The present invention generally relates to a rail transport system having no internal drive, and in particular to a dump loop and components thereof of a rail transport system for conveying bulk materials.
Methods and arrangements for moving bulk materials in conventional trains, trucks, conveyor belts, aerial tramways or as a slurry in a pipeline are well known and are typically used in various industries because of site-specific needs or experience. In the minerals and aggregate industries, for example, bulk materials are moved from mining or extraction sites to a process facility for upgrading or sizing. Trucks had been the system of choice for many years for moving bulk materials. Trucks were enlarged for off-road vehicles because of their efficient transport of bulk materials and increased capacity. These vehicles, however, are limited to site specific applications and are provided at a high capital cost. Major off-road trucks have evolved that require very wide roadways for passing each other, are not energy efficient per ton-mile of material transported, have limited hill climbing ability, and are dangerous because of potential of operator error as well as being environmentally unpleasant neighbors.
Trains have been used for many years for bulk material transport in hopper cars. Because of low friction, the use of free rolling iron or steel wheels on steel tracks they are very efficient users of energy but are limited in capacity relative to the drivers or locomotives required. Large tonnage long trains use multiple drivers that are heavy units, which dictate the weight of rail and ballast requirements. All railroads must be designed for the weight of the drivers or locomotives included fuel, not the combination of car plus loads, which are significantly less. The drivers need to be of sufficient weight so that the rotary drive tire makes contact with the stationary rail and must have sufficient friction to produce forward or reverse movement of what will include heavily loaded cars. The inclination capable of conventional railroad systems is limited to the friction between the weighted drive wheels and track. Rail cars are individual units that each has to be loaded in a batch process, one car at a time. Bulk materials can be unloaded from hopper cars by opening bottom dump hatches or can be individually rotated to dump out of the top. Spotting cars for both loading and unloading is time consuming and labor intensive.
Although moving from one location to another may be cost effective, the added cost of batch loading and unloading stages in shorter distance transports reduces the rail transport cost effectiveness. With normal single dual track train systems only one train can be used on a system at a time.
Conveyor belts have been used for many years to move bulk materials. A wide variety of conveyor belt systems exist that can move practically every conceivable bulk material. Very long distance single belt runs are very capital cost intensive and are subject to catastrophic failure when a belt tears or rips, typically shutting down the entire system and dumping the carried load, requiring cleanup. Conveyor belts are relatively energy efficient but can require high maintenance because of an inherent problem of multiple idler bearings requiring constant checking and replacement. Short distance conveyor belts are commonly used in dry or clamp transport of almost all types of materials. Because conveyor belts are very flexible and desirably operated over fairly flat terrain, they are not efficient at transporting moderately high solids slurry where water and fines can accumulate in low spots and spill over the side creating wet spilled slurry handling problems.
Some bulk materials can be transported in pipelines when mixed with water to form slurry that is pushed or pulled with a motor driven pump impeller in an airless or flooded environment. The size of the individual particles that are present in the bulk materials dictates the transport speed necessary to maintain movement. For example, if large particles are present then the velocity must be high enough to maintain movement by saltation or skidding along the bottom of the pipe of the very largest particles. Because pipelines operate in a dynamic environment, friction is created with the stationary pipe wall by a moving fluid and solid mass. The higher the speed of the moving mass the higher the friction loss at the wall surface requiring increased energy to compensate. Depending on the application, the bulk material has to be diluted with water initially to facilitate transport and dewatering at the discharge end.
Light rail, narrow gage railroads for transporting bulk material from mines and the like is known as described by way of example with reference to U.S. Pat. No. 3,332,535 to Hubert et al. wherein a light rail train made up of several cars is propelled by drive wheels and electric motors combinations, dumping over an outside loop. By way of further example, U.S. Pat. No. 3,752,334 to Robinson, Jr. et al. discloses a similar narrow gage railroad wherein the cars are driven by an electric motor and drive wheels. U.S. Pat. No. 3,039,402 to Richardson describes a method of moving railroad cars using a stationary friction drive tire.
