 dB, or more preferably by about 40 dB or more. Most preferably, the magnetic field completely vanishes outside the annular region.
In a related aspect, a meanderline conductive structure of a coil of the invention includes an input lead and an output lead, and each conductive segment forming a portion of the conductive structure is composed of at least a pair of elongated conductors disposed substantially parallel to one another, and spaced apart by a selected distance, such that a current flow through the coil, for example, from the input lead to the output lead, results in opposite current directions in each conductor of the pair. In this manner, a non-vanishing magnetic field distribution can be generated in a generally annular region surrounding the conductive segments while the magnetic field falls off to very low values outside the annular region. For example, when the coil exhibits a substantially cylindrical profile, the non-vanishing magnetic field distribution can be in the form of a cylindrical shell surrounding the coil's conductive segments with the magnetic field strength decreasing rapidly to vanishing values beyond the shell's inner and outer boundaries.
The annular region typically has a width that is commensurate, i.e., it is of the order of, the spacing between the pair of elongated conductors of each conductive segment of the coil. A width of the annular region can be defined, for example, as a distance between inner and outer boundaries of the region, where each boundary represents a location at which the magnetic field strength is reduced by a selected amount, e.g., by 1/e, relative to its values at the center of the annular region.
In other aspects, capacitors can be coupled to the coil, for example, distributed along the coil, for providing tuning and/or impedance matching of the coil. The capacitance can be in the form of discrete devices, or can be in a continuously distributed form as in the capacitance between the coil and a ground plane. Varactor diodes can be utilized as adjustable capacitors whose capacitance can be varied by adjusting one or more DC voltages applied thereto.
A coil of the invention can be utilized for RF excitation, detection, or both. Thus, the terms “excitation” and “volume of excitation” can also be understood to refer to reception and volume of reception, respectively.
In another aspect, the present invention provides a coil assembly, formed of at least a pair of conductive coils, for radiofrequency (RF) quadrature operation. Each conductive coil can include an input terminal, an output terminal, and a plurality of conductive segments that extend from the input terminal to the output terminal. Each conductive segment includes two elongated conductors that are disposed substantially parallel to one another such that a flow of a current from the input terminal to the output terminal results in opposite current directions in the conductors. The conductors are disposed in proximity of one another such that application of two voltage signals, having substantially equal amplitudes and a phase difference of about 90 degrees, each across one of the coils, causes currents in the coils so as to generate a circularly polarized RF magnetic field.
In a related aspect, in the coil assembly described above, the coils are disposed relative to one another such that the conductors of each conductive segment of one coil are substantially perpendicular to the conductors of a corresponding conductive segment of the other coil. The coils utilized in the coil assembly can have a variety of different profiles. For example, each coil can be flat, or have a cylindrical profile. Alternatively, the profile of both or at least one of the coils can correspond to a sector of a cylinder.
In another aspect, the present invention provides a medical catheter that includes a flexible body extending from a proximal end to a distal end, and a coil coupled to the flexible body in proximity of the distal end for generating and detecting magnetic signals. A miniature amplifier is coupled to the catheter in proximity of the coil, and is electrically connected thereto, in order to amplify magnetic signals generated or detected by the coil.
In a related aspect, in a medical catheter according to the teachings of the invention as described above, the coil can include a meanderline conductive structure having a plurality of segments that form a substantially cylindrical profile. The conductive segments are configured such that the coil generates, in response to a current flow therethrough, a non-vanishing magnetic field in a region in proximity of the conductive segments and a substantially vanishing magnetic field in a region removed from the proximity of the conductive segments.
In another aspect, the catheter includes a flexible body, formed preferably of a biocompatible material, that is sized to allow navigating the catheter through a patient's circulatory system, for example, a patient's artery. Further, capacitive and/or inductive elements can be coupled to the coil to allow tuning it to a selected frequency. Moreover, an elongated conductor, which extends from the proximal end of the catheter to its distal end, can be employed to transmit excitation signals from an external circuitry to the coil and/or transmit signals detected by the coil, for example, signals emitted by nuclear spins in response to excitation by the coil, to an external circuitry.
