The present invention relates generally to railroad right-of-way maintenance machinery, and specifically to machinery used for driving fasteners into rail ties for securing rail tie plates and rails to the ties.
Rail fasteners as contemplated herein include cut spikes, lag screws, hairpin spikes and other types of rail fasteners used for retaining tie plates upon ties, and rails upon tie plates, as are known to skilled practitioners. In some cases in the specification, “spikes” may be used interchangeably with “rail fasteners”. The use of the term “spikes” is not intended to limit the scope of the present invention.
During the course of railroad maintenance work, it is common that existing rail fasteners are removed for replacement of rail ties, tie plates, rails and for other maintenance operations. Once the desired maintenance is complete, the fasteners need to be reinstalled. Several types of rail fastener applicators or drivers are known, and suitable models are described in commonly assigned U.S. Pat. Nos. 4,579,061; 4,777,885; 5,191,840 and 5,671,679, all of which are incorporated by reference herein, and all of which are assigned to Nordco Inc. of Milwaukee, Wis.
Such rail fastener driving machines typically include a frame which is either self-propelled or towable along the track, a rail fastener driving apparatus with a fastener driving mechanism such as a fluid power cylinder provided with a reciprocating element for impacting a fastener and driving it into a tie, a fastener magazine configured for accommodating a plurality of rail fasteners and feeding them sequentially for driving by the element, a fastener feeder mechanism configured for conveying fasteners sequentially from the magazine to a location in operational relationship to the driving element.
Such devices typically have a travel position, where the fastener feeder mechanism is held sufficiently above the track to avoid damage by obstacles including the track itself. In addition, during operation, the units typically move between a first or fastener loading position, and a fastener driving position. It is important, for maintaining desired productivity rates, that the latter two positions are closer to the track. To avoid damage to the mechanisms, such units are designed for operation so that either travel is prohibited when these mechanisms are in the latter two positions, or the mechanisms automatically rise to the travel position when the unit begins to move to the next location.
While protecting the typically complicated rail fastener handling and driving mechanisms, this operational precautions tend to limit productivity as measured by the rate of fastener-driving by a particular unit.
Thus, there is a need for a rail fastener driving mechanism which enables greater fastener driving productivity while protecting the fastener driving mechanisms.
There is also a need for a rail fastener driving mechanism which is configured so that the unit can be transported along the track with the fastener driving mechanism in a position closer to the track for more rapid fastener driving and greater productivity.
The above-listed needs are met or exceeded by the present rail fastener driving apparatus with enhanced fastener positioning which overcomes the limitations of the current technology. The present apparatus features the ability to maintain the fastener feeding assembly closer to the track while the unit moves from one operational position to another. This feature is embodied in an obstruction accommodation mechanism which allows the fastener holding portion to pivot upwardly upon contact with obstructions, including portions of the track itself. Another feature of the present rail fastener driving apparatus is that the fastener feeder mechanism pivots and lowers the fastener toward the fastener driving element or hammer. This reduces fastener driving cycle time, in that the fastener is more rapidly placed in operational position for driving. As the fastener is lowered, it is properly oriented.
More specifically, the present invention includes a rail fastener driving apparatus for driving fasteners into ties of a railroad track. The apparatus includes a fastener driving mechanism with a reciprocating element for engaging a fastener and driving it into a tie, a fastener magazine configured for accommodating a plurality of rail fasteners and feeding them sequentially for driving by the element, a fastener feeder mechanism including a fastener holder configured for movement between a first position sequentially receiving one fastener from the magazine and a second position placing the fastener in a driving position for engagement by the driving element. The fastener feeder mechanism is configured for lowering and axially rotating the fastener from the first position to the second position.
In a preferred embodiment, the lowering and axial rotation occurs simultaneously. In another embodiment, a rail fastener driving apparatus as described above is provided wherein the fastener holder is configured for biased, pivotal movement relative to the feeder mechanism for accommodating obstacles encountered while the machine travels upon the track.
In still another embodiment, a method of driving rail fasteners into tie plates and ties of a railroad track, includes providing a rail fastener driving apparatus with a fastener driving mechanism and having a reciprocating element for impacting a fastener and driving it into a tie, a fastener magazine configured for accommodating a plurality of rail fasteners and feeding them sequentially for driving by the element, a fastener feeder mechanism including a fastener holder configured for movement between a first position receiving at least one fastener from the magazine and a second position placing the at least one fastener in a driving position for engagement by the driving element, the fastener holder being pivotally biased relative to the feeder mechanism for accommodating obstacles encountered while traveling along the track in the first position. Next, driving with the driving element a fastener supplied by the magazine to the fastener holder, retracting the driving element and the feed mechanism to the first position, one of loading another fastener into the fastener holder and moving the apparatus along the track, the other of loading another fastener into the fastener holder and moving the apparatus along the track, moving the fastener holder with a fastener to the second position for engagement by the driving element, stopping the apparatus on the track, finding a hole suitable for driving a fastener, and driving the fastener in the fastener holder using the driving element.
Referring now to
At least one operator's seat 26 is disposed on the frame 20 in operational relationship to a control system embodied by a joystick 28 or equivalent operator input system having at least one trigger, switch, button or other input mechanism.