While the above described transport systems and methods have specific advantages over conventional systems, each is highly dependent upon a specific application. It has become apparent that increases in labor, energy and material costs plus environmental concerns that alternate transport methods need to be applied that are energy and labor efficient, quiet, non-polluting, and esthetically unobtrusive. US Patent Publications US 2003/0226470 to Dibble et al. for “Rail Transport System for Bulk Materials”, US 2006/0162608 to Dibble for “Light Rail Transport System for Bulk Materials”, and U.S. Pat. No. 8,140,202 to Dibble describe a light rail train utilizing an open semi-circular trough train with drive stations, the disclosures of which are herein incorporated by reference in their entirety. Such a light rail system offers an innovative alternative to the above mentioned material transport systems and provides for the transport of bulk materials using a plurality of connected cars open at each end except for the first and last cars, which have end plates. The train forms a long open trough and has a flexible flap attached to each car and overlapping the car in front to prevent spillage during movement. The lead car has four wheels and tapered side drive plates in the front of the car to facilitate entry into the drive stations. The cars that follow have two wheels with a clevis hitch connecting the front to the rear of the car immediately forward. Movement of the train is provided by a series of appropriately placed drive stations having drive motors on either side of the track which are AC electric motors with drive means such as tires to provide frictional contact with the side drive plates. At each drive station, each drive motor is connected to an AC inverter and controller for drive control, with both voltage and frequency being modified as needed. The electric motors each turn a tire in a horizontal plane that physically contacts two parallel side drive plates external of the wheels of each car. Pressure on the side drive plates by these drive tires converts the rotary motion of the tires into horizontal thrust. The wheels on the cars are spaced to allow operation in an inverted position by use of a double set of rails to allow the cars to hang upside down for unloading. By rotating this double track system the unit train can be returned to it normal operating condition. Such a system is well known and commercially referred to as the Rail-Veyor™ material handling system.
Flanged wheels may be symmetrical to the side drive plates allowing operation in an inverted position which, when four rails are used to encapsulate the wheel outside loop discharge of the bulk material is possible. By using elevated rails, the train can operate in the inverted position as easily as in the convention manner. Yet further, drives for such light rail systems have been developed as described in U.S. Pat. No. 5,067,413 to Kiuchi et al. describing a device for conveying travelable bodies which are provided no driving source, on a fixed path. A plurality of travelable bodies travels on the fixed path while aligned substantially in close contact with each other. Traveling power is transmitted to one of a plurality of travelable bodies which is positioned on at least one end of the alignment. The traveling power drives the travelable body with frictional force while pressing one side surface of the travelable body, and is transmitted to the travelable body while backing up the other side surface of the travelable body. A device to transmit traveling power is arranged on only a part of the fixed path.
While light rail systems such as the Rail-Veyor™ material handling system above described are generally accepted, there is a need to provide an rail system having a dump loop and components thereof that permit unloading of the cars of the train in a predetermined location. Further, a need exists for various components of the dump loop to be modularized.
The present invention generally relates to a rail transport system having no internal drive, and in particular to an improved rail transport system for conveying bulk materials. The rail transport system includes allows for functionality, manufacturability and/or modularity and, therefore, can result in a reduction in system component costs, manpower and/or implementation. The rail transport system includes a dump loop and components thereof for enabling unloading of the rail cars in a predetermined location. The components thereof may be designed to be modular to allow for ease of manufacture and installation of the dump loop. The components may be prefabricated for later use on site.
In one embodiment, the present invention provides for a modular rail section for a dump loop in a train system, the modular rail section comprising:
In another embodiment of the modular rail section or sections as outlined above, the rail section is a modular dump loop section and the set of parallel rails are inner rails and have an annular curve to form at least a partial loop, wherein the modular dump loop section further comprises:
In another embodiment of the modular rail section or sections as outlined above, entrance ends of the outer rails are tapered.
In another embodiment of the modular rail section or sections as outlined above, the dump loop section angle is greater than 180°.
In another embodiment of the modular rail section or sections as outlined above, the dump loop section angle is less than 180°.
In another embodiment of the modular rail section or sections as outlined above, the dump loop section angle is from 180° to 130°.
In another embodiment of the modular rail section or sections as outlined above, an angle of entrance into the modular dump loop section is horizontal or above grade.
In another embodiment of the modular rail section or sections as outlined above, an angle of entrance into the modular dump loop section is 20 above grade.
In another embodiment of the modular rail section or sections as outlined above, an angle of exit from the modular dump loop section is horizontal or below grade.
In another embodiment of the modular rail section or sections as outlined above, an angle of exit from the modular dump loop section is 150°.
In another embodiment of the modular rail section or sections as outlined above, the modular dump loop section further comprises a set of outer rail extensions for connection to the exit end of the parallel outer rails for extending the parallel outer rails and increasing the dump loop angle.
In another embodiment of the modular rail section or sections as outlined above, the bracing comprises center bracing, C-bracing and/or spoke bracing reinforcing, supporting or maintaining the spacing and/or shape of the annular curve and/or the spacing of the inner and outer rails.
In another embodiment of the modular rail section or sections as outlined above, the rail section is a modular exit ramp for guiding the cars of a train thereupon in an inverted orientation, wherein the bracing is inverted rail bracing spanning the parallel set of rails and is substantially U-shaped for accommodating the cars of the train in an inverted orientation without impeding the travel of the cars and wherein an end of the modular exit ramp is adapted for connection to outer rails of a dump loop section.