In another aspect, the invention provides a catheter that can be utilized in two operational modes, in one of which an extended length of a vessel can be imaged, and in the other, a smaller portion of the vessel wall can be imaged. Such a catheter can include an elongate conductor that extends along a portion thereof, for example, from its proximal end to its distal end, and a coil according to the teachings of the invention coupled to its distal end. An external circuitry coupled to the elongate conductor can be employed to tune the elongate conductor for imaging an extended length of the vessel, and another external circuitry coupled to the coil can be utilized to tune the coil for imaging a portion of the vessel in proximity of the coil.
In yet another aspect, the present invention provides a method for magnetic resonance imaging of at least a portion of a plaque disposed on an inner wall of a patient's artery by disposing a coil having a substantially cylindrical profile, formed of a plurality of conductive segments, in the artery in proximity of the plaque. The conductive segments of the coil are configured such that a current flow through the coil generates a substantially vanishing magnetic field in a region within the cylindrical profile through which blood flows, and a non-vanishing magnetic field in an annular region in proximity of the conductive segments extending into at least a portion of the plaque. A static magnetic field is applied to the plaque in order to polarize selected atomic nuclei of the constituents of the plaque. Further, a time-varying signal is applied to the coil, or to another coil, e.g., a coil disposed in a scanner, so as to generate a time-varying magnetic field in the annular region to excite the polarized nuclei. The coil is then employed to detect radiation emitted by the nuclei in response to the excitation. The detected signal can be analyzed, for example, by an external system, in order to ascertain constituents of the plaque. It should be appreciated that an intravascular coil according to the teachings of the invention can be utilized for transmitting and detecting magnetic signals, or only for detecting magnetic signals. When the coil is utilized for only detecting magnetic signals, another coil, e.g., a coil disposed in a magnetic resonance scanner, can be employed for transmitting magnetic excitations, for example, for exciting selected nuclear spins.
Further understanding of the invention can be obtained by reference to the following description in conjunction with associated drawings described briefly below.
In one aspect, the present invention provides coils that can be utilized for magnetic resonance imaging and spectroscopy of biological tissue, for example, arterial plaques or blood clots. A coil according to the teachings of the invention can be incorporated into a flexible catheter that can navigate through a patient's artery to place the coil in proximity of the biological tissue to be imaged. The coil can generate magnetic fields, in response a current flow therethrough, that can excite selected nuclear spins within the interest, and can detect signals generated by the spins in response to the excitation. Alterntively, another coil, e.g., a coil in a magnetic resonance scanner, can be employed to excite the nuclear spins, and the intravascular coil can be utilized to detect signals generated by the spins in response to the excitation.
More particularly, the exemplary cylindrical meanderline coil 10 generates a non-vanishing magnetic field distribution in an annular region 22 spanned about the conductive segments 14. The exemplary annular region 22 has a width W that is of the order of the spacing A between the conductive pairs of the conductive segments 14. The magnitude of the magnetic field generated by the coil 10 within the annular region 22 decreases from a maximum value at locations in proximity of the conductive segments 14 to very low values at boundaries 22a and 22b of the annular region 22. In particular, the cylindrical meanderline coil 10 advantageously generates substantially vanishing magnetic fields in an inner portion 24 of the cylindrical profile formed by the conductive segments 14. As discussed below, when the coil 10 is employed intravenously, this magnetic field distribution advantageously allows applying a magnetic field to a plaque or a blood clot formed on an arterial wall without exciting spins in the blood flowing through the inner portion of the coil's cylindrical profile, and additionally allows the detection of magnetic resonance (MR) signals from excited spins of a plaque or a blood clot in an arterial wall while minimizing, or preferably eliminating, detection of interfering signals from the blood flowing through the inner portion of the coil's cylindrical profile and/or from tissue far from the arterial wall.
