The technical field of the invention is that of minimally-invasive medical devices.
There is a continuing need for instruments to diagnose and treat people by means of minimally-invasive surgical procedures. For example, various organs and passages in the body are subject to the development of stones, calculi and the like. Kidney stones are a common problem in the United States. Kidney stones are painful and are the most frequent cause of kidney inflammation. Calculi and concretions in other parts of the biliary system are also commonplace. Similarly, stones, calculi, concretions and the like can develop throughout the renal or urinary system, not only in the ureters and distal to them, but also in the renal tubules and in the major and minor renal calyxes.
Minimally invasive surgical procedures have been developed for the removal of stones, calculi, concretions and the like from the biliary, vascular, and urinary systems, as well as for the removal or retrieval of foreign bodies from a variety of locations in the body. Such procedures avoid the performance of open surgical procedures such as, for example, an anatrophic nephrolithotomy.
Minimally invasive procedures can instead employ percutaneous access, in which stones, calculi, concretions, foreign bodies and the like are removed through a percutaneously inserted access sheath. Several access routes are suitable, depending upon the specific system and the particular location in the system at which the stones, calculi, concretions, foreign bodies or the like are found. One access route that is infrequently used is direct percutaneous insertion of a retrieval device to remove calculi and kidney stones.
Without regard to the particular access route, percutaneous extraction may be based upon the use of catheters or similar devices to engage and remove the stones, calculi, concretions, foreign bodies and the like. Such catheters and devices typically comprise a hollow, flexible sheath and a retrieval device at the distal end of an inner cannula. The retrieval device may be a basket comprising a plurality of wires positioned in and extendable from the sheath. The wires are joined or arranged so as to form a basket or forceps for engaging the object to be retrieved when the wires are extended from the sheath. The basket can be collapsed by withdrawing the wires into the sheath. A helical basket permits entry of the stone or the like from the side of the basket, while an open ended (“eggwhip”) basket allows a head-on approach to the stone or the like.
Other retrievers and graspers can include forceps or can include a loop or snare for encircling the body to be removed, the loop or snare being made of the wire. Such devices may be used in conjunction with a nephroscope, to aid the physician in seeing the operating field. Using such a device also tends to limit the size of the cannula and basket used.
Despite their successful use for some time, such retrieval devices are subject to drawbacks. The principal device that is used to retrieve kidney stones is a 3-pronged grasper. The prongs of the grasper, useful in grasping stones, may cause damage to kidney or contiguous tissue, leading to bleeding, and potentially significantly extending the time for the procedure. The very flexible, movable nature of these graspers adds to the problem, in that their flexibility and mobility make them more difficult to control. One particular aspect that makes these devices difficult to control is the fact that these devices are typically made of stainless steel, or of superelastic shape memory alloys, such as Nitinol-type alloys. Instruments made from these alloys are poorly visible under x-ray or fluoroscopy (essentially they are non-radiopaque), and surgeons are not able to trace the position of the instrument, or the end-effector as well as they might wish. If the instrument is being used with an endoscope or similar device, the field of view may, in particular situations, be highly restricted, and subsequent visibility under fluoroscopy and x-rays becomes necessary.
It would be highly desirable to have a device suitable for manipulating tissue or other objects inside the human body that is easier to observe for the capture and retrieval or extraction of kidney stones, or for a variety of other medical procedures. The device would ideally also be safe and effective.
One aspect of the invention is a medical manipulation device. The medical manipulation device includes a control rod and a retrieval device attached to the control rod, the retrieval device comprising a plurality of retrieving elements, the retrieving elements made from at least one radiopaque wire and a plurality of shape memory wires. The medical manipulation device also includes a sheath, configured so that when the sheath is retracted or the retrieval device is extended, the retrieval device extends from the sheath. The at least one radiopaque wire includes a superelastic radiopaque alloy with from about 3 to about 14 percent opacifying element, and either about 50 percent titanium and the balance nickel, or with about 50 percent nickel and the balance titanium.
Another aspect of the invention is a medical manipulation device. The device includes a control rod, a retrieval device attached to the control rod, the retrieval device comprising a plurality of retrieving elements, the retrieving elements made from at least one radiopaque wire and a plurality of shape memory wires, and a sheath, the sheath configured so that when the sheath is retracted or the retrieval device is extended, the retrieval device extends from the sheath. The at least one radiopaque wire includes one of an alloy containing 49.8 to 51.5 atomic percent nickel, 0.5 to 2% percent opacifying element, and the balance titanium, an alloy containing 49.0 to 51.0 atomic percent nickel, 2 to 20 percent opacifying element, and the balance titanium, an alloy containing about 34 to 49 atomic percent nickel, about 3 to 14 percent opacifying element, and the balance titanium, ASTM F562 alloy, L605 alloy, UNS R30605 alloy, AMS 5537 alloy, AMS 5759G alloy, and AMS 5796B alloy.
