Radiofrequency perforation apparatus

Information

  • Patent Grant
  • 11684447
  • Patent Number
    11,684,447
  • Date Filed
    Tuesday, December 22, 2020
    3 years ago
  • Date Issued
    Tuesday, June 27, 2023
    a year ago
Abstract
Medical devices are disclosed having improved visualization of a portion of the medical device insertable into a patient's body while minimizing obstruction of fluid flow through a lumen of the device and while minimizing an increase in the outer diameter of the device attributable to the feature providing improved visualization. The device can include, for example, an imaging marker distal to lumen openings (exit ports), or, where the device comprises a tube, such as a metallic tube, an imaging marker embedded into a wall of the tube. Another embodiment includes attaching a marker to the surface on the inside of a lumen of a medical device without embedding the marker. Various alternative embodiments, methods and applications of using such devices are disclosed as well.
Description
TECHNICAL FIELD

The disclosure relates to improving the visualization of medical devices, in particular, devices with lumens for fluid flow.





BRIEF DESCRIPTION OF THE DRAWINGS

In order that the invention may be readily understood, embodiments of the invention are illustrated by way of examples in the accompanying drawings, in which:



FIG. 1 is an illustration of an embodiment of a device including a handle and shaft;



FIGS. 2a-2d are diagrammatic side views illustrating different embodiments having a shaft or elongated member with a lumen, and a marker that is distal of an opening(s);



FIGS. 3a-3j are diagrammatic side views illustrating different embodiments having a marker embedded in the wall of a metal tube;



FIGS. 4a-4e are diagrammatic side views illustrating different embodiments having a marker coupled to the inside surface of the wall of a metal tube;



FIG. 4f is a diagrammatic side view illustrating a device with a captive element marker retained by internal retainers coupled to the inside surface of the wall of a metal tube;



FIG. 5 is a side cutaway view of a distal portion of an embodiment of a device;



FIG. 6a is a diagrammatic side view of a device with a lumen and an internal marker between the ends of the lumen;



FIG. 6b is a diagrammatic end view of the device of FIG. 6a;



FIG. 7a is a diagrammatic side view of a device with a lumen and a hollow internal marker prior to fusion-welding;



FIG. 7b is a diagrammatic end view of the device of FIG. 7a;



FIG. 7c is a diagrammatic side view of a device with a lumen and a solid internal marker prior to fusion-welding;



FIG. 7d is a diagrammatic end view of the device of FIG. 7c;



FIG. 8a is a diagrammatic side view of the device of FIG. 7a following fusion-welding;



FIG. 8b is a diagrammatic end view of the device of FIG. 8a;



FIG. 8c is a diagrammatic side view of the device of FIG. 7c following fusion-welding;



FIG. 8d is a diagrammatic end view of the device of FIG. 8c;



FIGS. 9a and 9b are illustrations of an embodiment of a method of the present invention;



FIGS. 10a-10d show various views of an alternate embodiment of a device of the present invention; and



FIGS. 11a-11g show various views of an alternative embodiment of a device of the present invention.





DETAILED DESCRIPTION

Certain medical procedures require the use of a medical device that can: create punctures or channels into or through material; enable fluid delivery and/or withdrawal into/from the patient's body; and provide imaging markers for visualizing one or more steps of a medical procedure. Radiopaque bands placed on the outside of a shaft of a medical device are commonly used for imaging. Such external marker bands increase the outer diameter of a device and, in some cases, external dimensional restraints may require reduced outer diameter thereby preventing use of a device with such an external marker. Also, such external marker bands are commonly proximal of the furthermost tip of the device such that the bands do not provide for precise positioning of the tip of a device. To avoid increasing the outer diameter of a device, imaging markers may be placed inside of the device's lumen, but: a) this is often not easily achievable, depending on the size and configuration (material, etc.) of the device and the diameter of the lumen defined by the device; and b) this generally obstructs fluid flow through the lumen of the device.


The present inventors have discovered and reduced to practice several embodiments described herein allowing for improving visualization of a portion of a medical device for inserting into a patient while minimizing obstruction of fluid flow through a lumen and, in addition, avoiding an increase in the outer diameter of the device. This may be accomplished, for example, by providing a radiopaque marker distal to lumen openings (exit ports/apertures) where the diameter of the marker is less than or equal to the diameter of a portion of the device adjacent the marker, or, where the device comprises a metallic tube or similar structure, by providing an imaging marker substantially embedded into/within a wall of the tube.


One specific embodiment includes a hemispherical atraumatic distal tip comprising radiopaque material fusion-welded with the end of a metal tube to form a radiopaque electrode tip at the distal tip of the device. The radiopaque electrode tip provides for both positioning of the distal end of the device and delivering energy, while the atraumatic shape largely limits or prevents accidental damage to tissue. This embodiment may also include longitudinally extended lateral side ports (lateral apertures) for fluid flow. Aspects of the embodiments described herein can also be included in other types of devices, for example, devices without a lumen for fluid flow, and devices not providing energy delivery.


In a first broad aspect, embodiments of the present invention include a medical device comprising an elongated member having a proximal end, a distal end, and a metal tube including an open distal end which is forward facing, the metal tube defining a lumen extending substantially between the proximal end and the distal end of the elongated member, and the elongated member defining a side port from the lumen to an environment outside of the elongated member. An electrode extends distally of the open distal end of the metal tube to define a distal tip of the medical device, with the electrode being configured for delivering electrical energy, wherein the electrical energy is delivered to the electrode through the metal tube. An imaging marker is comprised of an electrically conductive metal associated with the elongated member at a marker location, with the imaging marker being in electrical communication with the metal tube of the elongated member, wherein the medical device is configured such that, in use, a flow of fluid through the lumen to the side port is not substantially obstructed by the imaging marker. The imaging marker is located at the distal end of the metal tube, wherein the imaging marker substantially occludes the lumen at the distal end of the metal tube to prevent the flow of fluid in the lumen flowing past the marker location, and a portion of the imaging marker fills a portion of the lumen between the side port and the distal end of the elongated member and another portion of the imaging marker extends beyond the open distal end of the metal tube to outside of the lumen to define at least part of the electrode.


In typical embodiments of the first broad aspect, the portion of the imaging marker which fills the portion of the lumen has a cylindrical shape and a solid cross-section. Typical embodiments include the electrode being round shaped and atraumatic such that the electrode extends distally of the open distal end of the metal tube to define a distal tip of the medical device being round shaped and atraumatic. Alternative embodiments include the electrode having a pointed shape such that the electrode extends distally of the open distal end of the metal tube to define a distal tip of the medical device having a pointed shape. In typical embodiments, an outer diameter of the medical device at the marker location is substantially equal to the outer diameter of the medical device adjacent to the marker location.


Typical embodiments of the first broad aspect comprise a layer of insulation which covers the metal tube to distal of the side port and leaves a distal portion of the metal tube exposed, and the distal end of the elongated member comprising a functional tip which includes the imaging marker and the electrode, wherein the imaging marker is comprised of electrically conductive metal attached to the distal portion of the metal tube, and the electrode is comprised of the portion of the functional tip which extends beyond the layer of insulation. In some such embodiments, the imaging marker is comprised of metal which is more radiopaque than the metal tube. In some embodiments, the imaging marker is substantially comprised of a radiopaque material.


In some embodiments of the first broad aspect, the medical device further comprises a layer of insulation covering at least some of the elongated member and slightly overlapping a perimeter of the side port to thereby prevent the metal tube from contacting a surrounding tissue while not covering a center of the side port to define an overlap which does not contact the metal tube. In some such embodiments, the side port is longitudinally elongated to provide for increased fluid flow.


In some embodiments of the first broad aspect, the imaging marker is an echogenic marker. In some embodiments, the imaging marker is a marker visible under magnetic resonance imaging. Some embodiments comprise the imaging marker being a radiopaque marker comprising a radiopaque material selected from the group consisting of platinum, iridium, gold, palladium, tungsten, and alloys thereof. In some embodiments having a radiopaque marker, the radiopaque material is comprised of about 90% platinum and about 10% iridium. In some embodiments having a radiopaque marker, the radiopaque material is comprised of about 92% platinum and about 8% tungsten.


