Radiolabelled compound formulations

Abstract
Additives are proposed for compositions comprising radiolabelled organic compounds e.g. 32P-labelled nucleotides. Stabilisers are selected from tryptophan, para-aminobenzoate, indoleacetate and the azole group. Dyes are selected from Sulphorhodamine B, Xylene Cyanol, Azocarmine B and New Coccine. Preferred compositions contain both stabiliser and dye.
Description

Radiolytic self-decomposition of radiochemicals has always been a problem to manufacturers and users alike. Shelf-life can be as little as a few weeks despite the use of the most suitable storage temperatures and physical dispersal methods for each particular, compound or isotope. The subject is discussed in Review 16, Self-decomposition of Radiochemicals, Amersham International plc, Amersham.
Generally applicable additives which could be added to radiochemicals in Order to extend shelf-life and improve efficiency by minimising the formation of radioactive impurities, would be of great economic and scientific value. A user of a stabilised radiochemical would benefit from being able to conduct experiments over a longer time span,-achieve more consistent results between batches of the same radiochemical, and use less rigorous storage conditions. The additive should minimally interfere with or be compatible with the processes occurring in the application of radiochemicals to experimental systems, such as protein or nucleic acid manipulation.
U.S. Pat. No. 4,390,517 teaches the use of a wide range of soluble primary, secondary and tertiary amines as stabilisers for radiolabelled compounds.
U.S. Pat. No. 4,411,881 teaches the use of thiocarbonylated amines as stabilisers.
U.S. Pat. No. 4,451,451 teaches the use of 4-aminobenzoic acid as an antioxidant in compositions containing Technetium-99m.
U.S. Pat. No. 4,793,987 teaches the use of a range of pyridine carboxylic acids as stabilisers.
32-P radiolabelled nucleotides are often sold as buffered aqueous solutions shipped in dry ice and sold for storage by the customer at -20.degree. C. It would be a significant advantage, both to the shipper and to the customer, if the radiolabelled nucleotides could be supplied at ambient temperature and stored in an unfrozen form.
Solutions of radiolabelled nucleotides and other organic compounds are generally sold colourless. A coloured solution would be an advantage, since it would make the solution more easily visible during manipulation. However, a suitable dye would need not to interfere with any process in which the radiolabelled organic chemical might be used.
In one aspect the invention provides a composition comprising an organic compound labelled with a .beta.-emitting radionuclide, said radiolabelled organic compound being subject to radiolytic decomposition during storage and shipment, together with a stabiliser selected from tryptophan, para-aminobenzoate, indoleacetate, luminol, and the group of azoles which are compounds having a 5-membered ring with at least two ring nitrogen atoms directly bonded to one another.
In another aspect, the invention provides a composition comprising a solution of an organic compound labelled with a .beta.-emitting radionuclide and a dye.
The invention is mainly concerned with radiolabelled organic compounds which are supplied, shipped and stored in solution, usually aqueous solution or less usually in solution in a hydrophilic organic solvent. The invention also encompasses compositions in the solid state e.g. those produced by lyophilising or otherwise drying liquid compositions. The invention is applicable to radiolabelled organic compounds which are subject to radiolytic self-decomposition, for example: amino acids, steroids, lipids, fatty acids, peptides, carbohydrates, proteins, and particularly nucleotides, thionucleotides, nucleosides and nucleic acids.
The nature of the .beta.-emitting radionuclide is not critical; 3-H and 14-C are possible, but 32-P, 35-S and 33-P are preferred.
The stabiliser is preferably selected from L- and D-tryptophan; para-aminobenzoate which term is used to include the free acid and salts and esters thereof; indoleacetate which term is used to include the free acid and salts and esters thereof; luminol (3-aminophthalhydrazide); and the group of azoles which are compounds having a 5-membered ring with at least two ring nitrogen atoms directly bonded to one another. Such compounds preferably have the structure ##STR1##
which structure contains two ring double bonds, wherein
one or two of X, Y and Z may represent N or one of X, Y and Z may represent S, the remaining X, Y and Z representing C,
when present each of R.sup.1, R.sup.2, R.sup.3, R.sup.4 and R.sup.5 represents --OH, --SH, --H --COOH, --NH.sub.2, --CH.sub.3 attached to the ring directly or via a chain of up to 10 carbon atoms, or two adjacent members of R.sup.1, R.sup.2, R.sup.3, R.sup.4 and R.sup.5 may together constitute an aromatic ring.
