This invention relates generally to improvements in bone grafts such as spinal fusion cages of the type designed for human implantation between adjacent spinal vertebrae, to maintain the vertebrae in substantially fixed spaced relation while promoting interbody bone ingrowth and fusion therebetween. More particularly, this invention relates to an implantable bone graft having an improved combination of enhanced mechanical strength together with osteoinductive and osteoconductive properties, in a device that additionally and beneficially provides visualization of bone growth for facilitated post-operative monitoring.
Implantable bone grafts are known in the art and are routinely used by orthopedic surgeons to keep skeletal structures in a desired spaced-apart relation while bone ingrowth and fusion takes place. Such grafts are also used to provide weight bearing support between adjacent skeletal bodies and thus correct clinical problems. Such grafts are indicated for surgical treatment to reinforce weak bony tissue. These conditions have been treated by using constructs, typically made from metals such as titanium or cobalt chrome alloys such as used in orthopedic implants, and allograft (donor) or autograft (patient) bone to promote bone ingrowth and fusion.
Typical bone grafts, such as plugs for example, have hollow or open spaces that are usually filled with bone graft material, either autogenous bone material provided by the patient or allogenous bone material provided by a third party donor. These devices also have lateral slots or openings which are primarily used to promote ingrowth of blood supply and grow active and live bone. These implants may also have a patterned exterior surface such as a ribbed or serrated surface or a screw thread to achieve enhanced mechanical interlock between skeletal structures, with minimal risk of implant dislodgement from the site. See, for example, U.S. Pat. Nos. 5,785,710; and 5,702,453. Typical materials of construction for such devices include bio-compatible carbon fiber reinforced polymers, cobalt chrome alloys, and stainless steels or titanium alloys. See, for example, U.S. Pat. No. 5,425,772.
Most state-of-the-art bone grafts are made from titanium alloy and allograft (donor) bone, and have enjoyed clinical success as well as rapid and widespread use due to improved patient outcomes. However, traditional titanium-based implant devices exhibit poor radiolucency characteristics, presenting difficulties in post-operative monitoring and evaluation of the fusion process due to the radio-shadow produced by the non-lucent metal. There is also clinical evidence of bone subsidence and collapse which is believed to be attributable to mechanical incompatibility between natural bone and the metal implant material. Moreover, traditional titanium-based implant devices are primarily load bearing but are not osteoconductive, i.e., not conducive to direct and strong mechanical attachment to patient bone tissue, leading to potential graft necrosis, poor fusion and stability. By contrast, allograft bone implants exhibit good osteoconductive properties, but can subside over time as they assimilate into natural bone. Further, they suffer from poor pull out strength resulting in poor stability, primarily due to the limited options in machining the contact surfaces. Allograft bone implants also have variable materials properties and, perhaps most important of all, are in very limited supply. A small but finite risk of disease transmission with allograft bone is a factor as well. In response to these problems some developers are attempting to use porous tantalum-based metal constructs, but these have met with limited success owing to the poor elastic modulii of porous metals.
A typical titanium alloy bone graft device is constructed from a hollow cylindrical and threaded metal cage-like construct with fenestrations that allow communication of the cancellous host tissue with the hollow core, which is packed with morselized bone graft material. This design, constrained by the materials properties of titanium alloys, relies on bony ingrowth into the fenestrations induced by the bone graft material. However, the titanium-based structure can form a thin fibrous layer at the bone/metal interface, which degrades bone attachment to the metal. In addition, the hollow core into which the graft material is packed may have sub-optimal stress transmission and vascularization, thus eventually leading to failure to incorporate the graft. Mechanical stability, transmission of fluid stress, and the presence of osteoinductive agents are required to stimulate the ingrowth of vascular buds and proliferate mesenchymal cells from the cancellous host tissue into the graft material. However, most titanium-based bone graft devices in use today have end caps or lateral solid walls to prevent egress of the graft outwardly from the core and ingress of remnant disc tissue and fibroblasts into the core.
Autologous (patient) bone fusion has been used in the past and has a theoretically ideal mix of osteoconductive and osteoinductive properties. However, supply of autologous bone material is limited and significant complications are known to occur from bone harvesting. Moreover, the costs associated with harvesting autograft bone material are high, requiring two separate incisions, with the patient having to undergo more pain and recuperation due to the harvesting and implantation processes. Additionally, autologous cancellous bone material has inadequate mechanical strength to support musculoskeletal forces by itself, whereby the bone material is normally incorporated with a metal-based construct.
Ceramic materials provide potential alternative structures for use in spinal fusion implant devices. In this regard, monolithic ceramic constructs have been proposed, formed from conventional materials such as hydroxyapatitie (HAP) and/or tricalcium phosphate (TCP). See, for example, U.S. Pat. No. 6,037,519. However, while these ceramic materials may provide satisfactory osteoconductive and osteoinductive properties, they have not provided the mechanical strength necessary for the implant.
Thus, a significant need exists for further improvements in and to the design of bone grafts, particularly to provide a high strength implant having high bone ingrowth and fusion characteristics, together with substantial radiolucency for effective and facilitated post-operative monitoring.