Some embodiments of the first broad aspect include a layer of electrical insulation along an outer surface of the metal tube. In some examples, the metal tube is comprised of a proximal metal tube and a distal metal end member in electrical communication with the proximal metal tube. Examples having a proximal metal tube and a distal metal end member typically include a layer of insulation covering at least some of the proximal metal tube and some of the distal metal end member, leaving a distal portion of the distal metal end member exposed to define at least a part of the electrode. In some such examples, the distal metal end member defines the open distal end of the metal tube and where the distal metal end member includes a functional tip which includes the electrode and the imaging marker, wherein the imaging marker is comprised of electrically conductive metal attached to a distal portion of the distal metal end member, and the electrode is comprised of the portion of the functional tip which extends beyond the layer of insulation. Some such examples include the layer of insulation which covers the metal tube extending beyond the metal tube to cover a portion of the functional tip which is proximal of the electrode.


In some embodiments of the first broad aspect, the elongated member comprises a plastic tube and in others the elongated member comprises a metal tube. The elongated member can alternatively be a round tube, a coil, a braid or a conduit that is not round. Embodiments having a metal tube can further comprise the imaging marker being attached to the metal tube by welding, and further that the functional tip is formed by fusion welding of a distal end of the metal tube and a radiopaque filler or other radiopaque material with the functional tip possibly having at least a dome or hemispherical-shaped portion and that the functional tip blocks the distal end of the lumen.


In a second broad aspect, embodiments of the present invention include a method of creating a channel or perforation at a target location in a body of a patient, using a medical device comprising an elongated member and a functional tip associated with the elongated member and located about a distal end of the elongated member, at least a portion of the functional tip being visible using a medical imaging modality, the method comprising the steps of: a) visualizing the functional tip as the medical device is advanced through the patient's body to guide the functional tip to the target location; c) positioning the functional tip at the target location; and d) delivering electrical energy through an electrode of the functional tip to create the channel or perforation.


Some embodiments of the method of creating a channel or perforation at a target location in a body of a patient comprise the steps of: a) introducing a medical device comprising an elongated member, and a functional tip associated with and located at/about a distal end of the elongated member, into the vasculature of the patient, b) advancing the medical device through the vasculature using the functional tip as a radiopaque marker for imaging of the distal end whereby the distal end can be steered, c) positioning the functional tip to the target location, and d) delivering electrical energy through an electrode of the functional tip electrode to create the channel.


In some embodiments of the second broad aspect, the elongated member defines a lumen and the medical device has at least one opening from the lumen to the environment outside of the elongated member and the method further comprises the step of fluid flowing through the opening. In some embodiments, a distal end of the lumen is closed and the elongated member has at least one lateral aperture (side port) from the lumen to the environment outside of the elongated member, and the method further comprises the step of fluid flowing through the sideport. Fluids, such as fluids visible under imaging, can be delivered or withdrawn.


In some embodiments of the second broad aspect, step b) further comprises advancing the elongated member through the vasculature without substantial coring of tissue. In some embodiments, step d) further comprises creating the channel without substantial coring of tissue.


In some embodiments of the second broad aspect, the functional tip has a diameter that is less than or equal to an outer diameter of the elongated member (the shaft of the device) to thereby ease or facilitate the advancement of the elongated member through vasculature i.e. the functional tip does not increase the outer diameter of the device, which would make advancement more difficult.


Optionally, in some embodiments, the energy that is delivered in step d) is radio frequency electrical energy.


In some embodiments of the second aspect of the invention, the elongated member defines a lumen and the medical device has at least one opening from the lumen to an environment outside of the elongated member, and the method further comprises the step of using fluid to sense pressure. In some such embodiments, the fluid comprises a liquid. In alternative embodiments, the fluid comprises a gas. In other alternative, the fluid comprises particles of solid that can flow, possibly echogenic marker beads.


In alternative embodiments of the medical device, an imaging marker can be echogenic, magnetic (i.e. a marker visible using magnetic resonance imaging) or some other type of imaging marker. Consequently, while some of the embodiments of this disclosure are described as having radiopaque markers, said radiopaque markers can have replaced by or supplemented by said echogenic markers, magnetic (i.e. a marker visible using magnetic resonance imaging) markers or other types of markers to result in alternative embodiments. Furthermore, while the end of the functional tip is shown as being dome-shaped in some of the figures, it can be other shapes, including, but not limited to, pointed or knife-like.


With specific reference now to the drawings, it is stressed that the particulars shown are by way of example and for purposes of illustrative discussion of certain embodiments of the present invention only. Before explaining embodiments of the invention in detail, it is to be understood that the invention is not limited in its application to the details of construction and the arrangement of the components set forth in the following description or illustrated in the drawings. The invention is capable of other embodiments or of being practiced or carried out in various ways. Also, it is to be understood that the phraseology and terminology employed herein is for the purpose of description and should not be regarded as limiting.


For the purposes of this description, proximal indicates next to or nearer to the user, and distal indicates further away from the user. In addition, alternative terminology has been used throughout the specification and is generally indicated by the use of regular brackets such as ( ). Furthermore, although several embodiments are described in conjunction with metal, metallic tubes, etc., it should be noted that other materials exhibiting similar material characteristics, such as electrical conductivity, are included as well.


One possible general embodiment of a device 20 is shown in FIG. 1. It comprises a handle 1, a shaft or elongated member 2, and a distal portion 4 of elongated member 2. A functional tip that has an electrode 3 is associated with the distal tip of distal portion 4. Electrode 3 is operable to deliver energy. The embodiment of FIG. 1 has an electrode 3 that is dome-shaped, while alternative embodiments may have an electrode 3 that has a different shape, for example (but not limited to), pointed or knife-like. The internal details of elongated member 2 of FIG. 1 may vary. An example of elongated member 2 of FIG. 1 may include a plastic shaft that contains a wire connected to distal electrode 3, while an alternative example of elongated member 2 of FIG. 1 may include an electrically conductive metal tube covered with electrical insulation. In other alternative embodiments, elongated member 2 may comprise of a coil, braid or a conduit that is not round. The part of the device that is normally inserted into a patient (the usable part of the device) generally includes (but is not limited to) elongated member 2 and the functional tip. The embodiments of the disclosure include a lumen inside elongated member 2 for fluid flow such that fluid can be delivered or removed through the lumen (or conduit), or used for pressure sensing. The fluid may be gas, liquid, or particles of solid that can flow. Echogenic marker beads are an example of particles of solid that may flow. The distal tip electrode is an optional feature of the invention and is not found in some alternative embodiments.


Making reference to FIG. 5, a possible embodiment of the invention includes elongated member 2 being comprised of metal tube 8 which is in electrical communication with metal end member 10. Insulating layer 5, which may be PTFE (polytetrafluoroethylene), covers metal tube 8 and some of end member 10, leaving a distal portion of metal end member 10 exposed to define an electrode 3. Metal tube 8 and metal end member 10 can be comprised of, but are not limited to, stainless steel. The distal end of end member 10 includes a functional tip 15 that includes the aforementioned electrode 3 and a radiopaque marker 6. A possible method to produce functional tip 15 includes inserting radiopaque filler (or other radiopaque material) inside the distal end of end member 10 and then fusion welding said distal end to close off lumen 9 at the end of end member 10. The radiopaque filler can possibly comprise platinum, iridium, gold palladium, tungsten, or other radiopaque metal or alloys thereof, such as for example an alloy of about 90% platinum and about 10% iridium or an alloy of about 92% platinum and about 8% tungsten. The portion of functional tip 15 extending beyond insulating layer 5 functions as electrode 3. The radiopaque part of the fusion welded material forms radiopaque marker 6. Depending on how far distally insulating layer 5 extends along distal portion 4, part, all, or none of radiopaque marker 6 can be covered by the insulating layer. Consequently, electrode 3 can possibly contain part, all, or none of radiopaque marker 6. The configuration of the metals in the fusion weld can vary depending on a number of factors related to the welding process, some (but not all) of the factors including: the amount and type of radiopaque filler used in making the weld, the thickness and type of metal of end member 10, the period of time that energy is applied to the materials, and the energy level.


This embodiment also includes lumen 9 and lateral aperture (side port opening) 7 for movement of fluid between the lumen and the environment outside of the device. Lumen 9 is blocked (or closed) at the distal end of end member 10 by functional tip 15. Opening 7 is closer to the proximal end of elongated member 2 than is functional tip 15, whereby functional tip 15 does not obstruct fluid flowing through opening 7. Electricity may be delivered through metal tube 8 and end member 10 to electrode 3.


