The present invention relates to a railcar axle box suspension including a coupling mechanism configured to couple an axle box to a bogie frame, the axle box accommodating a bearing supporting a wheelset.
In a bogie of a railcar, an axle box accommodating a bearing supporting a wheelset is supported by an axle box suspension so as to be displaceable relative to a bogie frame. There are various types of axle box suspensions. Among them, an axle beam type axle box suspension is configured such that: an axle spring constituted by a coil spring is interposed between the axle box and a side sill of the bogie frame located above the axle box; and a tip end portion of an axle beam extending from the axle box along a car longitudinal direction is supported so as to be displaceable relative to a receiving seat projecting downward from the bogie frame (see PTL 1, for example).
As shown in
PTL 1: U.S. Pat. No. 8,297,199B2
In an axle beam type axle box suspension, an axle box is coupled to a bogie frame through an axle beam, and the axle beam swings around a core rod held by a tubular body to allow an axle spring to operate. Therefore, to allow the axle spring to satisfactorily operate, it is important to stably hold a protruding portion of the core rod in the tubular body at a position between a receiving seat and a lid member. On this account, to prevent the core rod from falling off from the tubular body, the lid member is required to be fixed to the receiving seat with high reliability.
The present invention was made in consideration of the above problem, and an object of the present invention is to provide a railcar axle box suspension capable of achieving high reliability regarding fixation between a receiving seat and a lid member.
To solve the above problem, one aspect of the present invention is a railcar axle box suspension including a coupling mechanism configured to couple an axle box to a bogie frame, the coupling mechanism including an axle beam extending from the axle box along a car longitudinal direction and including a tubular portion, the tubular portion being located at an extending direction end portion of the axle beam and being open to both sides in a car width direction, a core rod inserted through an internal space of the tubular portion and extending in the car width direction, protruding portions being provided at both respective car width direction sides of the core rod, a pair of receiving seats provided at the bogie frame and including respective fitting grooves, the protruding portions being fitted in the respective fitting grooves, a pair of lid members supporting the respective protruding portions fitted in the fitting grooves, fastening mechanisms fixing the lid members to the receiving seats, and locking members for the fastening mechanisms, the receiving seats each including a first screw hole having an inner peripheral surface, an internal thread being formed on the inner peripheral surface, the lid members each including a first insertion hole and a second screw hole having an inner peripheral surface, an internal thread being formed on the inner peripheral surface, the fastening mechanisms each including a first bolt threadedly engaged with the internal thread of the first screw hole, a second bolt threadedly engaged with the internal thread of the second screw hole, and a plate having a fitting hole and a second insertion hole, the fitting hole being fitted to a head portion of the first bolt and restricting rotation of the first bolt, a shaft portion of the second bolt being inserted through the second insertion hole, the first bolt being threadedly engaged with the first screw hole through the first insertion hole, the fitting hole of the plate being fitted to the head portion of the first bolt, and the second bolt being threadedly engaged with the second screw hole through the second insertion hole, and the locking members each restricting at least rotation of the second bolt relative to the second screw hole.
According to the above aspect of the present invention, the protruding portion of the tubular portion is located between the receiving seat and the lid member to be supported by the lid member, and the lid member is fixed to the receiving seat by the fastening mechanism. At this time, the receiving seat and the lid member are fixed to each other in such a manner that the first bolt is threadedly engaged with the first screw hole. The rotation of the head portion of the first bolt is restricted by the plate fixed to the lid member in such a manner that the second bolt is threadedly engaged with the second screw hole. The locking member configured to restrict the rotation of the second bolt relative to the second screw hole is provided for the second bolt. Therefore, even if external force such as vibration is applied to any of the first bolt and the second bolt, the first bolt is prevented from falling off from the first screw hole.
Further, the plate is fixed to the lid member in such a manner that the second bolt is threadedly engaged with the second screw hole. Therefore, it is unnecessary to fix the plate to both the lid member and the receiving seat or both the lid member and the side sill. On this account, it is possible to prevent, for example, deformation of the plate caused by a difference between vibration applied from the lid member and vibration applied from the receiving seat or the side sill during use. As a result, excellent fastening effects between the first bolt and the first screw hole and between the second bolt and the second screw hole can be maintained for a long period of time.
