The invention relates to ventilation. The invention further relates to a radon vent fan system.
Radon is a naturally-occurring radioactive gas. According to the United States Environmental Protection Agency (EPA), radon is the second leading cause of lung cancer in America. Accumulation of radon in enclosed spaces such as residential settings is particularly dangerous because this gas is colorless, odorless, and tasteless and thus may remain unnoticed while posing a health risk. The EPA recommends intervention to provide radon reduction when a radon level is found to be 4 picoCuries per liter (pCi/L) or higher.
Ventilation equipment is known for use in radon applications. In order to address the potential for buildup of elevated or dangerous levels of radon, mitigation equipment such as a radon fan may be installed to create a low pressure area under the slab so that the radon gas is extracted and expelled outside before it can migrate into the structure. Radon fans can be installed inside or outside a structure, and operate 24 hours per day and 7 days per week.
In prior art radon mitigation systems, as shown for example in
A radon vent fan system includes an enclosure having an air inlet and an air outlet disposed in aligned relation to one another, and an assembly having a motor and an impeller associated therewith, the assembly retained in the enclosure. The enclosure provides a first condensate path between the air inlet and the air outlet to direct condensate substantially away from the assembly and to the air inlet, the first condensate path formed of a channel proximate an inner wall of the enclosure.
In some embodiments, the enclosure may have a front portion and a rear portion demountably coupled to each other, and the front portion and rear portion may be coupled to each other in a clamshell fashion. The air inlet may be entirely formed in the rear portion, and the air outlet may be formed by combining the front portion and rear portion. The front portion may have a cover demountably coupled thereto. The channel may be integrally formed with the front portion, and the motor may be coupled to the front portion.
A compartment may be provided adjacent the air inlet and in communication therewith. The compartment may include an opening in communication with a region proximate the impeller. The channel may be in communication with the compartment.
The channel may be formed when the front portion and the rear portion are demountably coupled to each other.
The air inlet and air outlet may be in aligned relation with respect to a first axis, and the channel may substantially extend parallel to the first axis. The enclosure may further include a wall disposed transverse to the first axis for permitting build-up of static pressure capability of the impeller.
The air inlet may be disposed transverse to the air outlet, and in some embodiments the air inlet may be disposed substantially perpendicular to the air outlet.
The channel may be integrally formed with the enclosure.
In addition, a radon vent fan system may include an enclosure having an inlet and an outlet disposed in aligned relation to one another with respect to a first axis, the enclosure being formed of a first portion and a second portion demountably coupled to each other. The system further may include an assembly having a motor and an impeller associated therewith, the assembly being retained in the enclosure. A first condensate path may be provided between the inlet and the outlet to direct condensate substantially away from the assembly and toward the inlet, the first condensate path including a channel proximate an inner wall of the enclosure and substantially extending parallel to the first axis, the channel being in communication with a compartment adjacent to the inlet and the compartment being in communication with the inlet. A second condensate path may be provided between a region proximate the impeller and the compartment.
In some embodiments, the enclosure further includes a wall disposed transverse to the first axis for permitting build-up of static pressure. Also, the inlet may be disposed substantially perpendicular to the outlet.
Preferred features of the present invention are disclosed in the accompanying figures, wherein:
Terms such as “top,” “bottom,” “front” and “rear” as used herein are provided as a non-limiting examples of the orientation of features.
In one exemplary application, a radon fan is installed on the exterior of a house and connected to an exterior venting pipe. For example, an exemplary radon mitigation system includes a radon vent pipe such as a 3 inch Schedule 40 PVC pipe extending from sub-slab gravel up to a vent stack discharge point above the highest eave of the roof (e.g., 12 inches above the roof surface), and an electric vent fan connected to the vent pipe. The radon vent fan is installed in a vertical run of the vent pipe, for example near where the radon vent pipe protrudes from the basement level of the house to the outside.
