This invention relates to devices designed for Magnetic Resonance (MR) and other radiofrequency (RF) based environments. Specifically, the present invention relates to devices comprising carbon fiber that do not cause interference when used in these environments.
Modern Radiation Therapy requires patient positioning devices that are rigid in order to accurately and repeatably position the patient. In addition, the devices must be compatible with the high-energy radiation used during treatment. The unique properties of carbon fiber, high stiffness and radiolucency, have made it an ideal material for patient positioning devices. As state-of-the-art diagnostic imaging technologies are developed and tailored for use in cancer diagnosis and treatment support, the radiolucent properties of carbon fiber have continued to make it the material of choice for modalities such as PET/CT, SPECT/CT and other technologies that are x-ray based.
Generally, treatment of a tumor by radiation therapy is preceded by a diagnostic imaging procedure called simulation. During simulation, the patient is positioned in the manner anticipated for treatment. This includes the physical orientation of the patient using the positioning and immobilization devices that will be used in treatment. This way the computer data set of the patient (DICOM) contains an accurate representation of the location of the tumor. That data set is then imported into treatment planning software (TPS) so that the treatment can be modeled and planned. It is critical that the patient be simulated in the same position on the same devices as will be used in treatment to ensure accurate tumor location identification for treatment.
Magnetic Resonance (MR) imaging provides significant advantages over x-ray based diagnostic imaging techniques in visualizing and differentiating soft tissues such as tumors. There has long been a strong desire to extend the simulation technology to the use of MR imaging. However, until recently, the spatial accuracy of MR machines was not accurate enough for precise tumor location. And precise tumor location is necessary for accurately aiming the treatment beam. In the past, in order to use MR data, the MR data was overlaid or “fused” with CT data to achieve the required accuracy. However, recent advances in spatial accuracy of MR data allow the use of MR information directly for radiation therapy simulation.
MR imaging uses large magnets to create a homogeneous magnetic field. Gradient coils alter the magnetic field in a uniform manner in time or space, creating magnetic field gradients. MR imaging also employs radiofrequency (RF) coils for applying an RF field to a subject to be imaged, causing the resonant nuclei within the subject to resonate and create an MR response signal. An image is then constructed based on this response signal.
Interference with the RF field reduces the quality of the created image. Susceptibility is used to describe the degree of magnetization a material exhibits per applied magnetic field. If a material with susceptibility much different than the subject being imaged is within the magnetic field the homogeneity of the magnetic field will be disturbed near the material. This creates a distortion in the MR image near this material.
Electrically conducting materials, such as metals, disturb and distort the radiofrequency electromagnetic fields necessary for resonance imaging. The eddy currents in these materials, usually metallic conductors of electricity create their own magnetic field that interferes with the fields used for MR imaging. Carbon fiber, which is conductive along its length, also causes this interference.
Other tumor localization techniques also use radiofrequency (RF) technology, such as those techniques developed by Calypso (Seattle, Wash.). For Calypso RF localization to work properly, the accessories cannot interfere with the RF signal generated and reflected by the RF antenna and Beacons respectively. Small conductors do not pose a problem. However, large conductors, such as the metal plates on the end of the Varian Exact® couch top or sheets of carbon fiber fabric commonly used for patient tables do create signal interference due to eddy current generation.
The electrically conductive nature of carbon fibers is problematic for use in MR imaging machines and other RF devices. Although carbon fiber is not ferro-magnetic, the electrical conductivity can lead to problems such as image distortion and resistance heating of the carbon fiber. The interaction of the carbon fiber with the MR magnetic field causes electrical current to flow through the carbon fibers. This electrical flow can lead to localized magnetic fields as well as localized heating of the material, causing safety concerns. In order to design products that can work in an MRI environment, substitute materials are often used, such as fiberglass and aramid fibers (Kevlar). Although these materials are not conductive, they lack the stiffness of carbon fiber, reducing their applicability to accurate patient positioning during treatment. In the case of fiberglass, the material is not sufficiently radiolucent to be used in significant quantities for structural purposes in an x-ray environment.
The stiffness of commercially available carbon fiber can vary from a modulus of 30 MSI to 120 MSI and greater. As the stiffness increases, the electrical conductivity increases as well. While it can be desirable to make use of these higher stiffness carbon fibers it increases the challenge of incorporating them in MRI compatible structures. This invention makes their use possible.