The above aspect of the present invention can provide a railcar axle box suspension capable of achieving high reliability at a portion where a receiving seat and a lid member are fixed to each other.
Hereinafter, embodiments will be explained in reference to the drawings.
As shown in
The axle box suspension 10 includes a coupling mechanism 33. The coupling mechanism 33 includes an axle beam 16, a core rod 18, an elastic bushing 19, receiving seats 20, lid members 21, fastening mechanisms 30, a frame 40, and locking members 50. The axle box 13 is coupled to the side sill 14a by the coupling mechanism 33.
The axle beam 16 extends integrally from the axle box 13 along a car longitudinal direction (car traveling direction). A tubular portion 17 is provided at one extending-direction end portion of the axle beam 16. An inner peripheral surface of the tubular portion 17 has a circular tube shape, and both car width direction sides of the tubular portion 17 are open. As shown in
As shown in
In the present embodiment, the tubular portion 17 is divided into two parts that are the first semitubular portion 22 and the second semitubular portion 23. However, the present embodiment is not limited to this, and the tubular portion 17 may be divided into three or more parts.
The core rod 18 is inserted through an internal space of the tubular portion 17 via the elastic bushing 19. As shown in
Lower ends of the flange portions 18b of the core rod 18 are located lower than a lower surface of the lid member 21. Each of minute gaps (not shown) is formed between a side surface of each flange portion 18b of the core rod 18 and an inner surface of each receiving seat 20. An operation of fastening first bolts B1 and B2 is easily performed by these gaps.
The elastic bushing 19 includes the circular tube portion 19a and the pair of conical flange portions 19b. The flange portions 19b are provided at both respective car width direction sides of the circular tube portion 19a. The elastic bushing 19 is externally fitted to the core rod 18 and is provided in the internal space of the tubular portion 17 together with the core rod 18. For example, the elastic bushing 19 is made of rubber. When in use of the axle box suspension 10, displacement of the tubular portion 17 relative to the core rod 18 in forward, rearward, leftward, rightward, upward, and downward directions is allowed by elasticity of the elastic bushing 19.
As shown in
As shown in
The pair of lid members 21 are provided so as to support the respective protruding portions 18c fitted in the respective fitting grooves 20a. As shown in
The base portion 21A is a basic part of the lid member 21 and is fixed to the receiving seat 20 along the car longitudinal direction. The base portion 21A includes first insertion holes 21e and 21f extending from the upper surface 21a to the lower surface 21d. The first insertion holes 21e and 21f are formed so as to communicate with the first screw holes 20e and 20g, respectively, when the lid member 21 is stacked on the receiving seat 20.
A columnar portion 21c projects from a top surface 21b of the first projecting portion 21B. The first projecting portion 21B contacts the protruding portion 18c of the core rod 18, and the columnar portion 21c is inserted through a positioning hole 18f of the core rod 18. At this time, the first projecting portion 21B supports the flat surface 18e of the protruding portion 18c. Side surfaces of the first projecting portion 21B are formed parallel to the side surfaces 20c of the fitting groove 20a.
The second projecting portions 21C include bottom surfaces 21g and 21i that are located lower than the lower surface 21d. A second screw hole 21h is formed on the bottom surface 21g, and an internal thread is formed on an inner peripheral surface of the second screw hole 21h. A second screw hole 21j is formed on the bottom surface 21i, and an internal thread is formed on an inner peripheral surface of the second screw hole 21j. Steps are formed between the lower surface 21d and the bottom surface 21g and between the lower surface 21d and the bottom surface 21i.
The fastening mechanism 30 includes two first bolts B1 and B2, two second bolts B3 and B4, and plates 30A and 30B.
The first bolts B1 and B2 are used to fix the lid member 21 to the receiving seat 20. The first bolts B1 and B2 are inserted through the first insertion holes 21f and 21e of the lid member 21 to be threadedly engaged with the first screw holes 20e and 20g, respectively. Thus, the first bolts B1 and B2 fix the lid member 21 to the receiving seat 20. The first bolt B1 includes a hexagonal head portion B1a and a shaft portion B1b, and the head portion B1a has a certain height. The first bolt B2 includes a hexagonal head portion B2a and a shaft portion B2b, and the head portion B2a has a certain height.