It will be understood that R.sup.1, R.sup.2, R.sup.3, R.sup.4 and R.sup.5 will or will not be present depending on the nature of X, Y and Z and on the positions of the two double bonds. Examples of classes of azole compounds envisaged are
______________________________________X Y Z Present Absent______________________________________C C C R.sup.1, R.sup.3, R.sup.4 , R.sup.5 R.sup.2N C C R.sup.1, R.sup.4, R.sup.5 R.sup.2, R.sup.3N N C R.sup.1, R.sup.5 R.sup.2, R.sup.3, R.sup.4C N C R.sup.3, R.sup.4, R.sup.5 R.sup.1, R.sup.2C N C R.sup.1, R.sup.3, R.sup.5 R.sup.2, R.sup.4C S C R.sup.3, R.sup.5 R.sup.1, R.sup.2, R.sup.4______________________________________
Among the possible compounds from the azole group are those illustrated in the Examples. The concentration of stabiliser is sufficient to reduce radiolytic decomposition of the radiolabelled organic compound, while not being so high as to materially interfere with the reaction systems where the radiolabelled organic compound is to be used. Preferred concentrations in liquid compositions are in the range of 1 mM to 1M, particularly 10 to 100 Used in these concentrations, the preferred compounds have proved effective stabilisers particularly for nucleotides.
The dye is preferably selected from Sulphorhodamine B, Xylene Cyanol, Azocarmine B and New Coccine. Other possible dyes include Orange G, Tartrazine, Safranin O, Methyl Green, Bromophenol Blue, Eosin, Evans Blue, Brilliant Blue G, Bromocresol Green, Ponceau S, Carmoisine Red, Remazol Red RB, Sandoz Black, Sandoz Violet, Sandoz Brilliant Green, Remazol Golden Yellow, Remazol Red B, Acid Red 40, Acid Alizarin Violet N, Mordant Brown 6 and BPBDTC (3,3'-(4,4'-biphenylene)-bis(2,5-diphenyl-2H-tetrazolium chloride). The concentration of the dye should be sufficient to visibly colour the solution, but not so high as to materially interfere with the reaction systems into which the radiolabelled organic compound is to be introduced. Preferred dye concentrations are from 20 to 3000 .mu.g/ml, particularly 50 to 400 .mu.g/ml; that is to say approximately (depending on the molecular weight of the dye) from 3.times.10.sup.-5 to 6.times.10.sup.-3 mol/l particularly 8.times.10.sup.-5 to 1.times.10.sup.-3 mol/l. At these concentrations, the dyes do have a mild stabilising effect, in addition to providing colour. However, the colour of compositions containing these dyes does fade with time, possibly due to radiolytic rupture of double bonds of the ring structures of the dyes. While this fading does not render the compositions unworkable, it may nevertheless be inconvenient. The structural formulae of the preferred stabilisers and dyes used in this invention are given in Tables 1 and 2 respectively.
According to a further and preferred aspect of the invention, the radiolabelled organic compound composition includes both the dye and the stabiliser. This has several advantages. The stabiliser helps to prevent the dye from fading. The dye improves the visibility of the radiochemical. The dye and the stabiliser may act synergistically to improve the stability of the radiolabelled organic compound.
The compositions of this invention may contain buffers. The nature of the buffer is not critical to the invention, but standard commercial diluents for nucleotides consisting of an aqueous buffered solution stabilised by 2-mercaptoethanol or dithiothreitol are preferred systems. These are the systems that are used in the examples below. But other systems have been tested and shown to be equally effective.
Radiolabelled nucleotides and other organic compounds are conventionally shipped and stored at -20.degree. C. or below, requiring the use of dry ice. Preferred compositions according to this invention are suitable for shipment and storage either at 4.degree. C. (on ice) or more preferably at ambient temperature.
Experimental
In the examples below, various compositions were made up and tested for stability. Some of the tabulated experimental data refers to batches of dCTP labelled with 32 Phosphorus, but the stabilising compounds were also tested with the other 32 Phosphorus alpha-labelled nucleotides dATP, dGTP and dTTP. Testing of these stabilisers was also carried out with 32 Phosphorus gamma-labelled ATP and with 35 Sulphur alpha-labelled dATP. The half-life of 32P is 14.3 days, but batches for sale are typically reference-dated for the Friday of the week following sale. Stability testing was therefore carried out for 21 days to approximate the length of customer usage. Stabilisation of various compounds labelled with 3H, 14C and 33P was also investigated.
All test results are expressed as absolute percentage incorporation of the nucleotide compared with a control formulation, from the same batch, based on the above diluent without further added stabiliser or dye and stored at RT or +4.degree. C. or -20.degree. C.
Various tests of nucleotide stability were performed:
The radiochemical purity of the labelled nucleotide was measured after storage for various intervals, using thin layer chromatography plates which were subsequently scanned using a Raytek RITA scanner. This is reported as RCP.
Formulations were tested in various nucleic acid assays and manipulations: Sanger dideoxy sequencing using T7, Taq and Klenow DNA polymerase enzymes, random primed and nick translated DNA labelling reactions on both phage lambda and human genomic probes such as raf-1 and N-ras, and PCR labelling of probes. Probes generated as above were used in genomic hybridisations for single copy detection, and in colony screening. 3' end tailing and 5' end labelling of probes were also carried out, the latter specifically using the 32 Phosphorus gamma-labelled ATP.
Other techniques used were cDNA first strand synthesis and protein phosphorylation.