An exemplary embodiment of an inventive radon vent fan system is shown in
As shown for example in
As can be seen for example in
Rear portion 22 of enclosure 20 includes a three point mounting system in the form of tabs 30. Each of tabs 30 includes a hole therein to accommodate a fastener such as threaded fastener 31. The vent fan enclosure thus may be fastened to the side of a structure such as a house. Two tabs 30 are disposed proximate the inlet 32 (low pressure end), while one tab 30 is disposed proximate the outlet 34 (high pressure end). Such a three point mounting system assists in minimizing vibration and noise transferred between the radon vent fan system and the house.
In addition, rear portion 22 includes a central wall disposed transverse to line 38 which permits build-up of static pressure capability of the fan.
Turning to
The exemplary inventive radon vent fan system permits condensate to migrate from outlet 34 to inlet 32 without interacting with motor/fan unit 36. By placing the motor/fan unit 36 out of the direct path of the condensate, motor failures due to moisture can be decreased. It is known that significant moisture can accumulate in the vent pipe, for example in cold weather when warm, moist air from underground is circulated through the vent pipe which is exposed to colder temperatures. The exemplary inventive radon vent fan system provides positive drainage to the ground beneath the slab or soil-gas-retarder. Thus, condensate drips into the high pressure scroll region (an open region although covered by cover 44) such as in direction D, where it flows to region E (as shown in
Motorized impeller unit 36 includes a motor 36a and an impeller 36b. The motor for example may be an external rotor motor, typically with the rotor external, as known in the art. The impeller for example may be a backward curved impeller as known in the art. In an exemplary embodiment, the impeller may have a diameter of 7.48 inches, while the motor may have a power of 88 watts.
As shown in
The water path for condensate is shown for example in
Advantageously, in the exemplary embodiment, channel 50 is disposed substantially parallel to the direction of condensate flow (e.g., vertical). By orienting channel 50 substantially parallel to the direction of condensate flow between inlet 32 and outlet 34, rather than perpendicular to the direction of condensate flow, the likelihood of freezing and clogging of channel 50 is lowered. During very cold weather, it is important to facilitate draining of condensate and the exemplary embodiment permits condensate to flow with gravitational assistance.
Advantageously, the condensate drain of the exemplary embodiment may be molded into the housing 20. Moreover, because relatively warm air enters cavity 24c through inlet 32, the space therein may be maintained at relatively warm temperature to resist freezing of condensate during cold weather.
Moreover, as shown in
In the exemplary embodiment, rear portion 22 has a length d1 of about 44.7 cm, a width d2 of about 33.1 cm, and a height d3 of about 11.5 cm. In the exemplary embodiment, front portion 24 has a height d4 of about 7.3 cm, a length d5 of about 40.4 cm, a length d6 of about 45.1 cm, and a width d7 of about 34.0 cm. In the exemplary embodiment, cover 44 has a length d8 of about 31.4 cm and a length d9 of about 27.8 cm. In addition, in the exemplary embodiment, cover 42 has a height d10 of about 4.18 cm, a length d11 of about 15.0 cm, and a length d12 of about 9.6 cm.
Finally, the inventive system is provided in an aesthetically pleasing outer shape suitable for use on the side of a house.
While various descriptions of the present invention are described above, it should be understood that the various features can be used singly or in any combination thereof. Therefore, this invention is not to be limited to only the specifically preferred embodiments depicted herein.
Further, it should be understood that variations and modifications within the spirit and scope of the invention may occur to those skilled in the art to which the invention pertains. Accordingly, all expedient modifications readily attainable by one versed in the art from the disclosure set forth herein that are within the scope and spirit of the present invention are to be included as further embodiments of the present invention. The scope of the present invention is accordingly defined as set forth in the appended claims.
The benefits of U.S. Provisional Application No. 60/970,909 filed Sep. 7, 2007 and entitled “Radon Vent Fan System” are claimed under 35 U.S.C. § 119(e), and the entire contents of this application are expressly incorporated herein by reference thereto.
Number | Date | Country | |
---|---|---|---|
60970909 | Sep 2007 | US |