The embodiment of FIG. 5 is an example of an embodiment of the invention having an imaging marker that is more distal than the opening (exit port) through which fluid may exit or enter the lumen of the device. Other examples of embodiments having this feature can be found in FIGS. 2a to 2d. In FIG. 2a, the direction of a possible fluid flow in lumen 9 is indicated by flow arrow f. An imaging marker 6 is attached (coupled) inside of elongated member 2 distal of openings (side ports) 7. The distal end of lumen 9 (not shown) is closed by any of various possible means. Imaging marker 6 can be different shapes including, but not limited to, a ring-shaped hollow band or a coil. Elongated member 2 may be comprised of plastic, other polymers, metal, or other materials.



FIG. 2b is a diagrammatic side view showing a functional tip 15 that includes an imaging marker 6, attached (coupled) to the end of distal portion 4 of elongated member 2, thereby blocking or closing lumen 9. The embodiment illustrated in FIG. 2b may have the shaft of distal portion 4 comprised of one or more layers/components of plastic, other polymers, metal, or other materials. Imaging marker 6 can possibly be radiopaque, echogenic, magnetic (i.e. a marker visible using magnetic resonance imaging) or a marker of another type. Marker 6 is distal of openings 7, whereby fluid can exit out of openings 7 without being obstructed by marker 6. Embodiments of FIGS. 2a and 2b having a metal shaft would typically have an insulating layer 5 (not shown) thereupon in a medical device 20.



FIG. 2c shows an embodiment with distal portion 4 comprised of a plastic tube. Functional tip 15 closes lumen 9 at the end of distal portion 4. Insulated conducting wire 11 is connected to functional tip 15 whereby energy can be delivered to electrode 3. Functional tip 15 (which includes marker 6) can be attached to the shaft of distal portion 4 using a number of methods, for example, including but not limited to, gluing or engaging mating threads. Lumen 9 can also contain wires for different purposes e.g. fiber optic wires or wires used for pressure sensing.



FIG. 2d illustrates an embodiment having distal portion 4 comprising a metal tube and insulating layer 5. Lumen 9 is closed off by a fusion welded functional tip 15 that comprises an end marker 6. Marker 6 is distal of lateral aperture (side port opening) 7. The fusion weld of this embodiment has an alternative weld shape to that of the embodiment of FIG. 5.


Several views of an additional embodiment similar to that of FIG. 2d are shown in FIGS. 10a-10d. The views illustrate electrode 3 and marker 6 of a functional tip 15, aperture 7, lumen 9, and insulating layer 5.


Another embodiment similar to that of FIG. 2d is illustrated in FIGS. 11a-11g, which includes elongated member 2, electrode 3, insulating layer 5, aperture 7, metal tube 12, and functional tip 15. The break lines and the broken lines are included in these figures to indicate the device has an indeterminate length. FIGS. 11a and 11b illustrate that in this embodiment insulating layer 5 slightly overlaps metal tube 12 around lateral aperture 7 (side port 7). Having insulating layer 5 overlap metal tube 12 avoids exposure of metal at aperture 7 and thereby prevents the electrically conductive metal from contacting surrounding tissue. The overlap also reduces current leakage through aperture 7. FIG. 7 illustrates the lateral aperture 7 being longitudinally elongated to provide for increased fluid flow in comparison to a round aperture having a diameter similar to the height (i.e. short dimension) of elongated lateral aperture 7.


The embodiments found in FIGS. 3a to 3i are examples of embodiments of the invention in which an imaging marking is embedded into a wall of an elongated member. FIG. 3a is an example of an embodiment in which a marker 6 is embedded in the inside surface of the wall of elongated member 2 whereby fluid can flow through lumen 9 without being obstructed and the outer diameter of elongated member 2 is not increased. Marker 6 can be embedded in the inside wall using different techniques, such as overmoulding. FIG. 3b is an example of an embodiment in which a marker 6 is embedded in the outside wall of elongated member 2 whereby fluid can flow through lumen 9 without being obstructed and the outer diameter of elongated member 2 is not increased. Imaging marker 6 can be different shapes including, but not limited to, a ring-shaped hollow band or a coil. Alternative embodiments include imaging markers that are disc-shaped, rectangular, and elongate, that define other geometric shapes, or that define symbols.


For the embodiments of FIGS. 3a and 3b, elongated member 2 can be comprised of one or more layers/components of plastic, other polymers, metal, or other materials. The marker is embedded in a wall which can be either all metal or substantially (mostly) metal. For example, for the marker receiving wall can be covered with a relatively thin layer of polymer, such as the receiving wall of FIG. 3b being covered with a layer of electrical insulation. As all metals are radiopaque to some degree, a radiopaque marker should be more radiopaque than the metal tube to function properly. In general, for any embodiment of the device having a radiopaque marker, the radiopaque marker may be comprised of a material that is more radiopaque than whatever material of elongated member 2 is comprised of. In FIGS. 3a and 3b, the distal end of lumen 9 is open. Embodiments of FIGS. 3a and 3b having a metal shaft can optionally have an insulating layer 5 (not shown).



FIG. 3j is an example of an embodiment which is similar to FIG. 3b in that it also includes a marker 6 that is embedded in the outside wall of elongated member 2 whereby fluid can flow through lumen 9 without being obstructed. In the case of the embodiment of FIG. 3j, marker 6 is inside of groove (or channel) 25. As channel 25 has more space than is needed for marker 6, filler 26 is used to occupy the extra space and to possibly provide a constant outer diameter. Groove (or channel) 25 is cut into elongated member 2 such that when marker 6 is seated therein, filler 26 can smooth out the profile of the outer diameter. The filler may be a polymer that is suitable for filling in spaces or gaps.


One method of making the embodiment of FIG. 3j, wherein elongated member 2 is a substrate tubing, comprises: 1) Selectively reducing the outer surface the wall of the substrate tubing (e.g. HDPE—High-density polyethylene) using a process such as centerless grinding to thereby define a groove (or channel) 25; 2) loading the substrate tubing onto a metal mandrel to maintain the lumen and to provide support; 3) swaging a thin walled Pt (platinum) band marker 6 onto the substrate tubing and into channel 25; 4) installing filler 26 material (e.g. Tecoflex®) by reflowing it into the remaining space of groove (or channel) 25 (optionally using a heatshrink to install filler 26); and 5) removing the assembly from the mandrel and removing heatshrink, if it has been used. The heatshrink may aid in providing that device outer dimension at the maker location is the same as the device outer dimension adjacent the marker.


Alternatively, other materials could be used in the embodiment of FIG. 3j. For example, elongated member 2 could be comprised of a metal and band marker 6 comprised of a radiopaque polymer material that can be stretched and installed in groove (or channel) 25.



FIGS. 3c and 3d show embodiments in which a marker 6 is embedded in a metal tube 12 having a closed end. The elongated member also comprises insulating layer 5. FIG. 3c shows a metal tube 12 comprising a tube sidewall and distal end enclosure that are continuous (i.e. that are not separate components) and that have a substantially constant thickness, for example, a hypotube. FIG. 3d illustrates a metal tube 12 closed by a fusion weld. For both of FIGS. 3c and 3d, embedded internal marker 6 does not obstruct fluid flow through opening (side port) 7. The embodiment of FIG. 3d has both an internal lumen marker 6 and an end marker 6.



FIGS. 3e and 3f show embodiments that are similar to the corresponding embodiments of FIGS. 3a and 3b, with difference being that the FIGS. 3e and 3f embodiments have embedded marker 6 located at the distal end of shaft or elongated member 2.



FIG. 3g comprises an internal marker 6 that is not fixedly attached to the surface of the wall defining lumen 9, but instead is capable of limited movement relative to the wall. Marker 6 is contained, in part at least, by a groove (or channel) 25 in the inner surface of the wall of elongated member 2. Marker 6 can be moved a limited distance within groove 25 by a fluid passing through lumen 9. For this embodiment, marker 6 can be referred to as a captive element marker as it is restrained by groove 25 from being carried away by a flowing fluid. Similar to previous embodiments, elongated member 2 can comprise different layers and components, for example, comprising metal covered by insulation.



FIG. 3h discloses an embodiment similar to that of FIG. 3e with the addition of end piece 21. End piece 21 can retain marker 6 in place and/or marker 6 can be held in place by alternative means such as, for example, welding or adhesion. End piece 21 can also have additional/alternative functions such as, for example, providing a smooth end surface.