From these, random primed probe generation (in Amersham International Multiprime kit reactions: Amersham kit RPN 1600 based on Feinberg and Vogelstein, Anal. Biochem. 132, 6-13 (1983) and Addendum Anal. Biochem. 137, 266-267 (1984)) was selected as providing a stringent and representative test of radiolabelled organic compound stability and activity for the dNTPs: 5'end labelling was selected as the principal test for 32 P gamma-labelled ATP.
In the following examples, RCP refers to the radiochemical purity of the sample, MP to % incorporations obtained using the random primed DNA labelling technique in Amersham International's Multiprime kit.
SB, XY, AB and NC are Sulphorhodamine B, Xylene Cyanol, Azocarmine B and New Coccine respectively. pABA is para-aminobenzoate. IAA is indoleacetic acid. 2ME is 2-mercaptoethanol and DTT is dithiothreitol.
Storage conditions designated +40/RT/+4 indicate that the nucleotide was stored at +40.degree. C. for 24 hours, then at room temperature (RT; 21.degree.-24.degree. C.) for 48 hours before being stored at +4.degree. C. for the remainder of the test period.
Control samples consist of Amersham International's current selling nucleotide formulation, without the addition of any further stabiliser or dye.





EXAMPLES 1 TO 8
In Examples 1-8, the 32P labelled nucleotide (dCTP) was used at a specific activity of 3000 Ci/mmol and a concentration of 10 mCi/ml. 1 mCi lots were used for tests. Unless otherwise stated, the formulation used was an aqueous buffered diluent stabilised by 2-mercaptoethanol.
Example 1
Formulations containing different concentrations of stabilisers were tested. All stabilisers worked well.
______________________________________ DAY 8 DAY 15 DAY 22SAMPLE STORAGE RCP MP RCP MP RCP MP______________________________________CON- +40/RT/+4 -- 1 21 -- 12 0TROLL-TRYP- " 70 54 78 -- 69 60TOPHAN25 mMpABA Na " 79 73 77 -- 79 6650 mMpABA K " 80 71 82 -- 79 7050 mMIAA " 81 74 83 -- 77 6450 mM______________________________________
Example 2
Formulations containing the two dyes Sulphorhodamine B and Xylene Cyanol were made up and tested under different temperature storage conditions. Both dyes are seen to have a minor stabilising effect at +4.degree. C.
______________________________________ DAY 7 DAY 14 DAY 23SAMPLE STORAGE RCP MP RCP MP RCP MP______________________________________CON- -20.degree. C. 87 68 79 65 82 67TROLSB 400 " 87 61 81 65 84 69.mu.g/mlXY 400 " 77 60 73 64 74 60.mu.g/mlCON- +40/RT/+4 13 11 6 0 0 0TROLSB 400 " 35 35 15 9 0 0.mu.g/mlXY 400 " 29 30 16 5 0 0.mu.g/ml______________________________________
Example 3
Formulations containing the stabiliser pABA K at the normal concentration of 50 mM and the dye New Coccine were tested. The dye was used at a final molarity of 3.5.times.10.sup.-4 mol/l (equivalent to Sulphorhodamine B at 200 .mu.g/ml). Storage was at RT, 7.degree. C. or 42.degree.-45.degree. C. for either 1, 2 or 3 days as indicated, to test the robustness of the dye. After this period, all pots were stored at +4.degree. C. for the remainder of the test period.
__________________________________________________________________________ WK 0 WK 1 WK 2 WK 3SAMPLE STORAGE RCP MP RCP MP RCP MP RCP MP__________________________________________________________________________CONTROL -20.degree. C. 95 88 91 82 91 91 -- 73CONTROL +40/RT/+4 89 80 94 57 95 66 -- 12NC + pABA K 72 HRS @ RT 92 75 93 71 76 76 -- --" 24 HRS @ 37 97 72 91 82 82 83 -- 74" 48 HRS @ 37 92 64 92 83 91 82 -- 64" 72 HRS @ 37 79 73 94 83 94 79 -- --" 24 HRS @ 42 89 75 94 81 90 79 -- 36" 48 HRS @ 42 92 81 93 76 91 69 -- --" 72 HRS @ 42 96 77 77 81 91 76 -- --__________________________________________________________________________
Example 4
RCP's and % incorporations using the Multiprime assay were also measured for Azocarmine B, with experimental details as for Example 3. The dye was used at a final molarity of 3.5.times.10.sup.-4 mol/l.
