The present invention relates to medical devices.
Stents have become extremely important devices in the treatment of cardiovascular disease. A stent is a small mesh “scaffold” that can be positioned in an artery to hold it open, thereby maintaining adequate blood flow. Typically a stent is introduced into the patient's system through the brachial or femoral arteries and moved into position using a catheter and guide wire. This minimally invasive procedure replaces surgery and is now used widely because of the significant advantages it offers for patient care and cost.
In order to deploy a stent, it must be collapsed to a fraction of its normal diameter so that it can be manipulated into the desired location. Therefore, many stents and guide wires are made of an alloy of nickel and titanium, known as nitinol, which has the unusual properties of superelasticity and shape memory. Both of these properties result from the fact that nitinol exists in a martensitic phase below a first transition temperature, known as Mf, and an austenitic phase above a second transition temperature, known as Af. Both Mf and Af can be manipulated through the ratio of nickel to titanium in the alloy as well as thermal processing of the material. In the martensitic phase nitinol is very ductile and easily deformed, while in the austenitic phase it has a high elastic modulus. Applied stresses produce some martensitic material at temperatures above Af and when the stresses are removed the material returns to its original shape. This results in a very springy behavior for nitinol, referred to as superelasticity or pseudoelasticity. Furthermore, if the temperature is lowered below Mf and the nitinol is deformed, when the temperature is raised above Af it will recover its original shape. This is described as shape memory.
Stents having superelasticity and shape memory can be compressed to small diameters, moved into position, and deployed so that they recover their full size. By choosing an alloy composition having an Af below normal body temperature, the stent will remain expanded with significant force once in place. Remarkably, during this procedure the stent, e.g. of nitinol, must typically withstand strain deformations of as much as 8%.
Stents and similar intraluminal devices can also be made of materials like stainless steel and other metal alloys. Although they do not exhibit shape memory or superelasticity, stents made from these materials also must undergo significant strain deformations in use.
One disadvantage of stents made from nitinol and many other alloys is that the metals used often have low atomic numbers and are, therefore, relatively poor X-ray absorbers. Consequently, stents of typical dimensions are difficult or impossible to see with X-rays when they are being manipulated or are in place. Such devices are called radio transparent. There are many advantages that would result from being able to see a stent in an X-ray. For example, radiopacity, as it is called, would result in the ability to precisely position the stent initially and in being able to identify changes in shape once it is in place that may reflect important medical conditions.
Many methods are described in the prior art for rendering stents or portions of stents radiopaque. These include filling cavities on the stent with radiopaque material (U.S. Pat. No. 6,635,082; U.S. Pat. No. 6,641,607), radiopaque markers attached to the stent (U.S. Pat. No. 6,293,966; U.S. Pat. No. 6,312,456; U.S. Pat. No. 6,334,871; U.S. Pat. No. 6,361,557; U.S. Pat. No. 6,402,777; U.S. Pat. No. 6,497,671; U.S. Pat. No. 6,503,271; U.S. Pat. No. 6,554,854), stents comprised of multiple layers of materials with different radiopacities (U.S. Pat. No. 6,638,301; U.S. Pat. No. 6,620,192), stents that incorporate radiopaque structural elements (U.S. Pat. No. 6,464,723; U.S. Pat. No. 6,471,721; U.S. Pat. No. 6,540,774; U.S. Pat. No. 6,585,757; U.S. Pat. No. 6,652,579), coatings of radiopaque particles in binders (U.S. Pat. No. 6,355,058), and methods for spray coating radiopaque material on stents (U.S. Pat. No. 6,616,765).
All of the prior art methods for imparting radiopacity to stents significantly increase the manufacturing cost and complexity and/or render only a small part of the stents radiopaque. The most efficient method would be to simply apply a conformal coating of a fully dense radiopaque material to all surfaces of the stent. The coating would have to be thick enough to provide good X-ray contrast, biomedically compatible and corrosion resistant. More challenging, however, it would have to be able to withstand the extreme strains in use without cracking or flaking and would have to be ductile enough that the important thermomechanical properties of the stent are preserved. In addition, the coatings must withstand the constant flexing of the stent that takes place because of the expansion and contraction of blood vessels as the heart pumps.