Another aspect of the invention is a medical manipulation device. The medical manipulation device includes a control rod, a radiopaque wire loop and a plurality of superelastic wire loops attached to the control rod, the wire loops formed into a basket with an atraumatic periphery. The device also includes a sheath and is configured so that when the sheath is retracted or the basket is extended, the basket expands, and the loops are in a relaxed condition when outside the sheath.
Another aspect of the invention is a medical manipulation device. The device includes a control rod and a retrieval device attached to the control rod. The retrieval device includes a plurality of retrieving elements made from at least one radiopaque wire and a plurality of shape memory wires. The device also includes a sheath, configured so that when the sheath is retracted or the retrieval device is extended, the retrieval device extends from the sheath. The at least one radiopaque wire is made from a superelastic radiopaque alloy with 34 to 49 atomic percent nickel, from 3 to 14 percent palladium, and the balance titanium. There are many aspects of the invention, a few of which are described in the drawings and explanations below.
a-3b depict the use of radiopaque wires in a wire bundle with non-radiopaque wires;
c-3d depict the use of radiopaque plating on a non-radiopaque wire;
a-4f depict several additional embodiments of baskets and retrieval devices made from superelastic radiopaque wire;
a-7d depict alternate configurations of manipulation devices;
a-11c depict a three-prong grasper made from at least one radiopaque wire;
a-12b depict a four-prong grasper made from at least one radiopaque wire;
a-13e depict a process for making a radiopaque manipulation device by a metal-removal process; and
a-14c depict an alternative process for making a radiopaque manipulation device by a metal-removal process.
There are many embodiments of the present invention, of which the drawings and this description present only a few. Embodiments of manipulation or retrieval devices may include wires that are made with a highly radiopaque core material, devices that include radiopaque markers or portions that are radiopaque, and retrieval devices that are plated with a radiopaque material. Because these devices are expensive or prone to other problems, retrieval devices made from radiopaque wires are preferred. A radiopaque component is defined as a component that is more visible in x-ray or fluoroscopic images than a comparable component made from a 50/50 atomic percentage alloy of nickel and titanium. It is also noted that standard Nitinol alloys may include a little less titanium, a slightly higher nickel content (up to about 50.25%) and a small amount of chromium (up to about 0.25%) for improved superelasticity properties. These small variations have no noticeable effect on radiopacity, and the small amount of chromium is not meant as the “third” metal in an alloy for imparting radiopacity.
Radiopaque wires may be made by alloying nickel and titanium with another metallic element (metal) or a combination of metallic elements (metals). The preferred alloys may include a 49.8 to 51.5 atomic percent nickel, a small percentage of tungsten, tantalum, palladium, platinum, gold, iridium, rhenium, rhodium, silver, ruthenium, osmium, copper, iron, vanadium, chromium, zirconium, niobium, molybdenum, and hafnium, such as 0.5 to 2%, and the remainder titanium. Other suitable alloys include those with 49.0 to 51.0 atomic percent nickel, 2 to 20 atomic percent tungsten, tantalum, palladium, platinum, gold, iridium, rhenium, rhodium, silver, ruthenium, osmium, vanadium, copper, iron, chromium, zirconium, niobium, molybdenum, and hafnium, and the balance titanium. Additional suitable alloys include those with 34.0 to 49.0 atomic percent nickel, about 3 to 14 percent Pd, and the balance titanium. In general, heavier metals, such as tungsten, tend to be more radiopaque than lighter metals, such as titanium. Particularly preferred alloying elements are the less-expensive metals, such as tungsten and tantalum; rather than metals that are effective at imparting radiopacity but are more expensive, such as palladium, platinum or gold.
Other radiopaque alloys may include 34-49 percent Ni, 3-14 percent of an opacifying element, and the balance Ti. The preferred opacifying elements may include Ir, Rh, Pt, Cu, Au, Ag, Fe, Os, and Ru. Other alloys may include about 49-51 percent Ni, about 2-20 percent Ir, Rh, Pt, Pd, Cu, Au, Ag, Fe, Os, and Ru, and the balance Ti. Still other alloys may include 49.8 to 51.5 atomic percent Ni, a small amount, about 0.5 to 2% of opacifying element, and the balance Ti. Opacifying elements for all these alloys preferably include Ir, Rh, Pt, Pd, Cu, Au, Ag, Fe, Os, and Ru. Other opacifying elements for these alloys may include Ta, W, Nb, Zr, V, Cr, Mo, Hf and Re.