__________________________________________________________________________ WK 0 WK 1 WK 2 WK 3SAMPLE STORAGE RCP MP RCP MP RCP MP RCP MP__________________________________________________________________________CONTROL -20.degree. C. 93 89 88 82 93 91 -- 71CONTROL +40/RT/+4 93 88 64 58 73 39 -- 4AB + pABA K 72 HRS @ RT 91 79 89 86 81 74 -- --" 24 HRS @ 37 91 88 93 83 89 81 -- 76" 48 HRS @ 37 93 77 92 80 91 77 -- 66" 72 HRS @ 37 93 81 92 73 93 69 -- --" 24 HRS @ 42 94 73 93 76 91 71 -- 78" 48 HRS @ 42 90 82 93 81 93 78 -- --" 72 HRS @ 42 93 50 92 77 91 68 -- --__________________________________________________________________________
Example 5
Formulations containing two different dyes and two different stabilisers were tested. Both dyes were used at a concentration of 400 .mu.g/ml. L-Tryptophan and potassium p-aminobenzoate were used at concentrations of 25 mM and 50 mM respectively.
______________________________________ STOR- DAY 8 DAY 15 DAY 21SAMPLE AGE RCP MP RCP MP RCP MP______________________________________CONTROL +40/ 12 2 6 1 3 1 RT/+4SB 400 .mu.g/ +40/ 71 48 66 49 61 34ml + L Tryp RT/+4SB 400 .mu.g/ +40/ 76 52 67 53 66 41ml + pABA K RT/+4XY 400 .mu.g/ +40/ 75 67 62 58 55 40ml + L Tryp RT/+4XY 400 .mu.g/ +40/ 79 66 71 67 70 61ml + pABA K RT/+4______________________________________
Example 6
A formulation containing 50 mM pABA K.sup.+ was stored at RT, 37.degree. C. or 42.degree.-45.degree. C. for either 1, 2 or 3 days to test the robustness of the stabiliser.
All conditions except the control contain 50 mM pABA K.
After times at elevated temperatures as indicated, all conditions were stored at +4.degree. C. for the remaining test period except for the unstabilised control, which was kept at -20.degree. C. throughout.
______________________________________ DAY 7 DAY 14SAMPLE STORAGE RCP MP RCP MP______________________________________CONTROL -20.degree. C. 89 85 86 78pABA K 24 HRS @ RT 86 73 84 75" 48 HRS @ RT 86 71 83 74" 72 HRS @ RT 85 74 83 72" 24 HRS @ 37 87 71 83 74" 48 HRS @ 37 88 69 83 73" 72 HRS @ 37 86 83 83 73" 24 HRS @ 42 86 71 83 72" 48 HRS @ 42 86 79 84 72" 72 HRS @ 42 87 70 83 72______________________________________
Example 7
Formulations containing different concentrations of Sulphorhodamine B as dye and para-amino Benzoic acid (Potassium salt) as stabiliser, and combinations of the two in various concentrations, were tested.
______________________________________ STOR- DAY 7 DAY 15 DAY 22SAMPLE AGE RCP MP RCP MP RCP MP______________________________________CONTROL -20.degree. C. 84 74 67 67 75 6320 mM paBA K +40/ 83 68 71 59 68 49 RT/+430 mM paBA K +40/ 84 65 79 63 74 53 RT/+440 mM paBA K +40/ 86 67 84 64 78 54 RT/+450 mM paBA K +40/ 89 69 86 70 81 62 RT/+450 .mu.g/ml SB +40/ 20 8 7 1 0 0 RT/+4100 .mu.g/ml SB +40/ 23 10 6 1 0 0 RT/+4200 .mu.g/ml SB +40/ 30 18 10 4 -- 0 RT/+4400 .mu.g/ml SB +40/ 37 24 16 8 20 0 RT/+420 mM +40/ 73 60 68 57 66 51pABAK// RT/+450 .mu.g/ml SB20 mM +40/ 74 62 71 57 66 52pABAK// RT/+4100 .mu.g/ml SB20 mM +40/ 73 56 69 51 62 51pABAK// RT/+4200 .mu.g/ml SB20 mM +40/ 78 65 77 54 67 54pABAK// RT/+4400 .mu.g/ml SB30 mM +40/ 85 68 75 64 72 56pABAK// RT/+450 .mu.g/ml SB30 mM +40/ 83 70 77 83 71 68pABAK// RT/+4100 .mu.g/ml SB30 mM +40/ 77 66 71 75 70 57pABAK// RT/+4200 .mu.g/ml SB30 mM +40/ 80 67 76 67 75 59pABAK// RT/+4400 .mu.g/ml SB40 mM +40/ 79 68 78 63 79 60pABAK// RT/+450 .mu.g/ml SB40 mM +40/ 84 65 78 62 77 58pABAK// RT/+4100 .mu.g/ml SB40 mM +40/ 86 67 78 63 77 59pABAK// RT/+4200 .mu.g/ml SB40 mM +40/ 86 67 84 65 79 63pABAK// RT/+4400 .mu.g/ml SB50 mM +40/ 88 71 87 63 83 63pABAK// RT/+450 .mu.g/ml SB50 mM +40/ 88 69 85 64 81 66pABAK// RT/+4100 .mu.g/ml SB50 mM +40/ 86 72 87 63 81 68pABAK// RT/+4200 .mu.g/ml SB50 mM +40/ 87 75 86 65 81 67pABAK// RT/+4400 .mu.g/ml SB______________________________________
Example 8
Formulations containing different stabilisers were made up with and without 400 .mu.g/ml of Sulphorhodamine B.