Physical vapor deposition techniques, such as sputtering, thermal evaporation and cathodic arc deposition, can produce dense and conformal coatings of radiopaque materials like gold, platinum, tantalum, tungsten and others. Physical vapor deposition is widely used and reliable. However, coatings produced by these methods do not typically adhere well to substrates that undergo strains of up to 8% as required in this application. This problem is recognized in U.S. Pat. No. 6,174,329, which describes the need for protective coatings over radiopaque coatings to prevent the radiopaque coatings from flaking off when the stent is being used.
Another important limitation of radiopaque coatings deposited by physical vapor deposition is the temperature sensitivity of nitinol and other stent materials. As mentioned, shape memory biomedical devices are made with values of Af close to but somewhat below normal body temperature. If nitinol is raised to too high a temperature for too long its Af value will rise and sustained temperatures above 300-400 C will adversely affect typical Af values used in stents. Likewise, if stainless steel is raised to too high a temperature, it can lose its temper. Other stent materials would also be adversely affected. Therefore, the time-temperature history of a stent during the coating operation is critical. In the prior art it is customary to directly control the temperature of a substrate in such a situation, particularly one with a very low thermal mass such as a stent. This is usually accomplished by placing the substrate in thermal contact with a large mass, or heat sink, whose temperature is controlled. This process is known as controlling the temperature directly or direct control. Because of its shape and structure, controlling the temperature of a stent directly during coating would be a challenging task. Moreover, the portion of the stent in contact with the heat sink would receive no coating and the resulting radiographic image could be difficult to interpret.
Accordingly, there is a need in the art for biomedical devices having radiopaque coatings thick enough to provide good x-ray contrast, biomedical compatibility and corrosion resistance. Further, the coating needs to withstand the extreme strains in use without cracking or flaking and be sufficiently ductile so that the thermo-mechanical properties of the device are preserved.
Another serious disadvantage of stents and other medical devices made from biocompatible alloys discussed above, is that such alloys do not have surfaces capable of holding or retaining a drug or other desirable composition or material due to generally smooth non-porous surfaces of biocompatible metals.
The present invention is directed towards a biocompatible medical device having a biocompatible outer coating thereon which outer coating is able to withstand the strains produced in the use of the device without delamination. The outer coating may have a number of purposes such as being radiopaque to provide better imaging, or being somewhat porous to permit the incorporation of a medicinal drug or other compound or both.
When the outer coating is to permit better imaging, it is usually formed from a biologically inert heavy metal such as gold, platinum, or tantalum. When the coating is for other purposes it may be made of lighter metals and their alloys such as titanium or vanadium or inert alloys such as alloys of iron with chromium and/or nickel.
When the present invention is directed towards a medical device having a radiopaque outer coating, it is able to withstand the strains produced in the use of the device without delamination.
A medical device in accordance with the present invention can include a body at least partially comprising a nickel and titanium alloy or some other suitable material and a Ta coating on at least a portion of the body; wherein the Ta coating is sufficiently thick so that the device is radiopaque and the Ta coating is able to withstand the strains produced in the use of the device without delamination. The Ta coating can consist of either the bcc crystalline phase or the tetragonal crystalline phase. The coating thickness is preferably between approximately 3 and 10 microns. The device can be a stent or a guidewire, for example. The coating preferably is porous. The coating is applied via one of a generally oblique coating flux or a low energy coating flux.