FIG. 3i discloses an embodiment with the addition of elongated member second component 22. Second component 22 may interlock with a first component of elongated member 2 and retain marker 6 in place and/or marker 6 may be held in place by alternative means such as, for example, welding or adhesion. In some embodiments, second component 22 may be an extension to a relatively larger first part of elongated member 2. In other embodiments second component 22 may be a second part of an elongated member 2 that has a first component or part that is similar in size to (or possibly smaller than) second component 22.


Alternative embodiments of FIGS. 3a to 3i can comprise other types of imaging markers, for example echogenic or magnetic (i.e. a marker visible using magnetic resonance imaging), in addition to or instead of radiopaque markers, for use with the appropriate type of imaging systems and modalities.


The embodiments found in FIGS. 4a to 4e are examples of embodiments of the invention in which an imaging marker is attached (coupled) to the inner surface of a wall (which can be a metallic tube) of the elongated member, while minimally affecting or obstructing fluid flow within lumen 9. Elongated member 2, including distal portion 4, can be comprised of one or more layers/components of plastic, other polymers, metal, or other materials. Embodiments having a metal shaft may have an insulating layer 5. FIG. 4a is an example of an embodiment in which a ring-shaped band marker 6 is coupled to the inside wall of elongated member 2 whereby fluid can flow through lumen 9 and the outer diameter of elongated member is not increased. The lumen diameter is decreased for only the relatively short length of the lumen containing band marker 6. Rounded edges 13 of the marker can reduce flow turbulence to thereby minimize obstruction of fluid flow. In alternative embodiments, marker 6 can be a coil. The distal end of lumen 9 is open for the embodiments of FIGS. 4a and 4b. For illustrative purposes, the marker is shown as being thicker (relative to elongated member) in the figures than is needed in actual embodiments.


The embodiment of FIG. 4a can be contrasted with adding a marker to the outer surface of a shaft. To maintain the same outer device diameter at the marker's attachment location when a marker is added the outer surface of a shaft, it is necessary to reduce the outer diameter size of the shaft to compensate for the thickness of the marker, which results in a reduced lumen diameter that will impede fluid flow. A hypothetical example can illustrate this point. If a hypothetical shaft has an outer diameter of 10 units and a wall thickness of 1 unit, it would have a lumen diameter of 8 units. If a marker band of 1 unit thickness is attached externally (without bending or crimping of the shaft), maintaining the same total outer diameter of 10 units (for allowing the device to be advanced through particular passages such as body vessels) requires reducing the shaft outer diameter to 8 units and the lumen diameter to 6 units for the length of the shaft (utilizing common manufacturing practices), which would significantly reduce the amount of fluid that can flow through the lumen at a given pressure. Advantageously, installing a marker band of 1 unit thickness within the lumen of the shaft as per embodiments such as described hereinabove, results in a reduction of the lumen diameter to 6 units but only for the length of the marker band (i.e., a relatively short distance), which has a far lesser effect on the volume of fluid flow at a given pressure relative to decreasing the lumen diameter for the entire length of the shaft.



FIG. 4b is an example of an embodiment in which the marker is comprised of a material deposited on the inner wall surface of elongated member 2 by a method such as spray deposition to form deposited layer marker 14. Similar to the embodiment of FIG. 4a, deposited layer marker 14 allows fluid to flow through lumen 9 without significant obstruction while not increasing the outer diameter of elongated member 2. Other methods of depositing a material inside of a lumen include electroplating and sputter deposition (a physical vapor deposition method) of radiopaque material on an interior surface (that defines a lumen) to produce internal band markers or surfaces.


The embodiment of FIG. 4c shows a marker 6 coupled to the inside wall of metal tube 12 that has a closed end. Fluid can flow through lumen 9 and out openings (exit ports) 7 without significant obstruction from the marker and the outer diameter of the elongated member 2 is not increased.



FIG. 4d shows a marker 6 attached to the inner wall of distal portion 4 and a functional tip 15 that closes (or blocks) lumen 9 at the end of distal portion 4. Fluid can flow through lumen 9 and out of openings 7 without significant obstruction and the outer diameter of elongated member 2 is not increased. Functional tip 15 of the embodiment of FIG. 4d may or may not include a marker. Any of the embodiments of FIGS. 4a to 4e can be modified to have the markers 6 or 14 partially embedded into the wall of the device while leaving some of the marker not embedded.



FIG. 4e discloses an embodiment with a marker 6 comprising a plurality of crossing elements located within the lumen of the device. While the embodiment of FIG. 4e illustrates marker 6 as being a grate, in alternative embodiments, marker 6 can comprise a screen, a cross-shaped marker (i.e. two intercepting linear elements), an asterisk-shaped marker, or other configurations having a plurality of crossing elements. The crossing elements allow for the flow of fluid through the lumen while being visible under imaging as distinct from the rest of medical device 20. For this embodiment, marker 6 can either be attached to or at least partially embedded in the surface of the inner wall of elongated member 2.



FIG. 4f shows a device comprising an internal marker 6 that is not fixedly attached to the surface of the wall defining lumen 9, but instead is capable of limited movement relative to the wall. Marker 6 is restrained by a pair of internal retainers 24 attached the inner surface of the wall of elongated member 2. Marker 6 can be moved a limited distance between the internal retainers 24 by a fluid passing through lumen 9. While internal retainers 24 are shown in FIG. 4f as being separate parts that are attached to the surface of the wall, in alternative embodiments internal retainers 24 can be formed integrally with the wall and project therefrom.



FIGS. 6a and 6b illustrate the positioning of a marker 6 within a lumen 9 and joint(s) 19 that fixes marker 6 into place within the lumen of tubular component 16. Various means can be used to fix marker 6 into place, including:

  • welding by heating the external surface of tubular component 16,
  • glue or epoxy,
  • mechanical deformation (crimping) of the external surface over of tubular component 16, or near the band,
  • internal welding (with a very small welder, or fiber-optic laser weld system),
  • interference fit (forcing an oversized ring-shaped band marker 6 into place),
  • shrinkage fit (by expanding the external tube (tubular component 16) by heat, and shrinking the internal band marker 6 by cooling, sliding the band marker into place, and allowing the external tube to cool while the internal band marker warms up),
  • external/internal magnets with compatible materials, and
  • by threading the inner diameter of a tube and the outer diameter of an internal component (parallel with the tube axis) and then engaging.



FIGS. 7 and 8 illustrate a fusion-welding process for making the end markers of some embodiments. FIG. 7 shows the basic components prior to welding. FIGS. 7a and 7b show side and end views of an embodiment using a hollow marker 17 as filler at the end of the lumen of a tubular component 16. FIGS. 7c and 7d show side and end views of another embodiment using a solid marker 18 as filler at the end of the lumen of another tubular component 16. The material of the filler should be more radiopaque than the material of an associated tubular component 16 if it is to be used to form a radiopaque marker. FIG. 8 shows the devices following welding, with FIGS. 8a and 8b showing side and end views of a functional tip 15 having a fusion weld formed from hollow marker 17 and the end of tubular component 16 of FIG. 7a. FIGS. 8c and 8d show side and end views of a functional tip 15 having a fusion weld formed from solid marker 18 and the end of the tubular component 16 of FIG. 7c. A laser may be used to provide the energy to create the dome shaped functional tip 15. The configuration of the final fusion weld can vary depending on a number of welding factors, some of the factors including: the amount and type of radiopaque filler, the thickness and type of metal of tubular component 16, welding time, and energy intensity.


The configuration of the basic components as illustrated in FIGS. 6 to 8 should not be taken as limiting the embodiments of the invention as other configurations are possible. For example, it is possible that an embodiment can have a pointed tip that is either sharpened or dulled, or a knife-shaped tip or that an embodiment can have an internal hollow marker located at the distal end of a lumen, or that the end is not welded shut.


Some possible options for the above described fusion welding process include tubular component 16 being made with different materials (plastics, metals, etc.), as can the filler. Before welding, the filler can have different shapes and does not have to closely fit the inner diameter of tubular component 16. The filler can comprise a single piece or part, or a plurality of pieces or parts, including particles as small as powder.