In another embodiment of the modular rail section or sections as outlined above, the rail section is a modular inverted section for guiding the cars of a train thereupon in an inverted orientation, wherein the bracing is inverted rail bracing spanning the parallel set of rails and is substantially U-shaped for accommodating the cars of the train in an inverted orientation without impeding the travel of the cars.
In another embodiment of the modular rail section or sections as outlined above, the parallel rails are substantially straight and contain no annular curve.
In another embodiment of the modular rail section or sections as outlined above, the parallel rails are contain an annular curve.
In another embodiment of the modular rail section or sections as outlined above, the rail section is a modular dump ramp for guiding cars of a train thereupon in a substantially upright orientation, wherein the parallel rails have a fixed predetermined length and wherein an exit end of the parallel rails is adapted for connection to inner rails of a dump loop section.
In a further embodiment, the present invention provides for a rail system comprising a modular dump loop comprised of any one of the modular sections as outlined above.
In yet a further embodiment, the present invention provides for a rail system comprising an underground dump loop for unloading cars of a train traveling on the rail system, wherein the rail system comprises:
In another embodiment of the rail system as outlined above, the dump loop section is comprised of a modular dump loop section as outlined above.
The present invention will now be described more fully hereinafter with reference to the accompanying drawings, in which illustrative embodiments of the invention are shown. This invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments and examples set forth herein nor should the invention be limited to the dimensions set forth herein. Rather, the embodiments herein presented are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art by way of these illustrative and non-limiting embodiments and examples. It will be understood to the person of skill in the art that many different forms and variations of the embodiments, examples and illustrations provided herein may be possible, and the various embodiments, examples, and illustrations provided herein should be construed as non-limiting embodiments, examples, and illustrations.
With reference initially to
With continued reference to
As herein illustrated, the lead car 16 has a trough 54 and opposing side plates 28a, 28b having a reduced distance between them for smooth entrance into opposing drive tires 32a, 32b of the drive station. The rear car 22 has a trough and opposing side plates 28a, 28b which may be at a reduced distance between them to reduce shock when the train 14 exits the opposing drive tires 32a, 32b of the drive station 30. The intermediate cars 24 coupled to the lead car 16 and the rear car 22 by the clevis type coupling has its trough aligned to produce an overall open trough with gaps 56 between cars. A flexible flap 58 extends over the gap 56 between the cars 16, 24, 22. The cars, each comprise of a semi-circle open trough and when joined or coupled together represents an open and continuous rigid trough for the entire length of the train. A flexible sealing flap attached near the front of the trailing car overlaps but is not attached to the rear of the lead car trough. A semi-circular trough is much better sealed with the flexible flap that other designs such as showed in U.S. Pat. No. 3,752,334. This allows the train to follow the terrain and curves without losing its sealed integrity as a continuous trough. The material to be transported in the train is effectively supported and sealed by this flap as the material weight is equally distributed maintaining the seal against the metal trough of the forward car. The long continuous trough can provide for simplified loading as the train can be loaded and unloaded while moving similar to a conveyor belt. This can be considered an advantage over the batch loading equipment requirements of a conventional railroad hopper or rotary dump car.
As mentioned above, the track 12 can include a dump loop section for unloading the contents of the cars of the train 14 in a predetermined area or location. A number of different styles of unloading of the cars exist including for example a bottom dump, a side dump and an inversion dump.
An example of an inversion dump setup for unloading of a car is shown in the side schematic view of
The tangential dump ramp and the exit ramp 129 communicate with the loop portion 128 with entrance and exit angles varying to adapt to the particular geometry of the solution used in a given dump loop application of the track.
The loop 128 may include an entrance angle at which the track 123 tangentially meets the inner track 124 of the loop 128 and may include an exit angle at which the outer track 126 tangentially meets the exit ramp 129. Typically, the entrance angle may range from level to more than 20°. The exit angle may range from level to more than 150°. It will be appreciated that the angles may change based on the setup, location and topography of the region in which the dump loop is situated as well as the power of the drive stations. The loop 128 may form a complete loop thereby reinverting the train into an upright position before exiting the loop. Alternatively, the train may be maintained in an inverted travelling state for an extended distance before being reinverted for loading. Leg extensions may be used to elevate the inverted track sections above the ground to accommodate the inverted cars so that they do not impact with the ground or topography.