______________________________________ STOR- DAY 8 DAY 15 DAY 22SAMPLE AGE RCP MP RCP MP RCP MP______________________________________CONTROL +40/ -- 1 21 -- 12 0 RT/+4SB 400 .mu.g/ml// +40/ 70 45 82 -- 73 6350 mM LTRYP RT/+4SB 400 .mu.g/ml// +40/ 79 72 88 -- 78 7250 mM RT/+4pABANaSB 400 .mu.g/ml// +40/ 83 73 88 -- 80 7250 mM pABAK RT/+4L TRYP- +40/ 70 54 78 -- 69 60TOPHAN RT/+4ONLYPABA Na +40/ 79 73 77 -- 79 66ONLY RT/+4pABA K +40/ 80 71 82 -- 79 70ONLY RT/+4______________________________________
Example 9
In the following data, the nucleotide used in testing was .sup.35 S dATP at a concentration of 10 mCi/ml. All the stabilising compounds were used at a concentration of 50 mM, and were temperature cycled at 40.degree. C. for 24 hours and room temperature for 48 hours before long term storage at +4.degree. C. All samples contained 20 mM Dithiothreitol (DTT).
______________________________________ WK 2 WK 4 WK 8 WK 14SAMPLE RCP MP RCP MP RCP MP RCP MP______________________________________CONTROL 92 72 91 74 91 77 87 61-20.degree. C.3-Amino-5- 92 67 91 73 89 78 88 53mercapto-triazole2-Amino- 87 72 84 74 81 74 75 611,3,4-thiadiazole2,5-Dimer- 92 62 90 80 90 77 87 47capto-1,3,4-thiadiazole4-Methyl- 91 66 88 79 91 72 83 434H-1,2,4-triazole-3-thiol3,5-Diamino- 91 73 84 75 83 73 65 531,2,4-triazole3-Amino 88 73 87 70 85 78 71 53pyrazole5-Amino- 92 79 92 79 94 88 71 701,3,4-thiadiazole-2-thiol3-Amino-5- 84 71 84 71 83 75 72 63hydroxy-pyrazole1H-1,2,4- 91 70 91 73 89 81 90 78triazole-3-thiol5-Mercapto- 91 73 91 78 89 78 86 55triazole(Na.sup.+) 2H.sub.2 Op-Amino 79 60 81 69 66 66 58 40benzoic acid(K.sup.+)5-Mercapto- 91 75 86 80 78 70 53 401-tetrazoleacetic acid(Na.sup.+)5-Mercapto- 89 73 84 65 78 70 65 371-methyltetrazole______________________________________
Example 10
The stabilisers of Example 9 were also tested on 32P dCTP labelled nucleotide where they were again used at a working concentration of 50 mM. The radioactive concentration of the dCTP was 10 mCi/ml. All samples contained 5 mM 2-mercaptoethanol. Storage conditions were +40/RT/+4 except for the -20.degree. C. control.
______________________________________ DAY 6 DAY 14 DAY 21SAMPLE RCP MP RCP MP RCP MP______________________________________CONTROL -20.degree. C. 79 71 80 68 79 703-Amino-5-mercapto- 77 70 76 68 76 66triazolepABA K.sup.+ 78 65 76 63 71 612-Amino-1,3,4-thiadiazole 73 60 65 58 68 512,5-Dimercapto-1,3,4- 79 74 78 67 79 65thiadiazole4-Methyl-4H-1,2,4- 78 75 78 77 79 69triazole-3-thiol3,5-Diamino-1,2,4- 78 72 76 73 74 65triazole5-Mercapto-1-tetrazole 81 69 73 68 73 65acetic acid (Na.sup.+)5-Mercapto-1-methyl 75 70 77 66 71 70tetrazole3-Amino pyrazole 76 73 76 65 74 635-Amino-1,3,4-thiadiazole- 72 83 78 70 74 662-thiol3-Amino-5-hydroxy- 69 76 74 64 68 58pyrazole1H-1,2,4-triazole-3-thiol 76 72 78 72 78 645-Mercaptotriazole 75 71 78 68 76 67(Na.sup.+) 2H.sub.2 O______________________________________
The results indicate that these compounds showed stabilising activity of nucleotides in solution.
Example 11
Further compounds were also tested on the 32P labelled dCTP nucleotides as for Example 10, and were again used at a working concentration of 50 mM (except for luminol which was used at a working concentration of 45 mM).
______________________________________ DAY 8 DAY 16 DAY 23SAMPLE RCP MP RCP MP RCP MP______________________________________CONTROL -20.degree. C. 90 50 88 52 83 49pABA K.sup.+ 87 44 82 33 78 315-Methyl-1H-benzotriazole 80 40 71 39 67 483-Amino-4-pyrazole 84 45 81 42 75 47carboxylic acid3-Amino-5-mercapto- 87 41 88 40 82 47triazoleLuminol 80 39 80 44 77 47______________________________________
Example 12
Formulations containing stabiliser and/or dye were tested on dATP (alpha-35S) nucleotide solutions which were at 10 mCi/ml radioactive concentration. The labelling on the table shows the stabiliser and/or dye present in each sample including their respective concentrations. Storage conditions were +40/RT/+4 except for the -20.degree. C. control.