The medical device of the disclosure may be used with a source of radiofrequency (RF) energy for creating a channel at a target location in a body of a patient. One such embodiment comprises the steps of: a) introducing a medical device 20 having an elongated member 2 and a distal end functional tip 15 into the vasculature of a patient, b) advancing elongated member 2 through the vasculature using radiopaque marker 6 of functional tip 15 for imaging whereby functional tip 15 (which has an electrode 3) can be steered, c) positioning electrode 3 of functional tip 15 (which is operable to deliver energy) at the target location, and d) delivering electrical energy through electrode 3 to create the channel.


An opening (aperture) 7 can be used to deliver fluid from a lumen 9 of elongated member 2 to the target location. In some embodiments, having the distal end of lumen 9 closed by functional tip 15 and having an opening 7 that is a side port (such as in FIG. 5) helps to prevent coring of tissue. This embodiment includes functional tip 15 having a diameter that is less than the outer diameter of the elongated member to ease or facilitate the advancement of the elongated member through vasculature i.e. the functional tip does not increase the outer diameter of the device which would make advancement more difficult. Optionally, the energy that is delivered to the target location can be radio frequency electrical energy. In alternative embodiments, functional tip 15 may have a portion of it visible under alternative medical imaging modalities, for example, ultrasound or magnetic resonance.


In one specific embodiment of a method of using the disclosed medical device, for example as illustrated in FIGS. 9A and 9B, the target site may comprise a tissue within the heart of a patient, for example the atrial septum of the heart. In such an embodiment, the target site may be accessed via the inferior vena cava (IVC), for example through the femoral vein, with said access being facilitated by imaging of marker 6 of functional tip 15 during advancement of medical device 20 (or radiofrequency perforation apparatus 20). This embodiment includes providing a medical device 20 comprising a functional tip 15 that is visible under imaging so as to be visibly distinct from the rest of the medical device.


In one such embodiment, an intended user introduces a guidewire into a femoral vein, typically the right femoral vein, and advances it towards the heart. A guiding sheath 30, for example a sheath as described in U.S. patent application Ser. No. 10/666,288 (filed on Sep. 10, 2003), incorporated herein by reference in its entirety, is then introduced into the femoral vein over the guidewire, and advanced towards the heart. The distal ends of the guidewire and sheath 30 are then positioned in the superior vena cava. These steps may be performed with the aid of an imaging system appropriate for marker 6. When the sheath 30 is in position, a dilator 28, for example the TorFlex™ Transseptal Dilator of Baylis Medical Company Inc. (Montreal, Canada), or the dilator as described in U.S. patent application Ser. No. 11/727,382 (filed on Mar. 26, 2007), incorporated herein by reference in its entirety, is introduced into the sheath 30 and over the guidewire, and advanced through the sheath into the superior vena cava. The sheath 30 may aid in preventing the dilator 28 from damaging or puncturing vessel walls, for example, in embodiments comprising a substantially stiff dilator. Alternatively, the dilator 28 may be fully inserted into the sheath 30 prior to entering the body, and both may be advanced simultaneously towards the heart. When the guidewire, sheath 30, and dilator 28 have been positioned in the superior vena cava, the guidewire is removed from the body, and the sheath and dilator are retracted slightly, such that they enter the right atrium of the heart. An electrosurgical device, for example radiofrequency perforation apparatus 20 described hereinabove, is then introduced into the lumen of the dilator, and advanced toward the heart.


In this embodiment, after inserting the electrosurgical device into a dilator 28, the user may position the distal end of the dilator against the atrial septum 32. The electrosurgical device is then positioned using imaging of a marker 6 of functional tip 15 such that electrode 3 is aligned with or protruding slightly from the distal end of the dilator 28 but not pulled back inside of the dilator. The dilator 28 and medical device 20 are dragged along the atrial septum 32 and positioned, for example against the fossa ovalis of the atrial septum using imaging of a marker 6 of functional tip 15. A variety of additional steps may be performed, such as measuring one or more properties of the target site, for example an electrogram or ECG (electrocardiogram) tracing and/or a pressure measurement, or delivering material to the target site, for example delivering a contrast agent through aperture(s) 7 and/or an open distal end. Such steps may facilitate the localization of the electrode 3 at the desired target site. In addition, tactile feedback provided by medical device 20 (radiofrequency perforation apparatus 20) is usable to facilitate positioning of the electrode 3 at the desired target site. The practitioner can visually monitor the position of functional tip 15 as it is advanced upwards into the heart and as it is dragged along the surface of the atrial septum 32 and positioned in the groove of the fossa ovalis.


With the electrosurgical device and the dilator positioned at the target site, energy is delivered from the energy source, through medical device 20 (radiofrequency perforation apparatus 20), to the target site. For example, if the radiofrequency perforation apparatus 20 is used, energy is delivered through the elongated member 2, to the electrode 3, and into the tissue at the target site. In some embodiments, the energy is delivered at a power of at least about 5 W at a voltage of at least about 75 V (peak-to-peak), and functions to vaporize cells in the vicinity of the electrode, thereby creating a void or perforation through the tissue at the target site. If the heart was approached via the inferior vena cava, as described hereinabove, the user applies force in the substantially cranial direction to the handle 1 of the electrosurgical device as energy is being delivered. The force is then transmitted from the handle to the distal portion 4 of the radiofrequency perforation apparatus 20, such that the distal portion 4 advances at least partially through the perforation. In these embodiments, when the distal portion 4 has passed through the target tissue, that is, when it has reached the left atrium, energy delivery is stopped. In some embodiments, the step of delivering energy occurs over a period of between about 1 s and about 5 s.


Some embodiments of methods of using the disclosed medical device comprise using a medical device 20 with a functional tip 15 that can be seen inside a substantially radiopaque dilator. Functional tip 15 includes a tip marker 6 with sufficient radiopacity that it can be seen under fluoroscopy. Medical device 20 may be used with a radiopaque dilator that can also be seen under fluoroscopy but that allows tip marker 6 to be seen within it. Substantially most, or all, of the dilator can be radiopaque, or just a distal portion of it. The use of tip maker 6 with such a compatible dilator can allow a physician to position functional tip 15 relative to the end of the dilator. For example, a physician could ensure that the tip of medical device 20 only protrudes out of the dilator 28 at the desired point in time. When performing a transseptal procedure using fluoroscopy, the radiopaque dilator can be positioned against the septum prior to crossing and the physician can maintain the tip of medical device within the dilatator. Since functional tip 15 can be seen inside of the dilator 28, it can be positioned just inside of the dilator tip immediately prior to attempting the transseptal crossing. It is only when the physician chooses to attempt to the crossing that an electrode 3 of a radiofrequency perforation apparatus 20 need be extended from the dilator. The physician can avoid having functional tip 15 accidentally extend beyond the end of the dilator before it is necessary.


It is also possible that the radiopaque-tipped radiofrequency perforation apparatus 20 and dilator 28 could be used with a catheter with a radiopaque marker at its tip to increase visibility and offer greater control to the physician.


As described herein above, medical devices are disclosed having improved visualization of a portion of the medical device insertable into a patient's body while minimizing obstruction of fluid flow through a lumen of the device and while minimizing an increase in the outer diameter of the device attributable to the feature providing improved visualization. The device can include, for example, an imaging marker distal to lumen openings (exit ports), or, where the device comprises a tube, such as a metallic tube, an imaging marker embedded into a wall of the tube. An alternative embodiment includes attaching a marker to the surface on the inside of a lumen of a medical device without substantially embedding the marker. Various alternative embodiments, methods and applications of using such devices are disclosed as well.


Additional details regarding the device and method not mentioned herein may be found in U.S. application Ser. No. 11/905,447, filed Oct. 1, 2007, U.S. application Ser. No. 13/113,326, filed May 23, 2007 U.S. application Ser. No. 11/265,304, filed Nov. 3, 2005 (now U.S. Pat. No. 7,947,040), U.S. application Ser. No. 10/666,301, filed Sep. 19, 2003 (now issued as U.S. Pat. No. 7,048,733), U.S. application Ser. No. 10/760,479, filed Jan. 21, 2004 (now issued as U.S. Pat. No. 7,270,662), U.S. application Ser. No. 10/666,288, filed Sep. 19, 2003, U.S. application Ser. No. 10/347,366, filed Jan. 21, 2003 (now issued as U.S. Pat. No. 7,112,197), U.S. provisional application Ser. No. 60/522,753, filed Nov. 3, 2004, and provisional applications Ser. No. 60/884,285, filed Jan. 10, 2007 and 60/827,452, filed Sep. 29, 2006. The contents of all above-named applications and patents are incorporated herein by reference in their entirety.