One embodiment of a complete loop is shown with reference to
The diameter of the loop can be adjusted as needed based on the situation, for example the topography of the region and/or the length of the car selected. It some cases, it can be more effective or efficient to change the length of the car to accommodate the diameter of the loop as opposed to adjusting the diameter of the loop. The length of the car selected can be varied to optimize overall system costs or to accommodate the need for tight curves. The loop may have a 12 foot diameter for example as illustrated in
In general, each train system setup is a customized setup including rails and dump loops that are designed specifically for the topography of the location and the setup of the mine. Typically, each system is built off site and shipped to the site of end use where fabrication is completed. When adjustments are determined to be needed, the system is usually shipped back off-site, adjusted and sent back for final fabrication and completion until the engineering and order specifications are met. This requires intensive engineering, fabrication, man power and man hours to properly design, fabricate and adjust each system. Custom engineering of the dump loop components and sections for every installation adds engineering and fabrication costs and time to the project. Modular component design allows for simplification of these tasks. To overcome this downside and in an effort to reduce the time and costs needed to engineer, fabricate and establish a rail system or sections thereof, for example the dump loop section of a rail system, a modular dump loop and associated components has been engineered. Modular component design allows for simplification of these tasks
An example of one embodiment of a modular dump loop is shown schematically in
A detailed view of the modular dump loop section of
In an effort to reduce build time, costs and manpower needed to implement a dump loop for a train system, a modular dump loop section, such as for example the modular dump loop section of
As shown in
A plurality of braces may be used to reinforce, support and maintain the spacing and shape of the inner and outer rails. It will be appreciated that any number and orientation of the bracing may be implemented to reinforce, support and maintain the inner and outer rails as is needed based on the intended speed and weight of the train and the weight of the intended load to be carried. In the embodiment shown in
The ends of the parallel inner rails 214 may end in a substantially flat surface or flange 222 allowing for a connection point with the end of the rails of the dump ramp 204. Similarly, the parallel outer rails 212 may end in a substantially flat surface or flange 224 allowing for a connection point with the end of the rails of the exit ramp 206. The inner rails 214 may have a flange or substantially flat surface on their finishing ends allowing for connection to a support frame or the like for supporting the loop section 202.
In the embodiment shown in
The dump loop section 402 of
The dump loop section 502 of
It will be appreciated that although dump loop sections of 180°, 160°, 150° and 130° degrees have been illustrated, modular dump loops sections of other angles are within the concept of the invention and are contemplated by the inventors.
A further embodiment of a modular dump loop section is shown generally at 600 in
In addition, the outer rail 604 is designed for an exit of reduced angle, for example a 150° exit into the exit ramp and a modular outer rail extension 620 may be added to the outer rail to extended the outer rail, for example, to a horizontal position for horizontal exit from the dump loop section 600 into the exit ramp. In this way, the modular components may be prefabricated and simply put together and adjusted as needed to suit a given topography at the site of end use.
The dump loop section 600 may include the bracing components 608, 610, 612 and 614 as described above to reinforce, support and maintain the spacing and shape of the inner and outer rails and to mount the section 600 to a structural member, for example an A-frame. As outlined above, the outer rails 604 may also include a tapered end 606 and the bracing and the rails may include flanges or flat sections that allow for connection to other rails such as the exit ramp and the dump ramp or support frames or structures.
The modular exit ramp 700 is shown as being generally flat but may be curved in the event that a curved exit ramp is desired or required based on the topology of the site.
One embodiment of modular dump ramp 800 is shown in
One embodiment of a modular inverted straight section 900 is shown in
Similarly to the inverted straight section 900 described above with reference to
It will be appreciated that the bracing components, connectors or mounts, as described herein are merely illustrative of examples of bracing components, connectors or mounts that may be incorporated into the modular rail sections to allow for reinforcing, support, maintain the spacing and shape of the rails, connection of the rail sections to each other or to legs or leg extensions. The placement and number of bracings, connectors or mounts may be altered, increased or reoriented without departed from the invention.
Described herein are various dump loops and components therefor that can form part of a rail transport system. It will be appreciated that embodiments, illustrations, and examples are provided for illustrative purposes intended for those skilled in the art, and are not meant to be limiting in any way. Various modifications, amendments, revisions, substitutions and changes may be made to the dump loops and components thereof that are within the scope and spirit of the invention.
Number | Date | Country | Kind |
---|---|---|---|
PCT/CA2015/050252 | Mar 2015 | CA | national |
This application is a continuation of PCT application Serial Number PCT/CA2015/050252 filed Mar. 31, 2015, entitled RAIL TRANSPORT DUMP LOOP SYSTEM FOR CONVEYING BULK MATERIALS, which claims the benefit of priority of U.S. provisional patent application Ser. No. 62/021,905, filed Jul. 8, 2014, the content of both of which are incorporated by reference in their entirety.
Number | Date | Country | |
---|---|---|---|
62021905 | Jul 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/CA2015/050252 | Mar 2015 | US |
Child | 15399578 | US |