A process for depositing a Ta or other metal layer on a medical device consisting of the steps of: maintaining a background pressure of inert gas in a sputter coating system containing a Ta (or other metal) sputter target; applying a voltage to the target to cause sputtering; and sputtering for a period of time to produce the desired coating thickness. When the metal is tantalum, the Ta layer preferably has an emissivity in the visible spectrum of at least 80%. The device preferably is not directly heated or cooled and the equilibrium temperature of the device during deposition is controlled indirectly by the process. The equilibrium temperature preferably is between 150° and 450° C. A voltage, ac or dc, can be applied steadily or in pulses to the medical device during the process. An initial high voltage, preferably between 100 and 500 volts, can be applied to preclean the device for a first period of time, preferably between 1 minute and 20 minutes. A second, lower voltage, preferably between 50 and 200 volts, can be applied for a period of time, preferably between 1 and 3 hours. Preferably, the inert gas is from the group comprising Ar, Kr and Xe. Preferably, the voltage on the target(s) produces a deposition rate of 1 to 4 microns per hour. The target preferably is a cylinder or a plate.
A medical device comprises a body having an outer layer and a radiopaque and/or porous coating on at least a portion of the outer layer; wherein the coating is applied using a physical vapor deposition technique.
These and other features, aspects and advantages of the present invention will become better understood with regard to the following description, appended claims, and accompanying drawings where:
The present invention is directed towards a medical device having a metallic outer coating that is able to withstand the strains produced in the use of the device without delamination. The coating may commonly be a radiopaque metal coating, e.g. of gold, platinum, tantalum or alloys of such metals with other metals.
Tantalum has a high atomic number and is also biomedically inert and corrosion resistant, making it an attractive material for radiopaque coatings in this application, although other materials may be used, such as, but not limited to, platinum, gold or tungsten. It is known that 3 to 10 microns of Ta is sufficiently thick to produce good X-ray contrast. However, because Ta has a melting point of almost 3000 C, any coating process must take place at a low homologous temperature (the ratio of the deposition temperature to the melting temperature of the coating material in degrees Kelvin) to preserve the Af values of the stents as described previously. It is well known in the art of physical vapor deposition that low homologous coating temperatures often result in poor coating properties. Nevertheless, we have unexpectedly found that radiopaque Ta coatings deposited under the correct conditions are able to withstand the strains inherent in stent use without unacceptable flaking.
Still more remarkable is the fact that we can deposit these adherent coatings at high rates with no direct control of the stent temperature without substantially affecting Af. Since normal body temperature is 37 C, the Af value after coating should be less than this temperature to avoid harming the thermomechanical properties of the nitinol. The lower Af is after coating the more desirable the process.
For a thermally isolated substrate, the equilibrium temperature will be determined by factors such as the heat of condensation of the coating material, the energy of the atoms impinging on the substrate, the coating rate, the radiative cooling to the surrounding chamber and the thermal mass of the substrate. It is surprising that this energy balance permits high-rate coating of a temperature sensitive low mass object such as a stent without raising the temperature beyond acceptable limits. Eliminating the need to directly control the temperature of the stents significantly simplifies the coating operation and is a particularly important consideration for a manufacturing process.
This patent relates to coatings that render biomedical devices including intraluminal biomedical devices radiopaque and that withstand the extremely high strains inherent in the use of such devices without unacceptable delamination. Specifically, it relates to coatings of Ta having these properties and methods for applying them that do not adversely affect the thermomechanical properties of stents.
An unbalanced cylindrical magnetron sputtering system described in U.S. Pat. No. 6,497,803 B2, which is incorporated herein by reference, was used to deposit the coatings.
In each coating run, stents 22 were placed at one of three positions, as shown in
Position A—The stents were held on a 10 cm diameter fixture 24 that rotated about a vertical axis, which was approximately 7 cm from the cathode centerline. The vertical position of the stents was in the center of the upper cathode. Finally, each stent was periodically rotated about its own vertical axis by a small “kicker”, in a manner well known in the art.
Position B—The stents 22 were supported from a rotating axis that was approximately 7 cm from the chamber centerline. The vertical position of the stents was in the center of the upper cathode.
Position C—The stents 22 were on a 10 cm diameter fixture or plate 24 that rotated about a vertical axis, which was approximately 7 cm from the cathode centerline. The vertical position of the stents was in the center of the chamber, midway between the upper and lower cathodes. Finally, each stent was periodically rotated about its own vertical axis with a “kicker.”