A variety of manufacturing techniques, such as photolithography, can be utilized for constructing a cylindrical meanderline coil of the invention. For example,
A pair of capacitors can be connected at the leads 12a and 12b of the coil 10 to allow tuning the coil to a selected frequency, and/or matching the coil's impedance to the impedance of other components needed for applying a signal to the coil and/or processing a signal received by the coil. Alternatively, a plurality of capacitors can be distributed along the coil 10 for such tuning and impedance matching. By way of example only, as shown in
By way of example, and only to illustrate the feasibility of constructing and utilizing a cylindrical meanderline coil according to the teachings of the invention,
In
As shown in
In embodiments in which a shield is utilized, the distributed capacitance between the coil and the shield can form a part of the tuning and impedance matching circuitry. For example, some degree of tuning and impedance matching of the coil 10 can be obtained by varying the distance between the coil's conductive segments and the shield. Further, as shown ischematically in
In other aspects of the invention, coils having meanderline structures, e.g., flat coils or cylindrical coils, are employed for RF quadrature operation. In quadrature operation, the RF coil can be driven by two substantially equal amplitude sources which have a relative phase shift of substantially 90 degrees, producing a circularly polarized RF magnetic field, rather than the linearly polarized RF field in a singlature (non-quadrature) coil. This provides significant advantages in enhancing transmit power efficiency. In addition, the signal-to-noise ratio can be enhanced when a quadrature coil is used to receive the nuclear signal.
By way of example,
The coil arrangements according to the teachings of the invention for quadrature operation are not limited to those described above. For example,
The coil arrangements of the invention suitable for quadrature operation, such as the exemplary coil arrangements described above, can be utilized for performing double resonance MR measurements and/or for tailoring the distribution of the generated magnetic field to obtain a desired geometry of the sensitive volume. In double resonance MR measurements, two, or more in multiple resonance measurements, nuclear spin systems are excited at their different Larmor frequencies, requiring the coil assembly to be resonant at both frequencies. This can be achieved with separate, independently tuned coils covering a shared volume, or with a single coil connecting to a tuning circuit with two input ports such that the single coil is a shared inductive element among the input ports. In some double resonance designs using two coils, it is helpful to minimize the mutual capacitive and/or inductive coupling of the two coils. One example of a double resonance cylindrical meanderline coil using two component coils with minimal mutual inductance is the combination of two nearly overlapping such coils, with their wires oriented at 90 degrees relative to one another, and driven by the different frequency RF sources. Those having ordinary skill in the art will appreciate that many other configurations within the scope of the invention can be employed for double resonance operation.
A cylindrical meanderline coil of the invention, such as the above exemplary coil 10 with or without a shield, can find a variety of applications for performing MR imaging or spectroscopy. For example, a coil of the invention can be employed for MR imaging or spectroscopy of plaques or blood clots on arterial walls. For example, with reference to
The conductors in a coil of the invention can be oriented at any angle with respect to B0, although there will typically be a variation in performance of the coil as the angle is varied. Other related configurations of the conductors of the meanderline coil are within the scope of the invention. For example, a meanderline structure shaped as an incomplete cylinder, for example, a sector of a cylinder, is within the scope of the invention. Similarly, a warped surface containing a meanderline structure, such as that required to conform to the shoulder or skull of a person, e.g., a helmet shape, is also within the scope of the invention. Additionally, the RF coil can be rigid or flexible. In another embodiment of the invention, the conductors of the RF coil can be twisted about the cylindrical axis into a spiral form rather than being straight.
In another aspect, the invention provides an intravascular flexible catheter that includes a coil at its tip for exciting and/or receiving signals from a collection of spins. A miniature preamplifier is coupled to the catheter in proximity of the coil for amplifying signals applied to or received from the coil. The proximity of the preamplifier to the coil substantially reduces signal degradation that would otherwise occur if long transmission lines were employed to transmit signals between the coil and a preamplifier disposed at a substantial distance from the coil. By way of example,
With continued reference to
In some preferred embodiments, the preamplifier 64 has dimensions of the order of a few millimeters, and preferably, one to about 2 millimeters, and can withstand exposure to intense RF and magnetic field gradient pulses from a magnetic resonance imager. The catheter's preamplifier needs to be designed so as to occupy minimum space and to be substantially unaffected by magnetic fields and proximity to tissue. Hence, in many embodiments, ferrite cores and most wound inductors, electrolytic capacitors and transformers are not employed in construction of the preamplifier. Further, a standard duplexer circuit that switches the coil between transmit and receive conditions, often employing a quarter wavelength cable, is typically replaced with compact lumped element circuitry. In some embodiments, low noise gallium arsenide field effect transistor (GaAsFET) circuits, often employed in high performance narrow band preamplifier applications, are utilized for the construction of the preamplifier 64.
