1. Field
Example embodiments generally relate to fuel structures and radioisotopes produced therein in nuclear power plants.
2. Description of Related Art
Generally, nuclear power plants include a reactor core having fuel arranged therein to produce power by nuclear fission. A common design in U.S. nuclear power plants is to arrange fuel in a plurality of fuel rods bound together as a fuel assembly, or fuel assembly, placed within the reactor core. These fuel rods typically include several elements joining the fuel rods to assembly components at various axial locations throughout the assembly.
As shown in
Example embodiments are directed to tie plate attachments having irradiation targets and fuel assemblies that use example embodiment tie plate attachments and methods of using the same to generate radioisotopes. Example embodiment tie plate attachments may include a plurality of retention bores that permit irradiation targets to be inserted and contained in the retention bores. The irradiation targets may be irradiated in an operating nuclear core including the fuel assemblies, generating useful radioisotopes that may be harvested from the spent nuclear fuel assembly by removing example embodiment tie plate attachments.
Example embodiment tie plate attachments may be connected to fuel assemblies via the upper tie plate, fuel rods, and/or channel surrounding the fuel assembly. Example embodiment tie plates may be held at a fixed axial position within fuel assemblies so as to expose irradiation targets therein to constant, lower-level neutron flux, thereby converting a substantial amount of the irradiation targets into useable radioisotopes.
Example embodiments will become more apparent by describing, in detail, the attached drawings, wherein like elements are represented by like reference numerals, which are given by way of illustration only and thus do not limit the example embodiments herein.
Detailed illustrative embodiments of example embodiments are disclosed herein. However, specific structural and functional details disclosed herein are merely representative for purposes of describing example embodiments. The example embodiments may, however, be embodied in many alternate forms and should not be construed as limited to only example embodiments set forth herein.
It will be understood that, although the terms first, second, etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another. For example, a first element could be termed a second element, and, similarly, a second element could be termed a first element, without departing from the scope of example embodiments. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.
It will be understood that when an element is referred to as being “connected,” “coupled,” “mated,” “attached,” or “fixed” to another element, it can be directly connected or coupled to the other element or intervening elements may be present. In contrast, when an element is referred to as being “directly connected” or “directly coupled” to another element, there are no intervening elements present. Other words used to describe the relationship between elements should be interpreted in a like fashion (e.g., “between” versus “directly between”, “adjacent” versus “directly adjacent”, etc.).
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of example embodiments. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the language explicitly indicates otherwise. It will be further understood that the terms “comprises,” “comprising,” “includes,” and/or “including,” when used herein, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
It should also be noted that in some alternative implementations, the functions/acts noted may occur out of the order noted in the figures. For example, two figures shown in succession may in fact be executed substantially concurrently or may sometimes be executed in the reverse order, depending upon the functionality/acts involved.
Example embodiment tie plate attachment 150 may be generally rectangular and frame full-length fuel rods 118 in fuel assembly 100. An outer perimeter of example embodiment tie plate attachment 150 may extend to about an outer perimeter of fuel assembly 100 formed by fuel rods 118 so as to form a substantially uniform axial profile within example embodiment fuel assembly 100.
Although example embodiment tie plate attachment 150 is shown as generally rectangular with a hollow center, other shapes are possible. For example, example embodiment tie plate attachments may extend along only one or two sides of example embodiment fuel assemblies instead of all four sides. Similarly, example embodiment tie plate attachments may have varied thicknesses or even extend through the entire cross-sectional profile of example embodiment fuel assemblies and have channels permitting coolant flow therethrough instead of having a hollow center. Example embodiment tie plate attachments may also have other shapes to match example embodiment fuel assemblies and tie plates therein, including hexagonal, triangular, etc. shapes.
In the example embodiment tie plate of
As shown in
As shown in
Even further, example embodiment tie plate attachment 150 may attach to outer channel 112 by being welded and/or removably fitted into outer channel 112 surrounding example embodiment fuel assembly 100. Lateral extensions (discussed below) may facilitate such contact between outer channel 112 and example embodiment tie plate attachment 150.