Prior to coating, the stents were cleaned with a warm aqueous cleaner in an ultrasonic bath. Crest 270 Cleaner (Crest Ultrasonics, Inc.) diluted to 0.5 pounds per gallon of water was used at a temperature of 55 C. This ultrasonic detergent cleaning was done for 10 minutes. The stents were then rinsed for 2 minutes in ultrasonically agitated tap water and 2 minutes in ultrasonically agitated de-ionized water. The stents were then blown dry with nitrogen and further dried with hot air. The manner in which the stents were cleaned was found to be very important. When the stents were cleaned ultrasonically in acetone and isopropyl alcohol, a residue could be seen on the stents that resulted in poor adhesion. This residue may be a consequence of material left after the electropolishing process, which is often done using aqueous solutions.
The Ta sputtering targets were preconditioned at the power and pressure to be used in that particular coating run for 10 minutes. During this step a shutter isolated the stents from the targets. This preheating allowed the stents to further degas and approach the actual temperature of the coating step. After opening the shutter, the coating time was adjusted so that a coating thickness of approximately 10 microns resulted. At a power of 4 kW the time was 2 hours and 15 minutes and at a power of 2 kW the time was 4 hours and 30 minutes. These are very acceptable coating rates for a manufacturing process. The stents were not heated or cooled directly in any way during deposition. Their time-temperature history was determined entirely by the coating process.
Table 1 summarizes the results. The level of flaking and Af temperatures at positions A and B were very similar in the experiments and were averaged to produce the values shown. The level of flaking was ranked using the following procedure:
Depending on the application, some level of flaking may be tolerated and we consider Level 2, Level 1 or Level 0 flaking acceptable.
It can be seen from the results with respect to positions A and B that a major factor in determining adhesion is the bias voltage. A bias of −150 V produces much better adhesion overall than a bias of −50 V. This is consistent with many reports in the literature that higher substrate bias produces better adhesion in many applications. However, it also produces greater heating at a given power, as determined by the Af values.
An important exception to the need for high bias to produce good adhesion is Run Number 5, which has both excellent adhesion and the lowest value for Af among the coatings. Moreover, the coating appearance of Run Number 5 was black, which could be appealing visually. This is indicative of a very high emissivity in the visible spectrum, characteristic of a so-called black body. As charted in
The combination of a very low Af and excellent adhesion is very surprising. Without being bound to this explanation, one possibility consistent with the observed results is that the coating is very porous. Low homologous temperatures (the ratio of the substrate temperature during coating to the melting point of the coating material, in degrees Kelvin) are known to produce open, columnar coating structures. Those skilled in the art will recognize that the porous coatings we are describing are those sometimes called Zone 1 coatings for sputtered and evaporated materials (see, for example, ‘High Rate Thick Film Growth” by John Thornton, Ann. Rev. Mater. Sci., 1977, 239-260).
The observed black appearance may be the result of an extremely porous coating. It is also known in the art that such morphology is also associated with very low coating stress, since the coating has less than full density. However, even if this explanation is correct, the excellent adhesion is very surprising. Typically the coating conditions that lead to such porous coatings result in very poor adhesion and we were able to aggressively flex the coating with no indication of flaking.
Another possible consequence of the high emissivity of the coating is the fact that the radiative cooling of the stent during coating is more effective than that of a low emissivity, shiny surface, thereby helping to maintain a low coating temperature.
Furthermore, as described in Utility patent application Ser. No. 11/040,433, which is incorporated herein by reference, sputtered Ta typically exists in one of two crystalline phases, either tetragonal (known as the beta phase) or body centered cubic (known as the alpha phase). The alpha phase of Ta is much more ductile than the beta phase and can withstand greater strains. Therefore, the alpha phase of Ta may be more desirable in this application.
An open, porous structure may have other advantages as well. For example, the microvoids in the coating would permit the incorporation of drugs or other materials that diffuse out over time. In the art, drug-eluting coatings on stents are presently made using polymeric materials. A porous inorganic coating would allow drug-eluting stents to be made without polymeric overcoats.