______________________________________ WK 2 WK 4 WK 8 WK 14SAMPLE RCP MP RCP MP RCP MP RCP MP______________________________________CONTROL 82 64 65 41 22 23 15 16-20.degree. C.CONTROL 56 45 0 0 0 0 0 0+40/RT/+420 mM DTT 92 71 91 52 78 43 65 5050 mM 88 77 77 43 76 44 54 45pABA(Na.sup.+)25 mM 86 70 78 50 59 34 41 38Tryptophan200 .mu.g/ml SB 64 56 17 7 0 0 0 050 mM 86 69 74 31 67 34 48 42pABA,200 .mu.g/ml SBDTT, pABA, 91 67 88 37 86 49 79 49SB20 mM,50 mM,200 .mu.g/ml______________________________________
These results show that DTT, pABA, Tryptophan and to a small extent SB, all stabilised the 35S labelled nucleotide. The possibility of dye and stabiliser combinations was demonstrated.
Example 13
Formulations containing stabilisers were tested on dATP (alpha-35S). All samples were pH 10.0. Radioactive concentration was 10 mCi/ml. The stabilisers present are indicated in the results table for each sample. Storage conditions were +40/RT/+4. AMT =3-Amino-5-mercaptotriazole.
______________________________________ WK 2 WK 4 WK 8 WK 14SAMPLE RCP MP RCP MP RCP MP RCP MP______________________________________20 mM DTT 94 55 89 70 81 66 78 67CONTROL-20.degree. C.50 mM AMT 95 68 94 76 90 60 88 8450 mM AMT, 93 52 94 73 92 62 91 8350 mM DTT50 mM AMT, 93 64 94 84 92 70 91 8420 mM DTT50 mM AMT, 95 60 94 78 92 72 93 80100 mM 2ME50 mM AMT, 94 50 93 73 92 70 90 7740 mM 2ME25 mM AMT 93 67 92 81 87 70 80 6925 mM AMT, 96 44 94 78 92 68 90 7750 mM DTT25 mM AMT, 96 53 93 85 90 75 89 7520 mM DTT25 mM AMT, 95 45 94 72 92 76 92 83100 mM 2ME25 mM AMT, 95 50 92 87 91 77 89 8040 mM 2ME______________________________________
It can be deduced that the three stabilisers azole, DTT and 2-ME may be used in combination to achieve adequate stabilisation. Azole stabiliser may also be used with no other stabiliser present.
EXAMPLES 14 TO 21
Examples 14 to 21 show further testing of stabilisers on various radiolabelled compounds. Unless otherwise indicated, all stabilisers were used at a working concentration of 50 mM.
Example 14
Stabilisers were tested on dATP (alpha 35S) nucleotide solutions. All the samples were pH 10.0 and the radioactive concentration was 10 mCi/ml. All samples contained 20 mM DTT. Storage conditions were 40/RT/+4, except for the first two controls which were stored at -20.degree. C.
______________________________________ WK 2 WK 4 WK 8 WK 14SAMPLE RCP MP RCP MP RCP MP RCP MP______________________________________CONTROL 95 61 92 76 90 82 90 76-20.degree. C.CONTROL 93 51 91 78 87 80 87 76-20.degree. C.CONTROL 92 53 58 56 40 39 30 38+40/RT/+45-Amino- 95 55 91 72 90 71 85 761,3,4-thiadiazole-2-thiol2-Amino- 92 56 88 71 85 71 85 721,3,4-thiadiazole4-Methyl-4H- 91 49 88 63 87 64 91 681,2,4-triazole-3-thiol3-Amino 93 56 85 70 85 71 88 79pyrazole3,5-Diamino 91 53 79 69 85 73 85 79triazole______________________________________
Example 15
A further experiment was carried out to test stabilisers on dATP (Alpha 35S). Experimental details were as for Example 14.
______________________________________ WK 2 WK 4 WK 8 WK 14SAMPLE RCP MP RCP MP RCP MP RCP MP______________________________________CONTROL 93 67 90 74 88 72 89 76-20.degree. C.CONTROL 93 65 90 76 87 77 84 74-20.degree. C.CONTROL 90 61 83 77 75 71 62 60+40/RT/+45-Amino- 93 54 90 79 87 66 90 761,3,4-thiadiazole-2-thiol4-Methyl-4H- 93 48 91 73 88 61 88 741,2,4-triazole-3-thiol3-Amino 91 64 87 78 83 70 80 80pyrazole3-Amino 91 61 86 82 83 72 79 80pyrazole-4-carboxylicacid3,5-Diamino 90 58 90 77 84 77 82 75triazole25 mM 90 51 90 74 -- 70 79 74Tryptophan3-Amino-5- 92 55 91 73 85 74 88 73mercaptotriazole______________________________________
Example 16
Stabilisers were tested on 33P gamma-labelled ATP. All samples contained 0.1% 2-mercaptoethanol. The radioactive concentration was 5 mCi/ml. All samples were stored at +4.degree. C. except the one control sample stored at -20.degree. C., (there was no temperature cycling).