Other radiopaque alloys may include 49-51 percent Ni, about 3-14 percent opacifying element, and the balance Ti. The preferred opacifying elements are preferably Ta, W, Nb, Zr, V, Cr, Mo, Hf and Re. Additional radiopaque alloys may include Ir, Rh, Pt, Pd, Cu, Au, Ag, Fe, Os and Ru. Still other radiopaque alloys may include about 49-51 percent Ni, about 2-20 percent of an opacifying element, and the balance Ti. The opacifying element is preferably one of Ta, W, Nb, Zr, V, Cr, Mo, Hf and Re.
In addition, finished wire, or a finished product made from wire, may be plated with a thin coating of a metal that is radiopaque. While many metals are possible, plating solutions are readily available for Au, Ag, Cu, Pd, Pt, Rh and Re, among others. Thus, radiopaque graspers and retrieval devices may include those devices made radiopaque by plating a radiopaque coating onto superelastic wire or onto a device made from superelastic wire.
In order to keep the size of the basket and the diameter of the sheath narrow, very thin wires are preferred, preferably wires having a diameter of about 0.0025 inches (about 0.063 mm) or less, but wires of any diameter may be used. Round wires are preferred, but wires of any shape may be used, including rectangular wire, square wire, wedge or “pie-shaped” wire, flat wire and triangular wire. Each “wire” depicted in the retrieval device embodiments disclosed herein may comprise two or more wires twisted together for greater stiffness and control of the device. In other embodiments, a flat wire, for instance, may be used for one arm of a grasper.
Metallic superelastic alloys have a characteristic “flag” shape in their stress-strain diagrams, as shown in
Examples of urinary tract stone manipulation devices taking advantage of the present invention are shown in
Other urinary tract stone manipulation devices include graspers, which are open ended baskets, and entrapment devices, which are used to minimize stone migration during lithotripsy procedures. In lithotripsy, a stone is fragmented, often by a laser, while using an entrapment device to prevent retrograde drift of the broken particles into the kidney. Subsequent removal of multiple fragments can be a tedious task requiring multiple endoscope passes and associated with patient discomfort.
a and 3b also depict wire bundles and cross sections of wires useful in embodiments of the present invention. In
Examples of biliary duct stone manipulation devices are shown in
Another embodiment of a basket 43 with 5 Fr radiopaque wire is depicted in
During the surgical stone manipulation procedure the devices are often endoscopically visible where the target object is in constant view throughout the operation. In some instances the stone manipulation device can be deployed beyond a stone and hence vision is impeded.
a-7d depict additional embodiments of baskets or retrieval devices in which radiopaque wires are very helpful.
c and 7d depict atraumatic baskets without a filiform, the baskets being deployed from flexible endoscopes 79.
A typical use is depicted in
In
The retrieval devices or baskets described above are formed by shaping the wires and loops into the desired shape at room temperature or below, preferably with a cold mandrel, and then annealing the properly-shaped basket at the proper annealing temperature for a time sufficient for the transformation to a superelastic state. In one example, a basket is formed from 0.11 mm diameter (about 0.0043 inches) Ni—Ti—Cu Nitinol wire and is annealed at 990° F. (about 530° C.) for about 10 minutes. The time and temperature for annealing will vary with the alloy selected and with the diameter (thickness) of the wire. The loops themselves, not merely the annealing oven, must remain at the desired temperature for the proper length of time for the annealing or heat-treatment to be complete. Proper annealing is very important for the wires and the loops to remain kink-free during deployment and operation of the basket. If kinks form for any reason, it may be difficult to deploy (expand) or retract the basket. It is understood that the retrieval devices are “trained” to assume a relaxed state in the shapes depicted in
The device is desirably formed before the annealing operation, as discussed above, including all wires or loops desired in the retrieval device. If the basket or retrieval device has a non-symmetrical shape, such as the shape depicted in
Radiopaque wires may be useful in other, more traditional graspers that are also useful in endoscopic procedures.