Hence, it is an object of the present invention to provide an improved bone graft made from a bio-compatible open pore structure, which has a radiolucency similar to that of the surrounding bone. It is also an object of the present invention to provide a substrate of adequate bio-mechanical strength for carrying biological agents which promote bone ingrowth, healing and fusion. It is a further objective of the present invention to provide a fusion device which has mechanical properties that substantially match that of natural bone.
In accordance with the invention, an improved bone graft is provided for human implantation into the space between a pair of adjacent skeletal structures, to maintain the adjacent skeletal anatomy in a predetermined and substantially fixed spaced relation while promoting bone ingrowth and fusion. In this regard, the improved bone graft of the present invention is designed for use in addressing clinical problems indicated by surgical treatment of bone fractures, skeletal non-unions, weak bony tissue, degenerative disc disease, discogenic lower back pain, and spondylolisthesis.
The improved bone graft comprises a substrate block formed from a bio-compatible material composition having a relatively high bio-mechanical strength and load bearing capacity, substantially equivalent to natural cortical bone. This substrate may be porous, open-celled, or dense solid. A preferred material of the high strength substrate block comprises a ceramic material. The substrate block may be porous, having a porosity of about 10% to about 80% by volume with open pores distributed throughout and a pore size range of from about 5 to about 500 microns. When the substrate is porous, the porosity of the substrate block is gradated from a first relatively low porosity region emulating or mimicking the porosity of cortical bone to a second relatively higher porosity region emulating or mimicking the porosity of cancellous bone. In a second embodiment, the substrate block is a dense solid comprised of a ceramic, metal or polymer material such as PEEK, carbon fiber reinforced polymer, PMMA, PLA or other bioresorbable polymer, or composition thereof. This dense solid substrate would then be attached to a second highly porous region emulating or mimicking the porosity of cancellous bone. Preferably, the porous region would be formed around the substrate.
In the method where a dense, solid material is used as the substrate block, the block will be externally coated with a bio-active surface coating material selected for relatively high osteoconductive and osteoinductive properties, such as a hydroxyapatite or a calcium phosphate material. The porous portion is internally and externally coated with a bio-active surface coating material selected for relatively high osteoconductive and osteoinductive properties, such as a hydroxyapatite or a calcium phosphate material. The porous region, however, may be in and of itself a bio-active material selected for relatively high osteoconductive and osteoinductive properties, such as a hydroxyapatite or a calcium phosphate material.
The thus-formed bone graft can be made in a variety of shapes and sizes to suit different specific implantation requirements. Preferred shapes include a generally rectangular or cylindrical block with a tapered cross section to suit the required skeletal anatomy. The exterior superior and inferior surfaces of the body may include ridges or teeth for facilitated engagement with the adjacent skeletal structures. Alternative preferred shapes include a generally oblong, rectangular or cylindrical block which may also include serrations or the like on one or more exterior faces thereof, and/or may have a tapered cross section for improved fit into the skeletal anatomy. A further preferred shape may include a crescent shape block which may also include serrations or the like on one or more exterior faces thereof, and/or may have a tapered cross section for improved. The bone graft may desirably include notches for releasable engagement with a suitable insertion tool. In addition, the bone graft may also include one or more laterally open recesses or bores for receiving and supporting osteoconductive bone graft material, such as allograft (donor) or autograft (patient) material.
Further alternative bone graft configurations may include a dense substrate region substantially emulating cortical bone, to define a high strength loading bearing zone or strut for absorbing impaction and insertion load, in combination with one or more relatively high porosity second regions substantially emulating cancellous bone for contacting adjacent patient bone for enhanced bone ingrowth and fusion.
The resultant bone graft exhibits relatively high mechanical strength for load bearing support, while additionally and desirably providing high osteoconductive and osteoinductive properties to achieve enhanced bone ingrowth and interbody fusion. Importantly, these desirable characteristics are achieved in a structure which is substantially radiolucent so that the implant does not interfere with post-operative radiographic monitoring of the fusion process.
In accordance with a further aspect of the invention, the bone graft may additionally carry one or more therapeutic agents for achieving further enhanced bone fusion and ingrowth. Such therapeutic agents may include natural or synthetic therapeutic agents such as bone morphogenic proteins (BMPs), growth factors, bone marrow aspirate, stem cells, progenitor cells, antibiotics, or other osteoconductive, osteoinductive, osteogenic, or any other fusion enhancing material or beneficial therapeutic agent.
Other features and advantages of the invention will become more apparent from the following detailed description, taken in conjunction with the accompanying drawings which illustrate, by way of example, the principles of the invention.
The accompanying drawings illustrate the invention. In such drawings:
As shown in the exemplary drawings, a radiolucent bone graft referred to generally in
The preferred substrate composition comprises a relatively high strength block 16 (
Moreover, in the preferred form, the pores are arranged with a variable porosity gradient to define a first region of relatively low or reduced porosity (less than about 5%) mimicking cortical bone structure and a second region of relatively large or increased porosity (ranging from about 30% to about 80%) mimicking cancellous bone structure. In one preferred configuration, the outer or external surfaces of the reticulated substrate block comprise the first or low porosity region for improved load bearing capacity, while the interior surfaces of the substrate block comprises the second or high porosity region mimicking cancellous bone for enhance bone ingrowth and fusion.