______________________________________ DAY 6 DAY 14 DAY 45SAMPLE RCP RCP RCP______________________________________CONTROL -20.degree. C. 88 86 83CONTROL +4.degree. C. 76 64 505-Amino-1,3,4-thiadiazole- 90 89 872-thiol4-Methyl-4H-1,2,4-triazole- 90 87 863-thiol3-Amino-5-hydroxypyrazole 89 81 783-Amino-5-mercaptotriazole 88 77 753,5-Diamino-1,2,4-triazole 89 88 81______________________________________
All stabilisers showed a stabilisation effect, with all the purities being greater than those of the +4.degree. C. Control. The presence of some of the stabilisers maintained the purity of the nucleotide solution more effectively than storage at -20.degree. C.
Example 17
Stabilisers were tested on 35S labelled methionine. All samples contained 0.1% 2-mercaptoethanol. The radioactive concentration was 34 mCi/ml. All samples were stored at +4.degree. C. except the first Control sample which was stored at -20.degree. C.
______________________________________ DAY 7 DAY 14 DAY 25 DAY 32SAMPLE RCP RCP RCP RCP______________________________________CONTROL -20.degree. C. 84 63 41 27CONTROL +4.degree. C. 52 10 3 --5-Amino-1,3,4- 95 93 87 83thiadiazole-2-thiol4-Methyl-4H-1,2,4- 93 90 84 84triazole-3-thiol3-Amino-5-hydroxy- 67 19 2 --pyrazole3-Amino-5-mercapto- 94 94 92 92triazole3,5-Diamino-1,2,4- 82 39 12 5triazole______________________________________
All stabilisers provided some stabilisation compared with the 4.degree. C. control. Several of these stabilisers conferred better stability on the 35S methionine at +4.degree. C. than storage at -20.degree. C. without the stabilisers present.
Example 18
Stabilisers were tested on .sup.3 H labelled phenylalanine. The radioactive concentration was 0.5 mCi/ml. All samples were stored at room temperature except the first Control sample which was stored at +2.degree. C.
______________________________________ DAY 13 DAY 23 DAY 36 DAY 41SAMPLE RCP RCP RCP RCP______________________________________CONTROL +2.degree. C. 82 74 74 68CONTROL RT 81 71 69 625-Amino-1,3,4- 92 90 93 92thiadiazole-2-thiol3,5-Diamino-1,2,4- 91 87 87 86triazole3-Amino-5-hydroxy- 92 88 93 92pyrazolePara-aminobenzoic 92 88 93 91acid______________________________________
All stabilisers provided stabilisation compared with both control samples. Excellent stability was achieved even though storage was at room temperature.
Example 19
Stabilisers were tested on (Methyl-3H) Thymidine. The radioactive concentration was 0.5 mCi/ml. All samples were stored at room temperature except the first Control sample which was stored at +2.degree. C.
______________________________________ DAY 13 DAY 23 DAY 36 DAY 41SAMPLE RCP RCP RCP RCP______________________________________CONTROL +2.degree. C. -- 74 69 68CONTROL RT 78 73 66 645-Amino-1,3,4- 86 87 85 85thiadiazole-2-thiol3,5-Diamino-1,2,4- 85 84 84 85triazole3-Amino-5-hydroxy- 86 83 85 86pyrazolePara-aminobenzoic 85 86 85 86acid______________________________________
All stabilisers provided some stabilisation compared with both control samples. Excellent stability was achieved even though all stabilised samples were stored at room temperature.
Example 20
Stabilisers were tested on L-(U-14C) Histidine. The radioactive concentration was 100 mCi/ml. All samples were stored at room temperature except the first Control sample which was stored at +2.degree. C.
______________________________________ DAY 13 DAY 23 DAY 36 DAY 41SAMPLE RCP RCP RCP RCP______________________________________CONTROL +2.degree. C. 99 99 98 99CONTROL RT 97 97 96 955-Amino-1,3,4- 97 98 99 97thiadiazole-2-thiol3,5-Diamino-1,2,4- 98 97 98 98triazolePara-aminobenzoic 99 98 98 97acid______________________________________
The stabilisers provided some stabilisation compared with the RT control sample. All samples performed well. The 14C half-life is very long (5730 years) and because of this, 14C-labelled compounds would be expected to be more stable. Long-term stability studies would be expected to show that the samples containing stabilisers have a significant stability improvement compared with controls.