In some embodiments, an unpackaged transistor on a semiconductor die, together with other circuit elements such as microminiature capacitors, are utilized for constructing the preamplifier 64. Proper insulation and packaging of the entire circuit must be employed to ensure that the preamplifier can function safely in proximity of biological tissue, and to allow integration within the catheter body. Alternatively, the entire preamplifier circuitry can be fabricated as a single chip microcircuit, further reducing the size and eliminating the need for separate bulky external circuit elements. Moreover, as discussed in more detail below, a DC power input to the preamplifier can share the same cable utilized to transmit a detected MR signal out of the patient's body. In other embodiments, the need for a cable electrical connection to the coil and the preamplifier can be eliminated by utilizing inductive or electromagnetic (radio) coupling directly through the patient's body (telemetry) to supply power to and extract signals from the circuit.
With reference to
By way of example,
Referring again to
As discussed briefly above, placing the preamplifier 64 in proximity of the coil 62 provides a number of advantages. For example, it enhances the signal to noise ratio of the detected signal. In general, for small well designed RF coils used in scanning biological tissues (keeping other factors fixed), the ultimate signal to noise ratio of the scanner is largely determined by the preamplifier signal to noise ratio, usually expressed as the noise figure NF (defined as the ratio in decibels of the amplifier's equivalent input noise power to the inherent noise power emitted by an ideal perfectly impedance matched input impedance). In contrast, for coils of large volume receiving signals from biological tissue, and a properly designed receiver, the tissue is the dominant noise source. Because no amplifier is perfect, every physically real amplifier has a noise figure greater than 0 dB, and therefore adds some noise to any signal that it amplifies. Similarly, every passive electrical component, such as a resistor, has an inherent noise power P, which for an ideal resistor of resistance R ohms is given by P=4 kTB watts, where k=1.384×10−23 J K−1 is Boltzmann's constant, T is the absolute temperature in Kelvins (K), and B is the bandwidth in Hz. The mean square noise voltage across the resistor is <V2>=4 kTBR. This noise arises from the random motions of electrical charge carriers (electrons), and is inherent in any physically real device.
The RF coil has an equivalent resistance, and therefore a corresponding inherent noise power. Similarly, the subject, being composed of biological tissues having some finite electrical conductivity, also has an inherent noise power. Although for large volume coils, the tissue noise usually dominates the coil noise, for small RF coils, the coil noise is likely to dominate the noise from the tissue. Similarly, for small RF coils optimally coupled to the preamplifier, the noise added by the preamplifier will be either dominant or, for the very lowest noise preamplifers, will be the primary source of noise of a well designed receiver. Any attenuation suffered by the signal prior to preamplification results in a reduction in signal to noise ratio because the signal has been attenuated, while the system noise is fixed by the preamplifier and coil. It is therefore important that in any well designed MR receiver: a) the coil circuit is optimally tuned so as to maximize the coupling between the oscillatory magnetic field of the spins and the electrical power output (that is, the coil is tuned and impedance matched); b) there is minimum attenuation between the tuned coil and the preamplifier; c) the preamplifier has the lowest possible noise figure; and d) the preamplifier has sufficient power gain so as to overcome any subsequent attenuation prior to the next stage of amplification, as well as any noise added by the next stage amplifier. Once these conditions are met, the system signal to noise ratio is substantially fixed, and the signal may be subjected to significant losses in the subsequent circuitry without degrading the system signal to noise ratio. The demands on the noise performance of the second stage amplifier are considerably relaxed compared to those on the preamplifier.