The embodiments of the invention described above are intended to be exemplary only. The scope of the invention is therefore intended to be limited solely by the scope of the appended claims.


It is appreciated that certain features of the invention, which are, for clarity, described in the context of separate embodiments, may also be provided in combination in a single embodiment. Conversely, various features of the invention, which are, for brevity, described in the context of a single embodiment, may also be provided separately or in any suitable subcombination.


Although the invention has been described in conjunction with specific embodiments thereof, it is evident that many alternatives, modifications and variations will be apparent to those skilled in the art. Accordingly, it is intended to embrace all such alternatives, modifications and variations that fall within the broad scope of the appended claims. All publications, patents and patent applications mentioned in this specification are herein incorporated in their entirety by reference into the specification, to the same extent as if each individual publication, patent or patent application was specifically and individually indicated to be incorporated herein by reference. In addition, citation or identification of any reference in this application shall not be construed as an admission that such reference is available as prior art to the present invention.

Claims
  • 1. A medical device comprising: an elongated member having a proximal end, a distal end, and a metal tube including an open distal end which is forward facing, the metal tube defining a lumen extending substantially between the proximal end and the distal end of the elongated member, and the elongated member defining a side port from the lumen to an environment outside of the elongated member;an electrode having a round shape and extending distally of the open distal end of the metal tube to define an atraumatic distal tip of the medical device, the electrode configured for delivering electrical energy, wherein the electrical energy is delivered to the electrode through the metal tube; andan imaging marker comprised of an electrically conductive metal associated with the elongated member at a marker location, the imaging marker being in electrical communication with the metal tube of the elongated member, the medical device configured such that, in use, a flow of fluid through the lumen to the side port is not substantially obstructed by the imaging marker, the imaging marker being located at the open distal end of the metal tube, wherein the imaging marker substantially occludes the lumen at the open distal end of the metal tube to prevent the flow of fluid in the lumen flowing past the marker location, and a portion of the imaging marker fills a portion of the lumen between the side port and the distal end of the elongated member and another portion of the imaging marker extends beyond the open distal end of the metal tube to outside of the lumen to define at least part of the electrode.
  • 2. The medical device of claim 1, wherein the portion of the imaging marker which fills the portion of the lumen has a cylindrical shape and a solid cross-section.
  • 3. The medical device of claim 1, wherein a first outer diameter of the medical device at the marker location is substantially equal to a second outer diameter of the medical device adjacent to the marker location.
  • 4. The medical device of claim 1, further comprising a layer of insulation which covers the metal tube to distal of the side port and leaves a distal portion of the metal tube exposed, and the distal end of the elongated member comprises a functional tip which includes the imaging marker and the electrode, wherein the imaging marker is comprised of electrically conductive metal attached to the distal portion of the metal tube, and the electrode is comprised of a portion of the functional tip which extends beyond the layer of insulation.
  • 5. The medical device of claim 4, wherein the imaging marker is comprised of metal which is more radiopaque than the metal tube.
  • 6. The medical device of claim 2, the medical device further comprising a layer of insulation covering at least some of the elongated member and slightly overlapping a perimeter of the side port to thereby prevent the metal tube contacting a surrounding tissue while not covering a center of the side port to define an overlap which does not contact the metal tube.
  • 7. The medical device of claim 6, wherein the side port is longitudinally elongated to provide for increased fluid flow.
  • 8. The medical device of claim 1 wherein the imaging marker is an echogenic marker.
  • 9. The medical device of claim 1 wherein the imaging marker is a marker visible under magnetic resonance imaging.
  • 10. The medical device of claim 1, wherein the imaging marker is a radiopaque marker comprising a radiopaque material selected from the group consisting of platinum, iridium, gold, palladium, tungsten, and alloys thereof.
  • 11. The medical device of claim 10, wherein the radiopaque material is comprised of about 90% platinum and about 10% iridium.
  • 12. The medical device of claim 10, wherein the radiopaque material is comprised of about 92% platinum and about 8% tungsten.
  • 13. The medical device of claim 1, further comprising a layer of electrical insulation along an outer surface of the metal tube.
  • 14. The medical device of claim 1, wherein the metal tube is comprised of a proximal metal tube and a distal metal end member in electrical communication with the proximal metal tube.
  • 15. The medical device of claim 14, wherein a layer of insulation covers at least some of the proximal metal tube and some of the distal metal end member, leaving a distal portion of the distal metal end member exposed to define at least a part of the electrode.
  • 16. The medical device of claim 15, wherein the distal metal end member defines the open distal end of the metal tube and wherein the distal metal end member includes a functional tip which includes the electrode and the imaging marker, wherein the imaging marker is comprised of electrically conductive metal attached to a distal portion of the distal metal end member, and the electrode is comprised of the portion of the functional tip which extends beyond the layer of insulation.
  • 17. The medical device of claim 16, wherein the layer of insulation which covers the metal tube extends beyond the metal tube to cover a portion of the functional tip which is proximal of the electrode.
  • 18. The medical device of claim 4, wherein the imaging marker is substantially comprised of a radiopaque material.