The second bolts B3 and B4 are used to stop rotations of the first bolts B1 and B2. The second bolt B3 is threadedly engaged with the second screw hole 21h of the lid member 21 through a second insertion hole 31A of the plate 30A, and the second bolt B4 is threadedly engaged with the second screw hole 21j of the lid member 21 through a second insertion hole 31B of the plate 30B. The second bolt B3 includes a hexagonal head portion B3a and a shaft portion B3b, the head portion B3a has a certain height. The second bolt B4 includes a hexagonal head portion B4a and a shaft portion B4b, and the head portion B4a has a certain height.
The plates 30A and 30B are plate bodies and are provided in surface contact with the bottom surfaces 21g and 21i, respectively. The plate 30A includes the second insertion hole 31A and a fitting hole 32A, and the plate 30B includes the second insertion hole 31B and a fitting hole 32B. The second insertion hole 31A is formed to have such an inner diameter that the shaft portion B3b of the second bolt B3 can be inserted through the second insertion hole 31A, and the second insertion hole 31B is formed to have such an inner diameter that the shaft portion B4b of the second bolt B4 can be inserted through the second insertion hole 31B. A peripheral edge shape of the fitting hole 32A is formed such that: the head portion B1a of the first bolt B1 is fitted in the fitting hole 32A; and the fitting hole 32A restricts the rotation of the head portion B1a relative to the plate 30A. A peripheral edge shape of the fitting hole 32B is formed such that: the head portion B2a of the first bolt B2 is fitted in the fitting hole 32B; and the fitting hole 32B restricts the rotation of the head portion B2a relative to the plate 30B. Specifically, the fitting hole 32A is formed to have a polygonal peripheral edge shape having a larger number of corners (twelve corners, for example) than the number of corners of the head portion B1a and meshes with the head portion B1a. The fitting hole 32B is formed to have a polygonal peripheral edge shape having a larger number of corners (twelve corners, for example) than the number of corners of the head portion B2a and meshes with the head portion B2a. Since the peripheral edge shape of each of the fitting holes 32A and 32B is formed to be such a polygonal shape that the number of corners of the peripheral edge shape is larger than the number of corners of each of the first bolts B1 and B2, an adjustment of an angle of the plate 30A around an axis of the shaft portion B1b and an adjustment of an angle of the plate 30B around an axis of the shaft portion B2b can be easily performed.
According to the fastening mechanism 30, the receiving seat 20 and the lid member 21 are stacked on each other, and the first bolts B1 and B2 are fastened. Then, the head portions B1a and B2a of the first bolts B1 and B2 are fitted in the fitting holes 32A and 32B, respectively, and the second bolts B3 and B4 are threadedly engaged with the second screw holes 21h and 21j through the second insertion holes 31A and 31B, respectively. At this time, the head portions B1a and B2a of the first bolts B1 and B2 project lower than the bottom surfaces 21g and 21i. Therefore, with the head portions B1a and B2a of the first bolts B1 and B2 fitted in the fitting holes 32A and 32B, respectively, the plates 30A and 30B are provided in surface contact with the bottom surfaces 21g and 21i, respectively. Further, the head portions B3a and
B4a of the second bolts B3 and B4 project lower than the head portions B1a and B2a of the first bolts B1 and B2. The plates 30A and 30B are fixed to the lid member 21 but are not fixed to the receiving seat 20 or the side sill 14a.
Each of the locking members 50 is provided as a member for preventing at least the second bolts B3 and B4 from loosening relative to the second screw holes 21h and 21j. For example, the locking member 50 includes a wire lock W1 and a screw lock agent (not shown).
The wire lock W1 is constituted by a wire such as a stainless steel wire. Specifically, the wire lock W1 is wound around the head portion B3a of the second bolt B3 in a certain direction and is also wound around the head portion B4a of the second bolt B4 in a direction opposite to the certain direction. That is, in a plan view showing upper surfaces of the head portions B3a and B4a, the wire lock W1 is tightly wound so as to form a figure-8 shape.
The screw lock agent is provided between the shaft portion B3b of the second bolt B3 and the second screw hole 21h and between the shaft portion B4b of the second bolt B4 and the second screw hole 21j. The screw lock agent may be a publicly known agent, and examples thereof include an anaerobic adhesive, such as a liquid acrylic adhesive, and a vinyl acetate material. It should be noted that the use of the screw lock agent is optional and may be omitted.