Although in the above exemplary catheter 54, the cable 70 can introduce some signal loss, the proximity of the preamplifier to the coil allows substantially boosting the signal intensity by the preamplifier prior to signal transmission through the cable, and compensating for cable losses between the preamplifier and the scanner by additional amplification stages in the scanner, if necessary.
In absence of amplification of the signal detected by the coil prior to its transmission through the cable 70, the noise introduced by the cable may degrade the signal to noise intensity to such an extent that no amplification would recover the signal from the noise. This is particularly true when the cross-section of the cable 70 is small. Because of the miniscule cross section of the conductors of a cable 70 that is suitable for human arteries, a small diameter coaxial cable that is usually used to connect a catheter RF coil to the scanner typically has extraordinarily high attenuation compared to the cable normally used for scanner interconnections, in some cases as high as 100 dB per including the deleterious effect of severe impedance mismatches) if the coil were properly tuned and perfectly impedance matched to the characteristic impedance of the cable. In this case, the corresponding loss in signal to noise ratio is numerically equal to the attenuation. However, difficulties in perfectly tuning and impedance matching the coil can dramatically magnify the cable losses. It is therefore possible for actual signal losses to amount to upwards of 10-20 dB. This is equivalent to a factor of on the order of 3-10 in signal to noise ratio, corresponding to a factor on the order of 10-100 in signal averaging time to recover the signal to noise ratio lost by the cable attenuation.
Placing a simple low noise preamplifier at or near the catheter coil substantially eliminates the severe degradation in system noise figure introduced by the catheter transmission line. As long as this preamplifier's noise figure is low (for example, 0.5 dB), and its gain is sufficient to overcome the cable losses (for example, 25 dB), the inherent receiver system noise figure is preserved. These values are typical of the low noise gallium arsenide field effect transistor (GaAsFET) circuits often used in high performance narrowband preamplifier applications. Specifically optimized preamplifier circuits can achieve even higher performance values. Additional advantages of placing a preamplifier near the coil include the ability to impedance match the coil directly to the preamplifier input impedance, which can yield an optimal noise figure (typically different from the 50 ohm characteristic impedance of the cable), and to design an amplifier input impedance which permits effective decoupling of the catheter RF coil from other RF coils in the scanner.
Although other electronic elements needed, for example, for tuning the coil and/or impedance matching, can be disposed external of the catheter, as shown in
In some embodiments, varactor diodes are employed to provide adjustable capacitance whose value can be controlled by external DC voltages. PIN diode switches required for transmit/receive switching, selecting among multiple coils or multiple operating frequencies, or protecting the preamplifier from RF pulses, may also be incorporated within the catheter. Much of this circuitry can be integrated onto one or two integrated circuits in order to achieve ultra compact circuitry. As discussed above, gallium arsenide can be utilized for constructing the preamplifier transistor. The other active electronic functions may be combined on the gallium arsenide chip (or a hybrid gallium arsenide/silicon device), or may be implemented on a separate silicon integrated circuit.
It is to be understood that the schematic diagrams of
By way of example,
In a preferred embodiment of the tuning procedure, the tuning condition of the intravascular coil is sensed briefly in the time interval between phase encoding steps of an MR scan (for example by exciting the coil with a weak pulse of RF power at the scanner operating frequency, and measuring the amplitude and phase of the RF power reflected by the coil). Then the appropriate changes in the DC bias voltages are made to change the capacitances of the varactor diodes such that the reflected power is minimized. In this manner, the intravascular coil is maintained close to, and preferably at, a state of optimal tuning during the MR scan. By way of example, with reference to a flow chart 61 shown in
Another important use of electronically remote tuning of an intravascular coil with varactor diodes is to detune the coil (for example, to make the coil nonresonant during the pulsing of a separate transmit coil of the scanner) by misadjusting the DC bias voltages.