The present invention described herein can mitigate and/or eliminate the problems of image distortion and localized heating inherent to devices constructed of carbon fiber when used in MR applications. This will allow the beneficial properties of carbon fiber to be incorporated into devices that can be used in simulation through radiation treatment regardless of the modalities employed (including MR imaging).
Electrical eddy currents occur in conductive material when exposed to a magnetic field because the electrons in the material are able to circulate forming a closed electrical loop. As with electrical wire, the current is conducted down the carbon fiber's length. By embedding a unidirectional set of the conductive carbon fibers in an electrically insulating matrix resin, we can start to take advantage of the anisotropic nature of the composite material's conductivity. That is to say that the conductivity in the fiber direction is orders of magnitude greater than the conductivity transverse to the fibers. This starts to hinder the electrical current's ability to travel up one fiber, cross over, and return down another fiber. A typical electrical conductivity for carbon fiber is about 105 (S/m) whereas the electrical conductivity for epoxy is around 10−12 (S/m).
Typical commercially available carbon fiber prepreg materials tend to come in sheets with an areal weight running from about 50 GSM (grams per square meter) up to 1000 GSM. This translates to thicknesses in the range of slightly less than 0.005″ up to 0.025″ or slightly higher. These sheets (also called plies) are layered into a laminate to form structures.
In order to produce RF compatible carbon fiber elements, we need to minimize the ability of the electrons to form eddy currents when placed into the magnetic field. This can be achieved (1) by producing long carbon fiber composite elements that are very narrow in the transverse direction and (2) by producing short carbon fiber elements that are wide in the transverse direction. The elements are generally composed of conductive fibers oriented in one direction (unidirectional) embedded in an electrically insulating matrix resin. Fabrics of electrically conductive are generally not suitable for these elements as the fabric will create loops in which eddy currents can form. However, a fabric containing a conductive fiber in one direction and a non-conducting fiber in the other direction would be suitable.
These radiofrequency compatible elements can be used as building blocks to produce radiofrequency compatible structures from carbon fiber. However, we must adequately separate and insulate the individual elements from each other so that we do not develop electrical looping paths from one element to the next.
Insulating separators can be included in the structure in several ways. They can be placed in the same plane as the element, (1) separating elements lateral, in the same ply layer, (2) separating elements longitudinally, also in the same ply layer, or in between plies to separate elements through the thickness of the structure. These strategies can be mixed in the same structure to optimize both structural and RF performance.
Insulating elements can be composed of an insulator such as a pure polymer, a polymer with a scrim material (such as non-woven polyester) or a non-conductive composite structural element such as aramid (Kevlar) so that it contributes to the structural performance as well.
By combining insulating elements with RF compatible carbon fiber elements, a laminate may be produced that is of high structural performance (stiffness and/or strength).
These laminates can be used in any manner typically employed in composite structure design. They can be used to develop solid structures or can be incorporated in typical composite constructions such as sandwich panels. In
Specifically, the present invention provides devices for use in the treatment and simulation of treatment of cancerous tissue that can be used inside a magnetic field used for MR imaging without exhibiting image distortion or local heating. The homogeneity of the structure in an X-ray based environment is also an object of this invention so that x-ray artifacting is minimized.
It is another object of the present invention to provide devices that can be used with RF technology such as that developed by Calypso without causing interference with the system that would impact treatment.
More specifically, the present invention provides . . . BG ADD>>>
The present invention provides a device that is compatible with radiofrequency applications such as magnetic resonance imaging and is also x-ray translucent is shown in the figures. The device is to be constructed of both conductive and non-conductive elements. The conductive elements provide bulk of the stiffness of the structure. The non-conducting elements are arranged in such a manner to maximize structural performance while at the same time limiting eddy currents in the device. The limiting of the eddy currents is what allows the device to be used in radiofrequency applications.
The present invention is further defined by the following claims.
The present application claims priority from U.S. Provisional Application Ser. No. 61/540,488, filed on 28 Sep. 2011.
Number | Date | Country | |
---|---|---|---|
61540488 | Sep 2011 | US |