RAIL CROSSOVER

Information

  • Patent Application
  • 20120032130
  • Publication Number
    20120032130
  • Date Filed
    October 17, 2011
    13 years ago
  • Date Published
    February 09, 2012
    12 years ago
Abstract
A railing assembly that, in one embodiment, includes a first rail, a second rail, and a post that are coupled with a rail crossover assembly. The rail crossover assembly may include a first end with a first flange configured to be received in a cavity of the first rail, a second end with a second flange configured to be received in a cavity of the second rail, and a post coupling member configured to be received in a cavity of the post. The first end, the second end and the third end of the rail crossover assembly are oriented so the post is substantially orthogonal with respect to the first rail and the second rail.
Description
TECHNICAL FIELD

The present invention relates generally to fences and railing assembly and more particularly to a rail crossover that could be used to couple rails with a post.


BACKGROUND

Railing assemblies on various structures, such as porches and decks, act as a boundary to prevent persons from inadvertently falling off. The railing assembly typically has a plurality of spaced-apart vertical posts interconnected by rails. Rails and posts have been secured together using a number of different techniques. There remains a need, however, for a novel device for coupling rails and posts in a more efficient manner.


SUMMARY

According to one aspect, the invention provides a railing assembly with a first rail defining a longitudinally extending cavity, a second rail defining a longitudinally extending cavity, and a post defining a longitudinally extending cavity. A rail crossover assembly may be provided for coupling the rails and post so the post is substantially orthogonal with respect to the first rail and the second rail. The rail crossover assembly may include a first end with a first flange configured to be received in the cavity of the first rail and a second end with a second flange configured to be received in the cavity of the second rail. A post coupling member may be provided that is configured to be received in the cavity of the post.


In one embodiment, a first ridge may extend into the cavity of the first rail, which could be received by a slot defined in the first flange. In some cases, a second ridge may extend into the cavity of the second rail. The second flange could include a slot dimensioned to receive the second ridge. Additional ridges could extend into the cavities of the rails and additional slots could be provided in the flanges to receive the slots.


In some embodiments, the exterior surface of the first rail and the rail crossover assembly could have a substantially uninterrupted exterior surface contour when they are coupled together. Likewise, in some embodiments, the exterior surface of the second rail and the rail crossover assembly could have a substantially uninterrupted exterior surface contour when coupled together.


Embodiments are contemplated in which the rail crossover assembly may include side walls extending between an upper wall and a lower wall. In some cases, a platform could extend from the lower wall for supporting the first rail. Depending on the situation, the platform may define an opening dimensioned to receive a fastener for coupling the first rail to the platform. Depending on the particular application, the upper wall may have an arcuate shape. In some cases, the side walls and/or the lower wall may have a substantially planar shape. In one embodiment, the side walls are substantially orthogonal with respect to the lower wall and upper wall.


In one example embodiment, the first flange may include a first segment extending between a second segment and a third segment. In some cases, at least a portion of the first segment is arcuate in shape. Embodiments are contemplated in which the first segment is substantially orthogonal with respect to the second segment and the third segment. In some cases, the first segment, the second segment and/or the third segment include slot(s) for receiving ridge(s) extending from the first rail.


According to another aspect, the invention provides a rail crossover assembly. In some cases, the assembly may include a rail coupling member with a first end configured to receive a first rail and an opposing second end configured to receive a second rail. A base portion may be provided with a platform adapted to support the first rail and the second rail. Typically, the platform extends from the first end and the second end of the rail coupling member. The assembly may include a post coupling member extending from the base portion and adapted to be coupled with a post.


Embodiments are contemplated in which the rail crossover assembly may include a first flange extending from the first end of the rail coupling member and a second flange extending from the second end of the rail coupling member. In some cases, the first flange may include a first segment, a second segment, and a third segment. Depending on the application, the first segment could be substantially orthogonal with respect to the second segment and the third segment. In one embodiment, at least a portion of the first segment is arcuate in shape. The second segment and the third segment could be approximately planar in shape. In some embodiments, the first segment, the second segment and/or the third segment may include slot(s) for receiving a portion of the first rail.


Additional features and advantages of the invention will become apparent to those skilled in the art upon consideration of the following detailed description of the illustrated embodiment exemplifying the best mode of carrying out the invention as presently perceived. It is intended that all such additional features and advantages be included within this description and be within the scope of the invention.





