The present application is a U.S. National Phase application under 35 U.S.C. § 371 of PCT/ES2018/070359 filed May 16, 2018, the contents therein of the applications is incorporated by reference herein in its entirety.
The present invention is encompassed in the field of building automation devices, such as for example those that control lighting, blinds, air conditioning, etc.
Currently, the use of home automation and building management systems is being extended for building automation, which is done through devices with mainly electrical and electronic elements that allow the automation of certain tasks, such as lighting control, shutter control—such as the raising and lowering of blinds—the control of ambient air by means of air conditioning and heating appliances, surveillance, doorbells, etc. However, the implementation of this automation has led to the installation of many devices, which have a certain size and certain specific operating requirements, which sometimes makes them unfeasible due to their low ability to adapt to new communications, electrical and electronic requirements, like to certain relatively low-volume spaces, such as a low ceiling.
Patent WO2008/097992A1 is known which explains a building automation system with modular components, which in one embodiment are of the type of attachment to a standard rail with the aim of making the system more compact, avoiding the extensive use of wiring. Advantageously, each modular component can be of the same height and depth to be arranged laterally overlapping occupying the length of the rail, in which a power bus and a data bus can be arranged, either separately or combined. It is cited that any communication protocol can be used, specifically using a modular component intended for communications.
Patent US2008/0244104A1 is known, which explains a building automation system comprising a communications adapter with the various system devices, the adapter includes a fieldbus, can operate under several protocols. The schematic configuration of the adapter and device is explained, without reflecting a specific configuration.
Patent US2016/0191268A1 is known, which explains a building automation system with devices that include functional interchangeable modules, these are configured as portions insertable from the front of each device, some modules can be communications modules including different protocols. In the configurations shown, a fuse box and a light bulb socket are included.
The present invention is defined and characterised by the independent claims, while the dependent claims describe additional features thereof.
The subject matter of the invention is a rail-mounted building automation device that adapts to the different space and communications requirements. The technical problem to solve is to configure said device to reach the mentioned object.
In view of the foregoing, the present invention relates to a rail-mounted building automation device comprising a communication module (also called “MCU”) having a communications bus of the device, being understood as with its exterior, either through wired or wireless network, an application module (also called “MAU”) that implements the functionality of the device, i.e., it carries out the functions of the device, if it is a light switch, it will turn the lights on and off, etc., and a bus connector between the two modules, as is known in the state of the art.
The device is characterised in that the bus connector is at the same time for power supply and data transfer, the communication module comprising a first casing composed of an upper body with a first front wall and a first rear wall from which at least ten pins of the bus connector project, and a lower body with a second front wall that has a first recess in which the communications bus is inserted and a second rear wall, so that the first front wall is further forward than the second front wall with respect to a user, and the first rear wall is also further forward than the second rear wall with respect to the user, the application module comprising a second casing with a first projection comprising a second recess and a third recess with a third front wall from which a receiving connector for the bus connector pins projects, a fourth front wall that has a fourth centered recess that includes first electrical connection terminals, a fifth front wall that has a fifth centered recess and respective sixth and seventh recesses, these sixth and seventh recesses including second and third terminals respectively, at least a first protrusion facing a second projection, both projections being separated at approximately the width of the rail on which the device can be placed, in use when the ten pins of the bus connector are introduced in the receiving connector, the upper body is introduced in the third recess and the lower body in the fifth recess, and the first casing is joined to the second casing by securing means.
In this way, a compact device adaptable to any rail and also adaptable to any communications environment is achieved by simply placing the appropriate communications bus, i.e., that of the protocol necessary for the specific application. In this way a single MAU can be maintained for different applications in which the communication protocol changes, usually when changing countries, whereby only the MCU needs to be changed, with the economic and installation-related advantage that this implies. Likewise, this can be used for maintenance work in which a user does not have to be deprived of the device for a long period of time due to breakdown of the power stage or electrical maneuver, since merely the MAU is to be changed, which entails only a few seconds, avoiding bus reconnection and probably reconfiguration of the device.
Another added advantage is that it allows the development of the functionalities of the devices to be independent from that of communication, by having the MAU separated from the MCU, speeding up the development of new devices or the updating of existing ones.
Another advantage is that it allows the implementation of homogeneous multiprotocol solutions.
Another advantage is that in the updating of existing installations it allows the devices of the invention to be placed gradually, being able to coexist with old devices and even with those of different manufacturers.
“Rail” refers to the 35-mm DIN rail model, here named based on its relationship with the invention but without being part of it.
The present specification is completed by a set of figures that illustrate a preferred embodiment and in no way limit the invention.
The present invention is a rail-mounted building automation device, shown in an exploded view in
The communication module (1) comprises a first casing (1.2), represented as two halves in
The position of the first front wall (1.4) with respect to the second front wall (1.7) creates a step in the outer surface of the first casing (1.2) which causes the first recess (1.8) into which the communications bus (1.1) is inserted to be behind the most protruding surface of the device, and therefore, at a distance away from a possible electrical cabinet cover in which the rail with the device is situated, thus increasing the safety of the connection.
In use,
A detail of the explained embodiment is that the securing means (7) are at least one flange (7.1) arranged in the first casing (1.2),
Another detail of the explained embodiment is that the flange (7.1) in the first casing (1.2) is arranged in the upper body (1.3) and the hollow (7.2) in the second casing (2.1) is arranged in the third recess (2.4),
Another detail of the explained embodiment is that each of the first (4), second (5) and third terminals (6) is a module insertable in each of their corresponding recesses: fourth (2.7), sixth (2.10) and seventh recess (2.11),
Preferably, the communication module (1) has a first LED indicator (1.12) and a first push-button (1.13), which allow the user to interact and parameterise some functions of the device,
Advantageously, the first recess (1.8) is adapted for receiving the communications bus (1.1) according to one of the protocols selected from among KNX, C3, C4 and BACnet as shown respectively in
Specifically, for KNX and C3/C4,
On the other hand, for BACnet,
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/ES2018/070359 | 5/16/2018 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2019/219988 | 11/21/2019 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5037310 | Marinello | Aug 1991 | A |
5041704 | Stenz | Aug 1991 | A |
5775955 | Graube | Jul 1998 | A |
10186821 | Muller | Jan 2019 | B2 |
20080244104 | Clemente | Oct 2008 | A1 |
20150244121 | Kmelio et al. | Aug 2015 | A1 |
20160191268 | Diebel | Jun 2016 | A1 |
Number | Date | Country |
---|---|---|
CS20100021 | Jun 2012 | IT |
2008097992 | Aug 2008 | WO |
2009124217 | Oct 2009 | WO |
2015195202 | Dec 2015 | WO |
2016154461 | Sep 2016 | WO |
2016179320 | Nov 2016 | WO |
Entry |
---|
Jan. 31, 2019 (WO) International Search Report—App PCT/ES2018/070359. |
Han Ning et al. “Research of KNX device node and development based on the bus interface module” Proceedings of the 29th Chinese Control Conference, Jul. 2010, pp. 4345-4350. |
Jan. 21, 2021 (EP) Extended European Search Report—App. 18918963.2. |
Number | Date | Country | |
---|---|---|---|
20210135383 A1 | May 2021 | US |