  • 19. A medical device comprising: an elongated member having a metal tube defining a lumen extending through the elongated member to an open distal end, the elongated member having a side port extending from the lumen through a wall of the elongated member; andan imaging marker including an electrically conductive metal electrically coupled to the metal tube, the imaging marker coupled to the elongated member such that a first portion of the imaging marker is located in the lumen at a location between the side port and the open distal end such that the imaging marker substantially occludes the lumen and a second portion of the imaging marker extends beyond the open distal end of the metal tube, wherein the second portionof the imaging marker functions as an electrode and has a rounded distal end to define an atraumatic distal tip.
US Referenced Citations (353)
Number Name Date Kind
175254 Oberly Mar 1876 A
827626 Gillet Jul 1906 A
848711 Daniel Apr 1907 A
1072954 Junn Sep 1913 A
1279654 Charlesworth Sep 1918 A
1918094 Geekas Jul 1933 A
1996986 Weinberg Apr 1935 A
2021989 De Master Nov 1935 A
2146636 Lipchow Feb 1939 A
3429574 Williams Feb 1969 A
3448739 Stark et al. Jun 1969 A
3575415 Fulp et al. Apr 1971 A
3595239 Petersen Jul 1971 A
4029102 Barger Jun 1977 A
4129129 Amrine Dec 1978 A
4244362 Anderson Jan 1981 A
4401124 Guess et al. Aug 1983 A
4577637 Mueller, Jr. Mar 1986 A
4639252 Kelly et al. Jan 1987 A
4641649 Walinsky et al. Feb 1987 A
4669467 Willett et al. Jun 1987 A
4682596 Bales et al. Jul 1987 A
4790311 Ruiz Dec 1988 A
4790809 Kuntz Dec 1988 A
4793350 Mar et al. Dec 1988 A
4807620 Strul et al. Feb 1989 A
4832048 Cohen May 1989 A
4840622 Hardy Jun 1989 A
4863441 Lindsay et al. Sep 1989 A
4884567 Elliott et al. Dec 1989 A
4892104 Ito et al. Jan 1990 A
4896671 Cunningham et al. Jan 1990 A
4928693 Goodin et al. May 1990 A
4936281 Stasz Jun 1990 A
4960410 Pinchuk Oct 1990 A
4977897 Hurwitz Dec 1990 A
4998933 Eggers et al. Mar 1991 A
5006119 Acker et al. Apr 1991 A
5019076 Yamanashi et al. May 1991 A
5047026 Rydell Sep 1991 A
5081997 Bosley et al. Jan 1992 A
5097843 Soukup et al. Mar 1992 A
5098431 Rydell Mar 1992 A
5112048 Kienle May 1992 A
5154724 Andrews Oct 1992 A
5201756 Horzewski et al. Apr 1993 A
5209741 Spaeth May 1993 A
5211183 Wilson May 1993 A
5221256 Mahurkar Jun 1993 A
5230349 Langberg Jul 1993 A
5281216 Klicek Jan 1994 A
5300068 Rosar et al. Apr 1994 A
5300069 Hunsberger et al. Apr 1994 A
5314418 Takano et al. May 1994 A
5318525 West et al. Jun 1994 A
5327905 Avitall Jul 1994 A
5364393 Auth et al. Nov 1994 A
5372596 Klicek et al. Dec 1994 A
5380304 Parker Jan 1995 A
5397304 Truckai Mar 1995 A
5403338 Milo Apr 1995 A
5406960 Corso, Jr. Apr 1995 A
5423809 Klicek Jun 1995 A
5425382 Golden et al. Jun 1995 A
5485667 Kleshinski Jan 1996 A
5488959 Ales Feb 1996 A
5489277 Tolkoff et al. Feb 1996 A
5490859 Mische et al. Feb 1996 A
5497774 Swartz et al. Mar 1996 A
5507751 Goode et al. Apr 1996 A
5509411 Littmann et al. Apr 1996 A
5540681 Strul et al. Jul 1996 A
5545200 West et al. Aug 1996 A
5555618 Winkler Sep 1996 A
5571088 Lennox et al. Nov 1996 A
5575766 Swartz et al. Nov 1996 A
5575772 Lennox Nov 1996 A
5599347 Hart et al. Feb 1997 A
5605162 Mirzaee et al. Feb 1997 A
5617878 Taheri Apr 1997 A
5622169 Golden et al. Apr 1997 A
5624430 Eton et al. Apr 1997 A
5640970 Arenas Jun 1997 A
5667488 Lundquist et al. Sep 1997 A
5673695 McGee et al. Oct 1997 A
5674208 Berg et al. Oct 1997 A
5683366 Eggers et al. Nov 1997 A
5720744 Eggleston et al. Feb 1998 A
5741249 Moss et al. Apr 1998 A
5766135 Terwilliger Jun 1998 A
5779688 Imran et al. Jul 1998 A
5810764 Eggers et al. Sep 1998 A
5814028 Swartz et al. Sep 1998 A
5830214 Flom et al. Nov 1998 A
5836875 Webster, Jr. Nov 1998 A
5849011 Jones et al. Dec 1998 A
5851210 Torossian Dec 1998 A
5885227 Finlayson Mar 1999 A
5888201 Stinson et al. Mar 1999 A
5893848 Negus et al. Apr 1999 A
5893885 Webster, Jr. Apr 1999 A
5904679 Clayman May 1999 A
5916210 Winston Jun 1999 A
5919188 Shearon et al. Jul 1999 A
5921957 Killion et al. Jul 1999 A
5921978 Thompson et al. Jul 1999 A
5931818 Werp et al. Aug 1999 A
5944023 Johnson et al. Aug 1999 A
5951482 Winston et al. Sep 1999 A
5957842 Littmann et al. Sep 1999 A
5964757 Ponzi Oct 1999 A
5967976 Larsen et al. Oct 1999 A
5989276 Houser et al. Nov 1999 A
6007555 Devine Dec 1999 A
6009877 Edwards Jan 2000 A
6013072 Winston et al. Jan 2000 A
6017340 Cassidy et al. Jan 2000 A
6018676 Davis et al. Jan 2000 A
6030380 Auth et al. Feb 2000 A
6032674 Eggers et al. Mar 2000 A
6048349 Winston et al. Apr 2000 A
6053870 Fulton, III Apr 2000 A
6053904 Scribner et al. Apr 2000 A
6056747 Saadat et al. May 2000 A
6063093 Winston et al. May 2000 A
6093185 Ellis et al. Jul 2000 A
6106515 Winston et al. Aug 2000 A
6106520 Laufer et al. Aug 2000 A
6117131 Taylor Sep 2000 A
6142992 Cheng et al. Nov 2000 A
6146380 Racz et al. Nov 2000 A
6155264 Ressemann et al. Dec 2000 A
6156031 Aita et al. Dec 2000 A
6171305 Sherman Jan 2001 B1
6179824 Eggers et al. Jan 2001 B1
6193676 Winston et al. Feb 2001 B1
6193715 Wrublewski et al. Feb 2001 B1
6210408 Chandrasekaran et al. Apr 2001 B1
6217575 Devore et al. Apr 2001 B1
6221061 Engelson et al. Apr 2001 B1
6228076 Winston et al. May 2001 B1
6245054 Fuimaono et al. Jun 2001 B1
6267758 Daw et al. Jul 2001 B1
6283983 Makower et al. Sep 2001 B1
6285903 Rosenthal et al. Sep 2001 B1
6292678 Hall et al. Sep 2001 B1
6293945 Parins et al. Sep 2001 B1
6296615 Brockway et al. Oct 2001 B1
6296636 Cheng et al. Oct 2001 B1
6302898 Edwards et al. Oct 2001 B1
6304769 Arenson et al. Oct 2001 B1
6315777 Comben Nov 2001 B1
6328699 Eigler et al. Dec 2001 B1
6360128 Kordis et al. Mar 2002 B2
6364877 Goble et al. Apr 2002 B1
6385472 Hall et al. May 2002 B1
6394976 Winston et al. May 2002 B1
6395002 Ellman et al. May 2002 B1
6402740 Ellis et al. Jun 2002 B1
6419674 Bowser et al. Jul 2002 B1
6428551 Hall et al. Aug 2002 B1
6450989 Dubrul Sep 2002 B2
6475214 Moaddeb Nov 2002 B1
6485485 Winston et al. Nov 2002 B1
6501992 Belden et al. Dec 2002 B1
6508754 Liprie et al. Jan 2003 B1
6520934 Lee et al. Feb 2003 B1
6524303 Garibaldi Feb 2003 B1
6530923 Dubrul Mar 2003 B1
6554827 Chandrasekaran et al. Apr 2003 B2
6562031 Chandrasekaran et al. May 2003 B2
6562049 Norlander et al. May 2003 B1
6565562 Shah et al. May 2003 B1
6607529 Jones et al. Aug 2003 B1
6632227 Edwards et al. Oct 2003 B2
6639999 Cookingham et al. Oct 2003 B1
6650923 Lesh et al. Nov 2003 B1
6651672 Roth Nov 2003 B2
6662034 Segner et al. Dec 2003 B2
6663621 Winston et al. Dec 2003 B1
6702811 Stewart et al. Mar 2004 B2
6709444 Makower Mar 2004 B1
6723052 Mills Apr 2004 B2
6733511 Hall et al. May 2004 B2
6740103 Hall et al. May 2004 B2
6752800 Winston et al. Jun 2004 B1
6755816 Ritter et al. Jun 2004 B2
6811544 Schaer Nov 2004 B2
6814733 Schwartz et al. Nov 2004 B2
6820614 Bonutti Nov 2004 B2
6832715 Eungard et al. Dec 2004 B2
6834201 Gillies et al. Dec 2004 B2
6842639 Winston et al. Jan 2005 B1
6852109 Winston et al. Feb 2005 B2
6855143 Davison et al. Feb 2005 B2
6860856 Ward et al. Mar 2005 B2
6869431 Maguire et al. Mar 2005 B2
6911026 Hall et al. Jun 2005 B1
6951554 Johansen et al. Oct 2005 B2
6951555 Suresh et al. Oct 2005 B1