When fixing the lid member 21 to the receiving seat 20 by the first bolts B1 and B2, the lid member 21 contacts the flat surface 18e of the protruding portion 18c before contacting the lower surfaces 20d and 20f of the receiving seat 20. At this time, when the first projecting portion 21B of the lid member 21 is fitted into the fitting groove 20a from below, and the top surface 21b of the first projecting portion 21B is brought into contact with the flat surface 18e of the protruding portion 18c, a slight gap is formed between the upper surface 21a located at both sides of the first projecting portion 21B and each of the lower surfaces 20d and 20f of the receiving seat 20. Further, at this time, gaps are formed between a tip end surface of the shaft portion B1b of the first bolt B1 and a terminal end surface of the first screw hole 20e of the receiving seat 20 and between a tip end surface of the shaft portion B2b of the first bolt B2 and a terminal end surface of the first screw hole 20g of the receiving seat 20.
In this state, the first bolts B1 and B2 are further fastened. With this, the first projecting portion 21B pushes the protruding portion 18c upward, so that the protruding portion 18c is strongly held between the fitting groove 20a and the first projecting portion 21B. As above, pressing force of the lid member 21 generated by fastening the first bolts B1 and B2 preferentially acts on the flat surface 18e of the protruding portion 18c rather than the lower surfaces 20d and 20f of the receiving seat 20. Further, contact pressure between the flat surface 18e of the protruding portion 18c and the top surface 21b of the first projecting portion 21B is higher than contact pressure between the side surface of the first projecting portion 21B and the side surface of the fitting groove 20a. Load acting on the core rod 18 in the car width direction is received by frictional force of the protruding portion 18c relative to the fitting groove 20a and the first projecting portion 21B.
Even if the tubular portion 17 and the core rod 18 are detached from the receiving seat 20, the frame 40 supports the axle beam 16 from below. As shown in
According to the axle box suspension 10 configured as above, in a state where the lid member 21 is fixed to the receiving seat 20 by fastening the first bolts B1 and B2 to the first screw holes 20e and 20g, the head portions B1a and B2a of the first bolts B1 and B2 mesh with the fitting holes 32A and 32B of the plates 30A and 30B for locking, respectively, and the plates 30A and 30B are fixed to the lid member 21 by the second bolts B3 and B4. Therefore, loosening of the first bolts B1 and B2 during use can be prevented by the plates 30A and 30B and the second bolts B3 and B4.
In the axle box suspension 10, the second bolts B3 and B4 are threadedly engaged with the lid member 21 with the locking member 50 provided. With this, even if external force such as vibration is applied to any of the first bolts B1 and B2 and the second bolts B3 and B4, the first bolts B1 and B2 are prevented from loosening and falling off from the lid member 21. Specifically, the following various effects can be expected by an axle beam retaining mechanism using the fastening mechanism 30 and the locking member 50.
As shown in
Further, in the axle box suspension 10, the screw lock agent as the locking member 50 is provided at least between the shaft portion B3b of the second bolt B3 and the second screw hole 21h and between the shaft portion B4b of the second bolt B4 and the second screw hole 21j. With this, a measure to prevent the loosening of the second bolts B3 and B4 is being taken. Thus, the fastened states of the first bolts B1 and B2 can be further maintained.
Furthermore, in the axle box suspension 10, the plates 30A and 30B are not directly fixed to the receiving seat 20 but are directly fixed to the lid member 21 using the second bolts B3 and B4 and the second screw holes 21h and 21j independently from the receiving seat 20. Therefore, it is possible to prevent, for example, deformation of the plates 30A and 30B caused by a difference between vibration applied from the lid member 21 to the plates 30A and 30B and vibration applied from the receiving seat 20 or the side sill 14a to the plates 30A and 30B during use. As a result, the excellent fastened states of the first bolts B1 and B2 can be maintained for a long period of time.
Further, the second bolts B3 and B4 project lower than the first bolts B1 and B2, and a part or more of the head portion B1a of the first bolt B1 and a part or more of the head portion B2a of the first bolt B2 are embedded in the fitting holes 32A and 32B of the plates 30A and 30B, respectively. Therefore, even if an object collides with the lid member 21 or its periphery from below, the object hardly collides with the first bolts B1 and B2. With this, the fastening between the first bolt B1 and the first screw hole 20e and the fastening between the first bolt B2 and the first screw hole 20g can be satisfactorily maintained.