Surprisingly, the stents at position C as shown in
Stents in position C receive a generally more oblique and lower energy coating flux than stents in positions A or B. By an oblique coating flux we mean that the majority of the depositing atoms arrive in directions that are not generally perpendicular to the surface being coated. Some of the atoms arriving at the surfaces of the stents in position C from the upper and lower targets will have done so without losing significant energy or directionality because of collisions with the background sputter gas. Those atoms, most of which will come from portions of the targets close to the stents as seen in
Westwood has calculated (“Calculation of deposition rates in diode sputtering systems,” W. D. Westwood, Journal of Vacuum Science and Technology, Vol. 15 page 1 (1978)) that the average distance a Ta atom goes in Ar at 3.4 mTorr before its energy is reduced to that of the background gas is between about 15 and 30 cm. (The distance would be somewhat less in Kr and the exact value depends on the initial energy of the Ta atom.) Because our cylindrical targets have an inside diameter of approximately 34 cm, substrates placed in the planes of the targets (positions A and B) receive a greater number of high energy, normal incidence atoms than those placed between the targets (position C).
The geometry of the cylindrical magnetron arrangement shown in
In summary, referring to
It is widely known in the art that when the atoms in a PVD process arrive with low energies or at oblique angles to the substrate surface, the result is a coating that is less dense than a coating made up of atoms arriving at generally normal incidence or with higher energies. The black appearance of the low power DC coatings deposited with low substrate bias (Run 5 in Table 1 and Run 8 in Table 2) may be the result of considerable coating porosity. Normally low-density PVD coatings are not desirable, but we have found that conditions that result in relatively low density or porous coatings produce very desirable results in this application.
Further evidence of the importance of the coating geometry is seen in the following experiment. A number of coatings were done in Kr at a pressure of 3.4 mTorr, a DC power of 2 kW and a bias of −50 V using the fixture shown in
The non-uniformity in appearance that resulted with the fixturing shown in
Other methods of positioning and moving the substrates within the chamber can also produce results similar to those described above and are within the scope of the invention. In another experiment three stents were located as shown in
An alternative, although less desirable, approach to oblique incidence coatings or large target to substrate distances in order to reduce the energy of the arriving atoms through collisions is to raise the pressure of the sputtering gas.
Sputtering takes place under conditions of continuous gas flow. That is, the sputtering gas is brought into the chamber at a constant rate and is removed from the chamber at the same rate, resulting in a fixed pressure and continuous purging of the gas in the chamber. This flow is needed to remove unwanted gases, such as water vapor, that evolve from the system during coating. These unwanted gases can become incorporated in the growing coating and affect its properties.
The high vacuum pumps used in sputtering, such as diffusion pumps, turbomolecular pumps and cryogenic pumps, are limited with respect to the pressure that they can tolerate at their openings. Therefore, it is well known that in order to achieve high sputtering pressures it is necessary to “throttle” such pumps, or place a restriction in the pump opening that permits the chamber pressure to be significantly higher than the pressure at the pump. Such “throttling” necessarily reduces the flow of gas through the chamber, or gas throughput. Surprisingly, we have found that the adherence of the coatings is improved at high gas throughputs.
In one experiment, a cylindrical magnetron cathode with an inside diameter of 19 cm and length of 10 cm was used to coat a stent with Ta at a sputtering pressure of 30 mTorr in Ar. In order to achieve this pressure, it was necessary to throttle the turbomolecular high vacuum pump on the vacuum system. The Ar flow during this coating was 0.63 Torr-liters per second, corresponding to a throttled pumping speed of 21 liters per second. The stent was placed in the center of the cathode, approximately 9 cm from the target surface. The sputtering power to the cathode was 200 W. According to Westwood's calculations, the average distance a Ta atom travels in Ar at 30 mTorr before reaching thermal velocities is between 1.7 and 3.4 cm, depending on its initial energy. Therefore, these coating conditions should result in a very low-density coating. The black appearance of the coated stent confirmed that this was the case. However, the coating had very poor adhesion.