In example embodiment fuel assemblies, example embodiment tie plate attachments may thus be held near or attached under an upper tie plate in the axial direction. This position affords easy access to example embodiment tie plate attachments during assembly disassembly, as the example embodiment tie plate attachment may be accessed with removal of the upper tie plate alone.
As discussed above, holes 155 may penetrate entirely through example embodiment tie plate attachment 150 and permit fuel rods 118 (shown in shadow) and/or upper end plugs 120 to pass through and/or connect to example embodiment tie plate attachment 150. As such, holes 155 may be sized with an inner diameter sufficiently greater than a fuel rod 118 and/or upper end plug 120 outer diameter. The example joining method of
Example embodiment tie plate attachment 150 may include one or more lateral extensions 165 that facilitate positioning relative to and/or connection with channel 112. For example, lateral extensions 165 may connect or abut channel 112 on each side of example embodiment tie plate attachment 150 in order to center and/or secure example embodiment tie plate attachment 150 within example embodiment fuel assembly 100. Lateral extensions 165 may further match extensions and/or shape of the upper tie plate 114 in order to provide a consistent axial profile among upper tie plate 114 and example embodiment tie plate attachment 150.
Example embodiment tie plate attachment 150 includes a plurality of retaining bores 160 in its top face into which one or more irradiation targets 170 are placed and contained, as shown in
Irradiation targets 170 may be in the shape of small “seeds” or small rod shapes for insertion into retaining bores 160. Based on the size of bores 160, irradiation targets 170 may have a width and length to fit within bores 160 and may be, for example, on the scale of millimeters. Several irradiation targets 170 containing potentially different types of parent materials, including solids, liquids, and/or gasses, may be placed into a single retaining bore 160. Alternatively, each bore 160 may contain homogenous irradiation targets 170.
Irradiation targets 170 may be made of a variety of materials that substantially convert into radioisotopes when exposed to a neutron flux encountered under tie plates 114 in an operating nuclear reactor. Because neutron flux may be lower at axial ends of example embodiment fuel assembly 100 (
Retention bores 160 may be sealed or closed by a cap 161, shown in
Because of the higher axial position of example embodiment tie plate attachments, irradiation targets contained therein may be irradiated by lower amounts of neutron flux over a longer period of time, resulting in more predictable and effective generation of radioisotopes with shorter half-lives from irradiation targets having higher cross sections. Further, because upper tie plate areas, where example embodiment tie plate attachments may be placed, are associated with low fretting, example embodiment tie plate attachments may provide robust containment for irradiation targets. Lastly, upper tie plates may be easily removed from irradiated example embodiment fuel assemblies without disturbing fuel rods or irradiated fuel, permitting easier harvesting of example embodiment tie plate attachments and useful radioisotopes therein. Example embodiment tie plate attachments may further provide robust containment for retaining and containing solid, liquid, or gas radioisotopes produced from irradiation targets in example embodiment tie plate attachments.
Example embodiments thus being described, it will be appreciated by one skilled in the art that example embodiments may be varied through routine experimentation and without further inventive activity. For example, other fuel types, shapes, and configurations may be used in conjunction with example embodiment fuel assemblies and tie plate attachments. Variations are not to be regarded as departure from the spirit and scope of the exemplary embodiments, and all such modifications as would be obvious to one skilled in the art are intended to be included within the scope of the following claims.