Although it is simple to multiplex DC power and RF output in a single transmission line (the single cable connecting the coil to the scanner), multiple control signals may alternatively be transmitted with additional very fine wires or cables placed within the same catheter. Alternatively, if integrated circuits are employed, additional circuitry can be utilized to multiplex all signal, power and control functions on a single cable, by digital or other means. Cables for nuclear and control signal and power transmission can be formed of combinations of one or more single unshielded wires, conventional coaxial cables, in which a single conductor is enclosed by a shield, twinaxial cables, in which two balanced conductors are enclosed by a single shield, or triaxial cables in which a coaxial cable is enclosed by a second shield electrically isolated from the coaxial cable shield, or extensions of these configurations. An advantage of triaxial cables is that the outer shield can be arranged to act as a electromagnetic shield to reduce the spurious electrical interaction of its internal coaxial cable with the environment, for example by reducing RF heating of tissue or reducing the tuning sensitivity of the coil and cable
With reference to
With reference to
It is also within the scope of the invention to switch between modes of operation of the intravascular MR coil such that the volume of excitation or sensitivity of the coil is changed, for example, between a first mode of operation in which the coil is sensitive to a long length of an artery and a second mode of operation in which the coil is sensitive to a much shorter length of an artery. As explained previously, an optimal filling factor of an MR coil is achieved when the region of excitation or sensitivity of the coil matches the region of interest to be scanned. Therefore, extended lengths of arteries are preferably scanned with intravascular coils designed for long lengths, whereas short lengths of arteries, for example those containing particular atherosclerotic plaques that a physician wishes to inspect in detail with MR scanning, are best scanned with intravascular coils designed for short lengths. Removing one intravascular coil and replacing it with another takes time, requires that at least two different type of intravascular coils are available, and subjects the patient to additional risk due to the nature of the medical procedure.
With reference to
The use of a catheter or a coil of the invention is not limited to intravascular spectroscopy and/or imaging. In particular, the coils and the catheters of the invention can be employed for surface NMR spectroscopy and/or imaging of biological tissue. For example, a coil of the invention, for example, in the form of a half cylinder or a helmet, can be employed for imaging the brain cortex. In other applications, a coil of the invention, which can be formed as a flexible structure that can conform to the shape of a body part, can be employed for imaging different body parts, such as the shoulder.
In addition to applications in biomedicine such as blood vessel and gastrointestinal tract wall imaging and spectroscopy, cylindrical meanderline coils of the invention are also suited for conducting measurements in other fields of science, engineering, agriculture and commerce. For example, a cylindrical meanderline coil according to the teachings of the invention can be utilized to selectively acquire MR signals from selected volumes of a fluid, e.g., volumes disposed at a selected distance from an axis of flow, while rejecting other volumes to study, for example, laminar flow in pipes or couette flow around cylinders. In down-hole well logging applications in the petrochemical field, a cylindrical meanderline coil of the invention can be useful in acquiring signal from the surrounding rock while rejecting signal from the drilling mud as an alternative to opposed solenoid MR coil designs.
The cylinder of a meanderline coil of the invention does not necessarily need to have a circular cross-section or to form a complete cylinder. For example, a meanderline coil of the invention can have an elliptical cross-section. Further, flexible meanderline sectors can be formed to conform to curved surfaces, such as the skull (when the cerebral cortex is of interest) or the trunk of a tree, to optimize MR signal collection from such curved geometries. The cylindrical meanderline and its derivative coil designs represent a dramatic gain in data acquisition efficiency because the dimensionality of the measurement is effectively reduced. Rather than collecting spatially resolved data from an entire three-dimensional volume (which is generally highly time consuming) and subsequently selecting only the curved volume of interest, the cylindrical meanderline geometry permits the acquisition of data directly from the desired volume only.
With reference to
Those having ordinary skill in the art will appreciate that many modifications can be made to the above illustrative embodiments without departing from the scope of the invention.
This application claims priority to provisional application No. 60/419,987 entitled “Radiofrequency coil and catheter for surface NMR imaging and spectroscopy,” filed on Oct. 21, 2002.
The Government has rights in this invention pursuant to Cooperative Agreement Number DAMD17-02-2-0006.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US03/33316 | 10/21/2003 | WO | 11/7/2005 |
Number | Date | Country | |
---|---|---|---|
60419987 | Oct 2002 | US |