The grasper wires or tongs are preferably made from radiopaque wires, so that the surgeon can then follow the progress of the grasper itself as it emerges from the sheath and is deployed to the area of interest in the patient. The wires are also preferably trained, as described above, so that the wires will assume the grasping position shown in
a-11c illustrates a cannula 110 having a proximal portion 112, a first distal portion 114 which comprises a spiral cut, an intermediate portion 116 that is not spiral cut, a second distal portion 117, a grasper portion 118, arms 118a, and a central lumen 119. The cannula may comprise a hollow tube of the same material and size discussed above, and the first distal portion 114 may also have material cut in a spiral pattern 115 as shown in
The cannula with a grasping portion may also comprise a second intermediate portion 113 between the proximal portion 112 of the cannula 110 and the first distal portion 114. The second intermediate portion 113 may comprise from about 0.5 inches (13 mm) to about 2 inches (51 mm) of length of the cannula. The second intermediate portion may be useful in imparting a smaller degree of flexibility to the cannula than the first distal portion 114. The second intermediate portion 113 has a spiral cut also. This spiral cut may be only one-sixth to one-third as long as the first distal portion, and may also have a much larger pitch in its helical cut. Pitch is defined as the axial distance between corresponding points in the helical cut on the outer diameter of the cannula. Thus, in one embodiment, the first distal portion 114 may have a pitch of about 0.021 inches (about 0.5 mm). The second intermediate portion 113 may have a pitch of 0.04 inches (about 1 mm). The pitch of this portion is not limited to a constant value, but may vary as desired to achieve a desired degree of flexibility. In one embodiment, intermediate portion 113 may have an exponentially decreasing pitch, in which the pitch begins at a large value, as much as five times the pitch in the flexible portion 115, and exponentially decreases over several turns, until the pitch reaches the pitch value of the first distal portion. Any pitch may be used that yields a desirable degree of flexibility in this portion of the cannula.
The cannula with a first distal portion and a grasper portion may be used in a grasper for use inside the body of a human being. Other applications may be used for veterinary applications, or other applications in which a flexible grasper may be useful, such as mechanical or hydraulic applications. A flexible cannula 30 with a grasper is depicted in
a-12b depict a four-wire grasper with a control handle that performs in a manner similar to a three-wire grasper. The sheath and at least one wire are preferably radiopaque so that the surgeon may more easily maneuver the grasper 130 and manipulate a stone or fragment or other device with a body passage of a patient. The grasper is preferably used by maneuvering the grasper arms near the object to be removed, and the sheath or cannula is then advance via control button 134 on the handle. Alternatively, the grasper portion may be advanced to grasp the stone and then retracted, the arms drawing together as they are retracted into the cannula or sheath.
Grasper 130 may use the flexible cannula 137 in retrieving objects. As shown in
Medical manipulation and retrieval devices may be made from radiopaque wires. In addition, these devices, or at least their end-effectors, such as baskets or grasper arms, may be made from a tube or a sheet of the metallic alloy by using a metal or material removing process. Such processes are illustrated in
In
It will be understood that for best visibility, the loops or graspers, or other end-effector of a radiopaque retrieval device are made with a radiopaque alloy. However, radiopacity may be achieved by plating a radiopaque coating, such as a plating of gold or silver, or other radiopaque metal atop another metal, such as stainless steel or a Nitinol superelastic alloy. These embodiments are meant to be included within the scope of the invention. While many superelastic alloys are good candidates for alloying that will impart radiopacity while preserving their superelasticity, other alloys may also be used. For instance, alloys of Cu—Zn—Al and Cu—Al—Ni exhibit superelasticity and radiopacity.
Alloys with radiopacity may be prepared via vacuum induction melting. The components are charged and formed into an ingot. For instance, nickel, titanium, and a third or fourth element, as described above, may be vacuum melted in an induction furnace and formed into an ingot. The ingot may then be melted under vacuum a second time to ensure consistency throughout the mix. After the alloy is formed, it may be processed as desired to produce wire, tube, sheet, strip and barstock. Wire and tubing are prepared by drawing, the shape of the die determining the final shape, e.g., round wire, pie-shaped wire, or tubing of desired inner and outer diameter. Rectangular wire may also be drawn, and is particularly useful for the arms of grasper embodiments.
It will be recognized that other alloys may also be useful for medical retrieval devices as described herein, alloys which are radiopaque. For example, ASTM F562 alloy, 35-Co 35-Ni, 20-Cr and 10-Mo is radiopaque, and may be used for basket and grasper embodiments. Cobalt-tungsten alloy L605 is also known to be highly radiopaque, as are related alloys UNS R30605, AMS 5537, AMS 5759G, and AMS 5796B. These latter are cobalt based alloys, with about 10 Ni, 20 Cr, and 14-15 percent tungsten.
It is therefore intended that the foregoing detailed description be regarded as illustrative rather than limiting, and that it be understood that it is the following claims, including all equivalents, that are intended to define the spirit and scope of this invention.
This application claims the benefit of the filing date under 35 U.S.C. §119(e) of Provisional U.S. Patent Application Ser. No. 60/636,411, filed on Dec. 15, 2004, which is hereby incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
60636411 | Dec 2004 | US |