This application is a continuation of and claims priority under 35 U.S.C. §120 to application Ser. No. 12/078,705 filed Apr. 3, 2008 now U.S. Pat. No. 7,970,095, the entirety of which is incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
3594275 | Ransohoff et al. | Jul 1971 | A |
3940318 | Arino et al. | Feb 1976 | A |
3998691 | Shikata et al. | Dec 1976 | A |
4038137 | Pugh | Jul 1977 | A |
4196047 | Mitchem et al. | Apr 1980 | A |
4284472 | Pomares et al. | Aug 1981 | A |
4462956 | Boiron et al. | Jul 1984 | A |
4475948 | Cawley et al. | Oct 1984 | A |
4493813 | Loriot et al. | Jan 1985 | A |
4532102 | Cawley | Jul 1985 | A |
4597936 | Kaae | Jul 1986 | A |
4617985 | Triggs et al. | Oct 1986 | A |
4663111 | Kim et al. | May 1987 | A |
4729903 | McGovern et al. | Mar 1988 | A |
4782231 | Svoboda et al. | Nov 1988 | A |
4859431 | Ehrhardt | Aug 1989 | A |
5053186 | Vanderheyden et al. | Oct 1991 | A |
5145636 | Vanderhevden et al. | Sep 1992 | A |
5355394 | Van Geel et al. | Oct 1994 | A |
5400375 | Suzuki et al. | Mar 1995 | A |
5513226 | Baxter et al. | Apr 1996 | A |
5596611 | Ball | Jan 1997 | A |
5615238 | Wiencek et al. | Mar 1997 | A |
5633900 | Hassal | May 1997 | A |
5682409 | Caine | Oct 1997 | A |
5758254 | Kawamura et al. | May 1998 | A |
5867546 | Hassal | Feb 1999 | A |
5871708 | Park et al. | Feb 1999 | A |
5910971 | Ponomarev-Stepnoy et al. | Jun 1999 | A |
6056929 | Hassal | May 2000 | A |
6160862 | Wiencek et al. | Dec 2000 | A |
6192095 | Sekine et al. | Feb 2001 | B1 |
6233299 | Wakabayashi | May 2001 | B1 |
6456680 | Abalin et al. | Sep 2002 | B1 |
6678344 | O'Leary et al. | Jan 2004 | B2 |
6751280 | Mirzadeh et al. | Jun 2004 | B2 |
6804319 | Mirzadeh et al. | Oct 2004 | B1 |
6895064 | Ritter | May 2005 | B2 |
6896716 | Jones, Jr. | May 2005 | B1 |
7157061 | Meikrantz et al. | Jan 2007 | B2 |
7235216 | Kiselev et al. | Jun 2007 | B2 |
7526058 | Fawcett et al. | Apr 2009 | B2 |
20020034275 | Abalin et al. | Mar 2002 | A1 |
20030012325 | Kernert et al. | Jan 2003 | A1 |
20030016775 | Jamriska, Sr. et al. | Jan 2003 | A1 |
20030103896 | Smith | Jun 2003 | A1 |
20030179844 | Filippone | Sep 2003 | A1 |
20040091421 | Aston et al. | May 2004 | A1 |
20040105520 | Carter | Jun 2004 | A1 |
20040196942 | Mirzadeh et al. | Oct 2004 | A1 |
20040196943 | Di Caprio | Oct 2004 | A1 |
20050105666 | Mirzadeh et al. | May 2005 | A1 |
20050118098 | Vincent et al. | Jun 2005 | A1 |
20060062342 | Gonzalez Lepera et al. | Mar 2006 | A1 |
20060126774 | Kim et al. | Jun 2006 | A1 |
20070133731 | Fawcett et al. | Jun 2007 | A1 |
20070133734 | Fawcett et al. | Jun 2007 | A1 |
20070297554 | Lavie et al. | Dec 2007 | A1 |
20080031811 | Ryu et al. | Feb 2008 | A1 |
20080076957 | Adelman | Mar 2008 | A1 |
Number | Date | Country |
---|---|---|
1667166 | Jun 2006 | EP |
2647945 | Dec 1990 | FR |
Entry |
---|
Decision to Grant issued in connection with RU 2009112217, Oct. 17, 2012. |
Number | Date | Country | |
---|---|---|---|
20110206175 A1 | Aug 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12078705 | Apr 2008 | US |
Child | 13095367 | US |