In the axle box suspension 10, the frame 40 is provided at the receiving seats 20 so as to be located under the axle beam 16 and cross the axle beam 16 in the car width direction. Therefore, even if all of the fastening mechanisms 30 and the pair of lid members 21 fall off, and the tubular portion 17 of the axle beam 16 and the core rod 18 are detached from the receiving seats 20, the axle beam 16 is supported by the frame 40 from below. On this account, the axle beam 16 can be prevented from falling onto a railway track or the like. Since the position of the axle beam 16 is restricted between the pair of receiving seats 20, the position of the axle beam 16 in the car width direction can be maintained to some extent. With this, the railcar can maintain its standing state, so that an effect of allowing quick rescue activity is obtained.
Hereinafter, differences between Embodiment 1 and each of other embodiments of the present invention will be mainly explained.
According to Embodiment 2 configured as above, the second bolts B3 and B4 are biased in a fastening direction by the wire lock W2 at all times. Therefore, the loosening of the second bolts B3 and B4 is prevented, so that the same effects as in Embodiment 1 can be expected.
As shown in
The axle box suspension 10A of Embodiment 3 configured as above has an effect in which as with Embodiment 1, even if all of the fastening mechanisms 30 and the pair of lid members 21 fall off, and the tubular portion 17 of the axle beam 16 and the core rod 18 are detached from the receiving seats 20, the axle beam 16 is supported by the frame 40A from below. Further, since the columnar portion 41 is inserted through the lightening hole 16a of the axle beam 16 at this time, a relative movement between the axle beam 16 and the side sill 14a in a horizontal direction is restricted. Therefore, the position of the axle beam 16 relative to the side sill 14a is satisfactorily maintained, so that the effect of allowing quick rescue activity is further obtained.
The axle box suspension 10B includes a coupling mechanism 33A. The axle boxes 67 are elastically coupled to both car width direction end portions of the cross beam 63 by the coupling mechanisms 33A. The coupling mechanism 33A includes an axle beam 68, a pair of receiving seats 69, and a coupling portion 70. The axle beam 68 projects integrally from the axle box 67 toward the cross beam 63. The pair of receiving seats 69 project from the cross beam 63 toward the axle beam 68 and are lined up with an interval in the crosswise direction. The coupling portion 70 elastically couples a tip end portion of the axle beam 68 to the receiving seats 69. The coupling portion 70 includes a lid member 21P, a fastening mechanism 30P, a frame 40B, and a locking member 50B. The lid member 21P, the fastening mechanism 30P, and the locking member 50B are the same in configuration as the lid member 21, the fastening mechanism 30, and the locking member 50, respectively. A protruding portion 68a of a core rod (not shown) sandwiched by a tip end of the axle beam 68 is supported between the receiving seat 69 and the lid member 21P. As with the frame 40, the frame 40B is provided so as to be located under the axle beam 68 and cross the axle beam 68 in the car width direction and is fixed to the pair of receiving seats 69 by the third bolts B5.
Each of plate springs 71 extending in the car longitudinal direction is provided between the cross beam 63 and the axle box 67. Longitudinal direction middle portions 71a of the plate springs 71 support both respective crosswise direction end portions of the cross beam 63 from below. Both longitudinal direction end portions 71b of each of the plate springs 71 are supported by the respective axle boxes 67 from below. To be specific, each of the plate springs 71 serves as both a primary suspension and a conventional side sill. The plate springs 71 are made of, for example, fiber-reinforced resin. Each of the middle portions 71a of the plate springs 71 is provided between the pair of receiving seats 69 so as to extend under the cross beam 63. Pressing members 72 are provided under both respective crosswise direction end portions of the cross beam 63, and each of the pressing members 72 includes a lower surface having a circular-arc shape in a side view. The lower surface of the pressing member 72 is placed on the middle portion 71a of the plate spring 71. To be specific, the pressing members 72 press the respective middle portions 71a of the plate springs 71 downward by a downward load (such as a carbody load), transmitted from the cross beam 63, so as not to fix the plate spring 71 in the upward/downward direction.