A work area or operational zone 30 is defined by the frame 20 as a recess, one such recess is preferably formed on each side of the frame corresponding to one of the two rails 18 of the track. Additional structural support is provided by an elevated superstructure 32, which is the mounting point for a spotting carriage 34. As is known in the art, the spotting carriage 34 includes a series of shafts and fluid power cylinders used to selectively position operational units vertically, parallel and transverse to the rails 18 over portions of the track needing maintenance. While other arrangements are contemplated, a shaft 34a having an associated cylinder (not shown) controls movement parallel to the rail 18 (forward and back), a cylinder 34b controls movement transverse to the rail (left to right) and cylinder 34c controls vertical movement of the operational unit relative to the rail. It will be appreciated that extension and retraction of the cylinder 34b causes pivoting action about the shaft 34a. Also, the frame 20 is preferably provided with at least tie nipper (not shown) for pulling the tie 14 tight to the rail 18 for application of the fastener.
Referring now to
A rotating star wheel 48 is provided in operational relationship to the spotting carriage 34 and operates with a stop 50 fixed to the bracket 46 to precisely adjust the relative uppermost vertical position of the cylinder 42. The star wheel 48 includes a plurality of variable length protrusions 49. Depending on the rotational position of the star wheel 48 (under operator control), the uppermost vertical position of the cylinder 42, as well as the associate fastener 12 may be changed to accommodate variations in rail height.
Also included in each fastener driving unit 40 is a fastener magazine 52 configured for accommodating a plurality of the rail fasteners 12 and feeding them sequentially for driving by the ram 44. While other orientations are contemplated, the present fastener magazine is configured for accommodating the fasteners 12 in an arrangement such that the typically somewhat offset and elongate heads 54 are oriented in the direction of the rails 18 (best seen in
Referring now to
Referring now to
Referring now to
Returning to the jaw mount support 88, the second end 96 is preferably narrower than the first or wider end 92, with the central section 98 tapering therebetween, and the second end is provided with a jaw mount aperture 116 for receiving a jaw mount or jaw mount block 118. The jaw mount 118 has a body 120 having a generally “I”-shape when viewed from the front and provided with first and second sides 122. Each side 122 is configured to receive a corresponding jaw 124 which is pivotally secured to the side via a pivot pin 126 passing through a throughbore 127 approximately centrally located in the jaw and into the jaw mount body 120. The location of the throughbore 127 on the jaw 124 may vary to suit the application. The jaws 124 are preferably “T”-shaped when viewed from the side. Each jaw 124 has a relatively narrow pivot end 128 and a relatively wider free end 130 opposite the pivot end and as such reciprocate laterally on the jaw body 120. At least one jaw spring 132 is connected to the corresponding jaw 124 and to the jaw mount body 120 to bias the jaws to a closed position about a fastener (best seen in
Another feature of the present fastener driving unit 40 is that the fastener holder 64 is biased by the spring rod 102, not only in the direction of travel of the machine, but also to the second, or fastener driving position under the ram 44. In this manner, overload or obstacle impact protection is provided by the spring rod biasing force being exerted in a direction transverse to the gripping force exerted by the jaws 124. This obstacle protection feature enables the present fastener feeder mechanism 62 to move between the first and second positions while the machine 10 moves relative to the track. While conventional fastener driving machines required the fastener feeder mechanism and/or the ram 44 to be raised between fastener driving operations as the machine was moved from tie-to-tie, such repeated vertical repositioning lengthens the fastener driving cycle time and reduces the productivity of the machine.
An advantage of the obstacle accommodation feature of the present pivotable jaw mount support 88 is that it reduces the cycle time of the rail fastener driving operation, and enables the practicing of an unconventional sequence of rail fastener driving. Using the above-identified rail fastener apparatus, including the fastener driving units 40 with the fastener holder 64 or their equivalent, the following method of driving rail fasteners 12 into tie plates 16 and ties 14 of a railroad track may be practiced.
As described above, the rail fastener driving apparatus 10 is provided with at least one fastener driving mechanism 40 having a reciprocating element 44 for impacting a fastener and driving it into a tie, a fastener magazine 52 configured for accommodating a plurality of rail fasteners and feeding them sequentially for driving by the element 44 and a fastener feeder mechanism 62 including a fastener holder 64 configured for movement between a first position receiving at least one fastener from the magazine 52 and a second position placing the at least one fastener in a driving position for engagement by the driving element. The fastener holder 64 is pivotally biased relative to the feeder mechanism 62 for accommodating obstacles encountered while traveling along the track in the first position.
Next, a fastener supplied by the magazine 52 to the fastener holder 64 is driven using the driving element 44. Upon the completion of the driving step, the driving element 44 is retracted and the feeder mechanism 62 is moved to the first position. Next, either another fastener is loaded into the fastener holder 64, or the apparatus 10 is moved along the track, followed by the other of loading another fastener into the fastener holder and moving the apparatus along the track. At this point, the fastener holder 64 with a fastener is moved to the second position for engagement by the driving element 44. The movement of the apparatus 10 along the track is stopped, and the operator locates a hole suitable for driving a fastener. Lastly, the operator drives the fastener in the fastener holder into the tie 14 using the driving element 44.
Thus, it will be seen that the present rail fastener driving units provide a relatively reduced fastener driving cycle time which is intended to increase operational efficiency of this rail maintenance operation. In addition, the obstacle accommodation feature reduces the damage incurred by the fastener feeding mechanism when located close to the rail during machine movement.
While a particular embodiment of the present rail fastener driver with enhanced fastener positioning has been described herein, it will be appreciated by those skilled in the art that changes and modifications may be made thereto without departing from the invention in its broader aspects and as set forth in the following claims.