This high strength substrate block is surface-coated internally and externally with a bio-active organic or inorganic surface coating material selected for relatively strong osteoconductive and osteoinductive properties to provide a nutrient rich environment for cellular activity to promote interbody bone ingrowth and fusion attachment. Preferred surface coating materials comprise a resorbable material such as hydroxyapatite or a calcium phosphate ceramic. Alternative glassy (amorphous) materials having a relatively rich calcium and phosphate composition may also be used, particularly wherein such materials incorporate calcium and phosphate in a ratio similar to natural bone or hydroxyapatite. Such glassy compositions may comprise a partially or fully amorphous osteoinductive material comprising a composite of a glass and osteoinductive calcium compound, with a composition varying from about 100% glass to 100% osteoinductive calcium compound. The surface coating may also comprise autologous bone marrow aspirates.
The resultant bone graft 10 thus comprises the substrate block formed from the high strength material having bio-mimetic properties and which is nonresorbable, or slowly or infinitely slowly resorbable when implanted into the patient, in combination with the bio-active surface coating which is comparatively rapidly resorbable to promote rapid and vigorous bone ingrowth activity.
The substrate block may also advantageously be coated or impregnated with one or more selected therapeutic agents, for example, such as autologous, synthetic or stem cell derived growth factors or proteins and growth factors such as bone morphogenic protein (BMP) or a precursor thereto, which further promotes healing, fusion and growth. Alternative therapeutic agents may also include an antibiotic, or natural therapeutic agents such as bone marrow aspirates, and growth factors or progenitor cells such as mesenchymal stem cells, hematopoietic cells, or embryonic stem cells, either alone or as a combination of different beneficial agents.
The resultant illustrative bone graft 10 exhibits relatively high bio-mechanical strength similar to the load bearing characteristics of natural bone. In addition, the bone graft 10 exhibits relatively strong osteoconductive and osteoinductive characteristics attributable primarily to the surface coating, again similar to natural bone. Importantly, the bone graft 10 is also substantially radiolucent and non-magnetic, so that the fusion cage does not interfere with post-operative radiological or other imaging methods of analysis of interbody bone ingrowth and fusion.
The relatively dense, high strength portion 16 is preferably formed in a manner with which to withstand the loading of the skeletal structures. In the preferred embodiment, the anterior and posterior walls of the device are formed as part of this high strength portion. This is done to allow the high strength region to interface with the cortical portion of the adjacent skeletal body 12. Additionally, a strut 22 of the high strength material extends between the anterior and posterior walls, which beneficially provides a load bearing structure capable of withstanding impaction and insertion loading in the anterior-posterior direction. Consequently, the relatively porous portion is formed in-between the dense anterior-posterior walls and around the central strut. The porous portion thereby forms the remainder of the device, including a large region of the superior, inferior, and lateral aspects. The porous portion, being less dense in nature than the high strength regions of the device, is increasingly radiolucent, thus allowing for assessment of bone growth and bony attachment to the adjacent skeletal tissue such as adjacent vertebral bodies.
In all of the embodiments of
The improved bone graft of the present invention thus comprises an open-celled substrate block structure which is coated with a bio-active surface coating, and has the strength required for the weight bearing capacity required of a fusion device. The capability of being infused with the appropriate biologic coating agent imparts desirable osteoconductive and osteoinductive properties to the device for enhanced interbody bone ingrowth and fusion, without detracting from essential load bearing characteristics. The radiolucent or non-magnetic characteristics of the improved device beneficially accommodate post-operative radiological or other diagnostic imaging examination to monitor the bone ingrowth and fusion progress, substantially without undesirable radio-shadowing. The external serrations or threads formed on the bone graft may have a variable depth to enable the base of the device to contact the cortical bone for optimal weight bearing capacity. In addition to these benefits, the present invention is easy to manufacture in a cost competitive manner. The invention thus provides a substantial improvement in addressing clinical problems indicated for surgical treatment of bone fractures, non-unions, weak bony tissue, degenerative disc disease, discogenic low back pain and spondylolisthesis.
The bone graft of the present invention provides at least the following benefits over the prior art:
A variety of further modifications and improvements in and to the bone graft of the present invention will be apparent to those persons skilled in the art. In this regard, it will be recognized and understood that the bone graft implant can be formed in the size and shape of a small pellet for suitable packing of multiple implants into a bone regeneration/ingrowth site. Accordingly, no limitation on the invention is intended by way of the foregoing description and accompanying drawings, except as set forth in the appended claims.
This application is a continuation-in-part of copending U.S. Ser. No. 10/137,106, filed Apr. 30, 2002, which in turn claims the benefit of U.S. Provisional Application No. 60/287,824, filed May 1, 2001.
Number | Date | Country | |
---|---|---|---|
60287824 | May 2001 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10137106 | Apr 2002 | US |
Child | 11040477 | Jan 2005 | US |