In another experiment, coatings were done on stents in the C position using the 34 cm diameter dual cathode shown in
Based on the foregoing results, we conclude that adequate adhesion does not result at low gas throughputs, which are usually necessary to achieve high sputtering pressures. The sputtering pressure and system geometry must be chosen together so that the coating flux arrives at the substrate surface either at high angles of incidence or after the sputtered atoms have traveled a sufficient distance from the target to reduce their energies significantly.
While the geometry of a cylindrical magnetron makes this possible in an efficient way, as we have shown, the same results can be accomplished using planar targets as well. In the case of planar targets, the requirement is to place the substrates far enough from the target surface(s) that a large target-to-substrate distance is achieved. Alternatively, the substrates could be placed to the side of a planar target so that the material arrives at high incidence angles. This configuration is illustrated in
We have also discovered that the initial coating conditions can influence the microstructure and crystalline phase of our coatings while preserving excellent adhesion. In one experiment, stents were loaded in Position C using the setup shown in
Except for the initial five minutes of plasma cleaning and two minutes of −200 V bias sputtering, the conditions in the example above were the same as those that produced the structure shown in
Without being bound to this explanation, we are led to believe that a very important factor in the excellent adhesion of our coatings is the porous structure, which is promoted by oblique incidence and/or low energy deposition.
Although the present invention has been described in considerable detail with reference to certain preferred versions thereof, other versions are possible. For example, a device other than a stent can be coated with Ti or another inert metal or another material, e.g. to form a porous coating that will retain and slowly release a drug or other material or that will modify the coating to provide another benefit, e.g. increased biocompatibility, corrosion resistance or bioincorportation, e.g. permitting the growth of tissue into the coating or bio resistance, preventing the growth of tissue into the coating. Examples of such materials are slow release antibiotics, inert polymers, and slow release anticoagulants, The pores in the coating are of such a size that the drug (medicament) is retained over an extended time period and slowly released, e.g. over a time period of from a week to several years. Therefore, the spirit and scope of the appended claims should not be limited to the description of the preferred versions contained herein.
All features disclosed in the specification, including the claims, abstract, and drawings, and all the steps in any method or process disclosed, may be combined in any combination, except combinations where at least some of such features and/or steps are mutually exclusive. Each feature disclosed in the specification, including the claims, abstract, and drawings, can be replaced by alternative features serving the same, equivalent or similar purpose, unless expressly stated otherwise. Thus, unless expressly stated otherwise, each feature disclosed is one example only of a generic series of equivalent or similar features.
Any element in a claim that does not explicitly state “means” for performing a specified function or “step” for performing a specified function should not be interpreted as a “means” or “step” clause as specified in 35 U.S.C. §112.
This application is: a continuation-in-part of U.S. patent application Ser. No. 11/151,583 filed Jun. 13, 2005 that in turn claims the benefit of U.S. provisional application No. 60/579,577 filed Jun. 14, 2004, and a continuation-in-part of U.S. patent application Ser. No. 11/087,909 filed Mar. 23, 2005 that claims the benefit of U.S. provisional application No. 60/555,721 filed Mar. 23, 2004 and is a continuation-in-part of U.S. patent application Ser. No. 11/040,433 filed Jan. 21, 2005 that claims the benefit of U.S. provisional application No 60/538,749 filed Jan. 22, 2004; the entire disclosures of which are incorporated herein by reference in their entirety for any and all purposes.
Number | Date | Country | |
---|---|---|---|
60579577 | Jun 2004 | US | |
60555721 | Mar 2004 | US | |
60538749 | Jan 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11151583 | Jun 2005 | US |
Child | 11586836 | Oct 2006 | US |
Parent | 11087909 | Mar 2005 | US |
Child | 11586836 | Oct 2006 | US |
Parent | 11040433 | Jan 2005 | US |
Child | 11586836 | Oct 2006 | US |