Example 21
The stability of other compounds was determined in a similar manner. L-(5-3H) Proline (at 0.5 mCi/ml) and (8-14C) ATP (at 0.75 mCi/ml) were analysed over a period of six weeks. It was found that these compounds were quite stable, even with no stabiliser present. Both compounds maintained their purities at approximately 97-98%. From these results it can be concluded that the presence of the stabilisers does not reduce the stability of L-(5-3H) Proline and (8-14C) ATP.
TABLE 1______________________________________TRYPTOPHAN ##STR2## ##STR3## ##STR4## ##STR5## ##STR6## ##STR7## ##STR8## ##STR9## ##STR10## ##STR11## ##STR12## ##STR13## ##STR14## ##STR15## ##STR16## ##STR17## ##STR18## ##STR19## ##STR20## ##STR21## ##STR22## ##STR23## ##STR24## ##STR25## ##STR26## ##STR27## ##STR28## ##STR29## ##STR30## ##STR31## ##STR32## ##STR33## ##STR34## ##STR35## ##STR36## ##STR37## ##STR38##______________________________________
TABLE 2______________________________________SULFORHODAMINE B ##STR39##XYLENE CYANOL ##STR40##AZOCARBINE B ##STR41##NEW COCCINE ##STR42##______________________________________
Claims
  • 1. A composition comprising an organic compound labeled with a .beta.-emitting radionuclide, said radiolabelled organic compound being subject to radiolytic decomposition during storage and shipment, together with a stabilizer selected from the group consisting of tryptophan, indoleacetate and luminol including the free acids and salts and esters thereof, and the group of azoles which are compounds having a five-membered ring with at least two ring nitrogen atoms directly bonded to one another.
  • 2. A composition comprising a radiolabelled organic compound labelled with a .beta.-emitting radionuclide, a dye, and a stabilizer selected from the group consisting of tryptophan, indoleacetate and luminol, including the free acids and salts and esters thereof, and the group of azoles which are compounds having a five-membered ring with at least two ring nitrogen atoms directly bonded to one another.
  • 3. A composition comprising a radiolabelled organic compound labelled with a .beta.-emitting radionuclide, a dye, and para-aminobenzoate, which term includes the free acid and salts and esters thereof, as a stabilizer, wherein the organic compound is not a dye.
  • 4. The composition as claimed in any one of claims 1, 2 or 3, wherein the radiolabelled organic compound is present in solution.
  • 5. The composition as claimed in any one of claims 1, 2 or 3, wherein the radiolabelled organic compound is a nucleotide.
  • 6. The composition as claimed in any one of claims 1, 2 or 3, wherein the radiolabelled organic compound is an amino acid.
  • 7. The composition as claimed in any one of claims 1, 2 or 3 wherein the radiolabel is selected from the group consisting of 32-P, 35-S, 33-P, 3-H and 14-C.
  • 8. The composition as claimed in any one of claims 1, 2 or 3, wherein the stabilizer is present at a concentration of 10 to 100 mM.
  • 9. The composition as claimed in any one of claims 1, 2 or 3, wherein the dye is present at a concentration of 50 to 400 .mu.g/ml.
  • 10. The composition as claimed in any one of claims 1, 2 or 3, wherein the dye is selected from the group consisting of Sulphorhodamine B, Xylene Cyanol, Azocarmine B and New Coccine.
  • 11. The composition as claimed in claim 1 or claim 2, wherein the azole is one having the formula ##STR43## which structure contains two ring double bonds, wherein one or two of X, Y and Z may represent N, or one of X, Y and Z may represent S, the remaining X, Y and Z representing C,
  • each of R.sup.1, R.sup.2, R.sup.3, R.sup.4 and R.sup.5 may be present or absent and when present, each represents --OH, --SH, --H, --COOH, --NH.sub.2, --CH.sub.3 attached to the ring directly or via a chain of up to 10 carbon atoms, or two adjacent members of R.sup.1, R.sup.2, R.sup.3, R.sup.4, and R.sup.5 may together constitute an aromatic ring.
Priority Claims (1)
Number Date Country Kind
92303905 Apr 1992 EPX
PCT Information
Filing Document Filing Date Country Kind 102e Date 371c Date
PCT/GB93/00869 4/27/1993 8/23/1993 8/23/1993
Publishing Document Publishing Date Country Kind
WO93/22260 11/11/1993
US Referenced Citations (12)
Number Name Date Kind
3261747 Commerford Jul 1966
3673410 Waite et al. Jun 1972
4095950 Kahn Jun 1978
4390517 O'Brien Jun 1983
4411881 Tzodikov Oct 1983
4451451 Rimmer May 1984
4793987 Henderson Dec 1988
4880615 Charleson Nov 1989
4966854 Fleming Oct 1990
5093105 Flanagan et al. Mar 1992
5101020 Fleming Mar 1992
5262175 Solanki Nov 1993
Non-Patent Literature Citations (1)
Entry
Chemical Abstracts, vol. 111, No. 11, 11 Sep. 1989, Columbus, Ohio, US Abstract No. 93463b.