An axle box cover 73, a first vibrationproof rubber unit 74, a wedge-shaped member 75, a second vibrationproof rubber unit 76, and a spring seat 77 are stacked above the axle box 67 in this order from a lower side. The end portion 71b of the plate spring 71 is place on the spring seat 77 from above through an elastic sheet (rubber sheet), not shown. The middle portion 71a of the plate spring 71 is pressed downward by the pressing member 72. In a side view, the plate spring 71 is formed in a bow shape that is convex downward.
The same effects as in Embodiment 1 can be expected in Embodiment 4 configured as above. To be specific, in a state where the protruding portion 68a is located between the receiving seat 69 and the lid member 21P to be supported by the lid member 21P, the lid member 21P is fixed to the receiving seats 69 by the fastening mechanism 30P. The receiving seats 69 and the lid member 21P are fixed to each other in such a manner that the first bolts B1 and B2 are threadedly engaged with the first screw holes. The rotations of the head portions of the first bolts B1 and B2 are restricted by the plates 30A and 30B fixed to the lid member 21P in such a manner that the second bolts B3 and B4 are threadedly engaged with the second screw holes. The locking member configured to restrict the rotations of the second bolts B3 and B4 relative to the second screw holes is provided for the second bolts B3 and B4. Even if external force such as vibration is applied to any of the first bolts B1 and B2 and the second bolts B3 and B4, the first bolts B1 and B2 are prevented from falling off from the first screw holes. Therefore, the lid member 21P can be fixed to the receiving seats 69 with high reliability.
The plates 30A and 30B are fixed to the lid member 21P in such a manner that the second bolts B3 and B4 are threadedly engaged with the second screw holes. Therefore, even in the case of a bogie not including side sills, the lid member 21P can be fixed by providing a pair of receiving seats, without modifying the plates 30A and 30B of Embodiments 1 to 3. On this account, it is possible to prevent, for example, deformation of the plates 30A and 30B caused by a difference between vibration applied from the lid member 21P to the plates 30A and 30B and vibration applied from the cross beam 63 to the plates 30A and 30B.
As above, the present embodiment is not limited to a configuration in which the axle box is coupled to the side sill 14a by the coupling mechanism 33 as in Embodiment 1. Each of the embodiments has explained the axle beam type axle box suspension. However, the present invention is applicable to various types of axle box suspensions.
Others
The present invention is not limited to the above embodiments, and modifications, additions, and eliminations may be made within the scope of the present invention. The above embodiments may be combined arbitrarily. For example, a part of components in one embodiment may be applied to another embodiment.
In each of the above embodiments, the screw lock agent is provided between the shaft portion B3b of the second bolt B3 and the second screw hole 21h and between the shaft portion B4b of the second bolt B4 and the second screw hole 21j. However, the present invention is not limited to this. The screw lock agent may be provided only between the shaft portion B1b of the first bolt B1 and the first screw hole 20e and between the shaft portion B2b of the first bolt B2 and the first screw hole 20g. Or, the screw lock agent may be provided at all of these.
The wire lock (W1 or W2) is not essential. Any one of the wire lock (W1 or W2) or the screw lock agent may be provided, or both the wire lock (W1 or W2) and the screw lock agent may be provided.
The number of first bolts and the number of second bolts are not limited. Needless to say, as the number of first bolts and the number of second bolts increase, the lid member can be more effectively prevented from falling off from the receiving seat. It is preferable to use two or more second bolts for each lid member. This is because in such a case, the wire lock W1 or W2 in Embodiment 1 or 2 can be provided.
The present invention is not limited to a configuration in which two plates are used for each lid member. Three or more plates may be used, or only one plate may be used. For example, the plates 30A and 30B may be replaced with a single continuous plate.
The present invention is not limited to a configuration in which the frame (40 or 40A) is fixed to the axle beam 16 by the third bolts B5. For example, the frame (40 or 40A) may be fixed to the axle beam 16 by welding. The shape of the frame (40 or 40A) is not limited to a plate shape and may be a pipe shape, a shaft shape, a ladder shape, or the like.
As above, the present invention has an excellent effect of being able to provide a railcar axle box suspension capable of achieving high reliability at a portion where a receiving seat and a lid member are fixed to each other. Therefore, it is useful to widely apply the present invention to railcar axle box suspensions which can achieve the significance of this effect.
Number | Date | Country | Kind |
---|---|---|---|
2013-252426 | Dec 2013 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2014/005876 | 11/25/2014 | WO | 00 |