BRIEF DESCRIPTION OF THE DRAWINGS

The present disclosure will be described hereafter with reference to the attached drawings which are given as non-limiting examples only, in which:



FIG. 1 is a perspective view showing an example crossover assembly according to an embodiment of the invention that is coupled with a first rail, a second rail and a post;



FIG. 2 is an exploded view showing an example embodiment of a crossover rail prior to mounting with a first rail and a second rail according to an embodiment of the invention;



FIG. 3 is a perspective view of the crossover rail shown in FIG. 2 in an assembled state prior to mounting a first rail and second rail; and



FIG. 4 is a perspective view of the rail crossover shown in FIG. 2.





Corresponding reference characters indicate corresponding parts throughout the several views. The components in the figures are not necessarily to scale, emphasis instead being placed upon illustrating the principals of the invention. The exemplification set out herein illustrates embodiments of the invention, and such exemplification is not to be construed as limiting the scope of the invention in any manner.


DETAILED DESCRIPTION OF THE DRAWINGS

While the concepts of the present disclosure are susceptible to various modifications and alternative forms, specific exemplary embodiments thereof have been shown by way of example in the drawings and will herein be described in detail. It should be understood, however, that there is no intent to limit the concepts of the present disclosure to the particular forms disclosed, but on the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the disclosure.



FIG. 1 shows an example embodiment of a rail crossover assembly 10 coupled with a first rail 12, a second rail 14, and a post 16. As used herein, the term “coupled” is broadly intended to encompass both direct and indirect connections. As shown, the rails 12, 14 extend orthogonally from the rail crossover assembly 10 with respect to the post 16. Typically, the post 16 may be oriented vertically and the rails oriented horizontally. As shown, the rail crossover assembly and rails 12, 14 are coupled such that their exterior surface contours are substantially uninterrupted. Embodiments are contemplated in which the rail crossover assembly 10, rails 12, 14 and post 16 may be formed from a metal including but not limited to aluminum and/or steel. In some embodiments, the rail crossover assembly 10, rails 12, 14 and post 16 may be formed from polyvinyl chloride (“PVC”) resin. One skilled in the art should appreciate that other suitable materials could be used for the rail crossover assembly 10, rails 12, 14 and post 16.



FIG. 2 is an exploded view of the example rail crossover assembly 10 and the rails 12, 14. In the example shown, the rail crossover assembly 10 includes a rail coupling member 18, a base portion 20, a plate 22, a post coupling member 24, a bolt 26, and a nut 28. In this example, the rail coupling member 18 includes a tab 30 that is received by an opening 32 in the base portion 18. As shown, the plate 22 includes a hole 34 that is dimensioned to receive the bolt 26. Likewise, as shown, the opening 32 is dimensioned to receive the bolt 26. Additionally, the tab 30 may include a passage (not shown) through which the bolt 26 may extend. Typically, the post coupling member 22 would be received by a post 16; in this manner, the rail crossover 10 couples the rails 12, 14 to a post 16. The example construction of the rail crossover assembly 10 is shown for example purposes only. Although the example rail crossover assembly 10 has multiple components, it should be appreciated by one skilled in the art that the rail crossover assembly 10 could be formed from a unitary member; likewise, multiple components could be combined into a unitary member and those combined components coupled together. Although the bolt 26 and nut 28 are shown as example fasteners for purposes of example, it should be appreciated that other fasteners could be provided to couple various components of the rail crossover assembly 10.



FIGS. 3 and 4 show the example rail crossover assembly 10 in an assembled state. In the example shown, the rail coupling member 18 includes a first end 36 and a second end 38. As shown, a first flange 40 extends from the first end 36 and a second flange 42 extends from the second end 38. In this example, the flanges 40, 42 are received in the rails 12, 14, respectively. In the example shown, the first flange 40 includes a first segment 44, a second segment 46, and a third segment 48 and the second flange 38 includes a first segment 50, a second segment 52, and a third segment 54. In this example, the second segment 46 is arcuate in shape, while the first and third segments 44, 48 are substantially planar to correspond with the internal periphery of the rails 12, 14. As shown, the second segment is oriented approximately orthogonal with respect to the first and third segments. It should be appreciated that the flanges 40, 42 could include a single segment or more than three segments.


In one embodiment, the rails 12, 14 may include one or more internal ridges that are received by one or more corresponding slots defined in the flanges 40, 42 of the rail coupling member 18. As shown in the example, the first rail 12 includes a first ridge 56, a second ridge 58, and a third ridge 60 that correspond to and are received by a first slot 62 defined in the first segment 44, a second slot 64 defined in the second segment 46, and a third slot 66 defined in the third segment 54.