6955675 Jain Oct 2005 B2
6970732 Winston et al. Nov 2005 B2
6980843 Eng et al. Dec 2005 B2
7029470 Francischelli et al. Apr 2006 B2
7056294 Khairkhahan et al. Jun 2006 B2
7083566 Tornes et al. Aug 2006 B2
7112197 Hartley et al. Sep 2006 B2
7169118 Reynolds et al. Jan 2007 B2
7277762 Belden et al. Oct 2007 B2
7335197 Sage et al. Feb 2008 B2
7618430 Scheib Nov 2009 B2
7651492 Wham Jan 2010 B2
7666203 Chanduszko et al. Feb 2010 B2
7678081 Whiting et al. Mar 2010 B2
7682360 Guerra Mar 2010 B2
7828796 Wong et al. Nov 2010 B2
7862563 Cosman Jan 2011 B1
7900928 Held et al. Mar 2011 B2
7925358 Belden et al. Apr 2011 B2
8192425 Mirza et al. Jun 2012 B2
8257323 Joseph et al. Sep 2012 B2
8388549 Paul et al. Mar 2013 B2
8500697 Kurth et al. Aug 2013 B2
10898291 Davies Jan 2021 B2
11339579 Stearns May 2022 B1
20010012934 Chandrasekaran et al. Aug 2001 A1
20010021867 Kordis et al. Sep 2001 A1
20020019644 Hastings et al. Feb 2002 A1
20020022781 McIntire et al. Feb 2002 A1
20020022836 Goble et al. Feb 2002 A1
20020035361 Houser et al. Mar 2002 A1
20020087153 Roschak et al. Jul 2002 A1
20020087156 Maguire et al. Jul 2002 A1
20020095148 Kinsella et al. Jul 2002 A1
20020111618 Stewart et al. Aug 2002 A1
20020120259 Lettice et al. Aug 2002 A1
20020123749 Jain Sep 2002 A1
20020147485 Mamo et al. Oct 2002 A1
20020169377 Khairkhahan et al. Nov 2002 A1
20020188302 Berg et al. Dec 2002 A1
20020198521 Maguire Dec 2002 A1
20030032929 McGuckin Feb 2003 A1
20030040742 Underwood et al. Feb 2003 A1
20030144658 Schwartz et al. Jul 2003 A1
20030158480 Tornes et al. Aug 2003 A1
20030163153 Scheib Aug 2003 A1
20030225392 McMichael et al. Dec 2003 A1
20040015162 McGaffigan Jan 2004 A1
20040024396 Eggers Feb 2004 A1
20040030328 Eggers et al. Feb 2004 A1
20040044350 Martin et al. Mar 2004 A1
20040073243 Sepetka et al. Apr 2004 A1
20040077948 Violante et al. Apr 2004 A1
20040101564 Rioux et al. May 2004 A1
20040116851 Johansen et al. Jun 2004 A1
20040127963 Uchida et al. Jul 2004 A1
20040133113 Krishnan Jul 2004 A1
20040133130 Ferry et al. Jul 2004 A1
20040143256 Bednarek Jul 2004 A1
20040143261 Hartley et al. Jul 2004 A1
20040143262 Visram et al. Jul 2004 A1
20040147950 Mueller et al. Jul 2004 A1
20040167436 Reynolds Aug 2004 A1
20040181213 Gondo Sep 2004 A1
20040230188 Cioanta et al. Nov 2004 A1
20050004585 Hall et al. Jan 2005 A1
20050010208 Winston et al. Jan 2005 A1
20050049628 Schweikert et al. Mar 2005 A1
20050059966 McClurken et al. Mar 2005 A1
20050065507 Hartley et al. Mar 2005 A1
20050080410 Rioux et al. Apr 2005 A1
20050085806 Auge et al. Apr 2005 A1
20050096529 Cooper et al. May 2005 A1
20050101984 Chanduszko et al. May 2005 A1
20050119556 Gillies et al. Jun 2005 A1
20050137527 Kunin Jun 2005 A1
20050149012 Penny et al. Jul 2005 A1
20050159738 Visram et al. Jul 2005 A1
20050203504 Wham et al. Sep 2005 A1
20050203507 Truckai et al. Sep 2005 A1
20050261607 Johansen et al. Nov 2005 A1
20050288631 Lewis et al. Dec 2005 A1
20060041253 Newton et al. Feb 2006 A1
20060074398 Whiting et al. Apr 2006 A1
20060079769 Whiting et al. Apr 2006 A1
20060079787 Whiting et al. Apr 2006 A1
20060079884 Manzo et al. Apr 2006 A1
20060085054 Zikorus et al. Apr 2006 A1
20060089638 Carmel et al. Apr 2006 A1
20060106375 Werneth et al. May 2006 A1
20060135962 Kick et al. Jun 2006 A1
20060142756 Davies et al. Jun 2006 A1
20060189972 Grossman Aug 2006 A1
20060241586 Wilk Oct 2006 A1
20060247672 Vidlund et al. Nov 2006 A1
20060264927 Ryan Nov 2006 A1
20060276710 Krishnan Dec 2006 A1
20070060879 Weitzner et al. Mar 2007 A1
20070066975 Wong et al. Mar 2007 A1
20070118099 Trout, III May 2007 A1
20070123964 Davies et al. May 2007 A1
20070167775 Kochavi et al. Jul 2007 A1
20070185522 Davies et al. Aug 2007 A1
20070208256 Marilla Sep 2007 A1
20070225681 House Sep 2007 A1
20070270791 Wang et al. Nov 2007 A1
20070293924 Belden et al. Dec 2007 A1
20070299461 Elliott Dec 2007 A1
20080039834 MacKay Feb 2008 A1
20080039865 Shaher et al. Feb 2008 A1
20080042360 Veikley Feb 2008 A1
20080086120 Mirza Apr 2008 A1
20080097213 Carlson et al. Apr 2008 A1
20080108902 Nita et al. May 2008 A1
20080108987 Bruszewski et al. May 2008 A1
20080146918 Magnin et al. Jun 2008 A1
20080161794 Wang et al. Jul 2008 A1
20080171934 Greenan et al. Jul 2008 A1
20080194999 Yamaha et al. Aug 2008 A1
20080208121 Youssef et al. Aug 2008 A1
20080275439 Francischelli et al. Nov 2008 A1
20090105742 Kurth et al. Apr 2009 A1
20090138009 Mswanathan et al. May 2009 A1
20090163850 Betts et al. Jun 2009 A1
20090163913 Wang Jun 2009 A1
20090177114 Chin et al. Jul 2009 A1
20090264977 Bruszewski et al. Oct 2009 A1
20100076404 Ring Mar 2010 A1
20100087789 Leeflang et al. Apr 2010 A1
20100125282 Machek et al. May 2010 A1
20100168684 Ryan Jul 2010 A1
20100179632 Bruszewski et al. Jul 2010 A1
20100191142 Paul et al. Jul 2010 A1
20100194047 Sauerwine Aug 2010 A1
20100204560 Salahieh et al. Aug 2010 A1
20110046619 Ducharme Feb 2011 A1
20110118735 Abou-Marie et al. May 2011 A1
20110152716 Chudzik et al. Jun 2011 A1
20110160592 Mitchell Jun 2011 A1
20110190763 Urban et al. Aug 2011 A1
20120029444 Anderson et al. Feb 2012 A1
20120172857 Harrison Jul 2012 A1
20120232546 Mirza et al. Sep 2012 A1
20120265055 Melsheimer et al. Oct 2012 A1
20120330156 Brown et al. Dec 2012 A1
20130184551 Paganelli et al. Jul 2013 A1
20130184735 Fischell et al. Jul 2013 A1
20130282084 Mathur et al. Oct 2013 A1
20140206987 Urbanski et al. Jul 2014 A1
20140296769 Hyde et al. Oct 2014 A1
20160220741 Garrison et al. Aug 2016 A1
20190021763 Zhou et al. Jan 2019 A1
20190247035 Gittard et al. Aug 2019 A1
Foreign Referenced Citations (17)
Number Date Country
0513836 Nov 1992 EP
S5996036 Jun 1984 JP
H0280058 Mar 1990 JP
H 10-43302 Feb 1998 JP
2004216130 Aug 2004 JP
2007-508113 Apr 2007 JP
2008508969 Mar 2008 JP
2008-194457 Aug 2008 JP
2008-529610 Aug 2008 JP
2008-245765 Oct 2008 JP
2008245765 Oct 2008 JP
2017512569 Jul 2017 JP
2008098203 Aug 2008 WO
2008098203 Aug 2008 WO
2009158060 Dec 2009 WO
2012014860 Feb 2012 WO
2012044897 Apr 2012 WO
Non-Patent Literature Citations (6)
Entry
Japanese Office Action from corresponding JPO application 2021-126774, dated Jun. 29, 2022, Japan Patent Office, 5 pages.
Japanese Office Action from corresponding JPO application 2021-126775, dated Jun. 29, 2022, Japan Patent Office, 5 pages.
Extended European Search Report from corresponding EPO Application No. 21215791.1, dated Apr. 4, 2022, European Patent Office, 8 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/IB2012/056315, dated Jul. 30, 2013, 12 pages.
Patent Cooperation Treaty, International Preliminary Report on Patentability, International Application No. PCT/IB2012/056315, dated Dec. 2, 2014.
Search Opinion for European Patent Application No. 12877833.9.
Related Publications (1)
Number Date Country
20210106400 A1 Apr 2021 US
Provisional Applications (1)
Number Date Country
61653967 May 2012 US
Continuations (1)
Number Date Country
Parent 14404518 US
Child 17130691 US