As shown, the base portion 20 includes a platform 68 extending from the first and second ends 36, 38 of the rail coupling member 18. The platform 68 supports the rails 12, 14 when they are coupled with the rail coupling member 18. In this example, the platform 68 defines holes 70 through which fasteners, such as screws, could extend to couple the rails 12, 14 to the base portion 20. As shown the base portion 20, the platform extends through a tapered portion 72 to a collar 74. In this example, the base portion 20 includes a reduced dimension lower portion 76 with a substantially similar exterior dimension as the lower member 22. The post coupling member 24 extends from the lower portion 76 of the base portion 20. In the embodiment shown, the post coupling member 24 has a tapered shape to provide a frictional fit with the post 16. As shown, the post coupling member 24 includes a rib 76 to increase friction between the post coupling member 24 and the post 16. The plate 20 is received by the post coupling member 24. In the example shown, the lower portion includes ridges 80 that suspend the plate 20 above a bottom wall 82 of the post coupling member 24. As shown, the post coupling member 24 includes a reduced dimension area via an internally-extending wall 84 that is configured to hold the plate 22 substantially in place.


Although the present disclosure has been described with reference to particular means, materials, and embodiments, from the foregoing description, one skilled in the art can easily ascertain the essential characteristics of the invention and various changes and modifications may be made to adapt the various uses and characteristics without departing from the spirit and scope of the invention.

Claims
  • 1. A rail crossover assembly comprising: a rail coupling member with a first end configured to be coupled with a first rail and an opposing second end configured to be coupled with a second rail;a base portion with a platform adapted to support the first rail and the second rail, wherein the platform extends from the first end and the second end of the rail coupling member; anda post coupling member extending from the base portion and adapted to be coupled with a post.
  • 2. The rail crossover assembly of claim 1, further comprising a first flange extending from the first end of the rail coupling member and a second flange extending from the second end of the rail coupling member.
  • 3. The rail crossover assembly of claim 2, wherein the first flange includes a first segment, a second segment, and a third segment.
  • 4. The rail crossover assembly of claim 3, wherein the first segment is substantially orthogonal with respect to the second segment and the third segment.
  • 5. The rail crossover assembly of claim 4, wherein at least a portion of the first segment is arcuate in shape.
  • 6. The rail crossover assembly of claim 5, wherein at least a portion of the second segment and the third segment are approximately planar in shape.
  • 7. The rail crossover assembly of claim 3, wherein at least one of the first segment, the second segment and the third segment include a slot for receiving a portion of the first rail.
  • 8. The rail crossover assembly of claim 1, further comprising a collar extending from the platform.
  • 9. The rail crossover assembly of claim 8, wherein the base portion includes a tapered portion between the platform and the collar.
  • 10. The rail crossover assembly of claim 1, wherein the platform defines a hole for receiving a fastener.
  • 11. The rail crossover assembly of claim 1, wherein the post coupling member includes tapered side walls.
  • 12. The rail crossover assembly of claim 11, wherein the side walls include a rib for providing a frictional fit with a post.
  • 13. The rail crossover assembly of claim 1, further comprising a plate received by the post coupling member.
  • 14. A rail crossover assembly comprising: a rail coupling member with a first end configured to receive a first rail and an opposing second end configured to receive a second rail, wherein a first flange extends from the first end of the rail coupling member and a second flange extends from the second end of the rail coupling member, wherein the first flange includes an arcuate first segment that is substantially orthogonal with respect to a second segment and a third segment;a base portion with a platform adapted to support the first rail and the second rail, wherein the platform extends from the first end and the second end of the rail coupling member, wherein the platform defines a hole for receiving a fastener; anda post coupling member extending from the base portion, wherein the post coupling member includes tapered side walls.
RELATED APPLICATION

This is a divisional application of U.S. Utility application Ser. No. 12/568,982, filed on Sep. 29, 2009, entitled “Rail Crossover” which claimed the benefit of U.S. Provisional Application No. 61/100,885 filed Sep. 29, 2008, entitled “Rail Crossover,” the entire disclosures of which is hereby incorporated by reference.

Provisional Applications (1)
Number Date Country
61100885 Sep 2008 US
Divisions (1)
Number Date Country
Parent 12568982 Sep 2009 US
Child 13274985 US