The present invention relates to a bogie supporting a carbody of a railcar.
A bogie for supporting a carbody of a railcar and allowing the railcar to travel along a rail is provided under a floor of the carbody. PTL 1 discloses a bogie including: a bolster attached to a carbody via bolster anchors; and a bogie frame supporting the bolster from below so as to be turnable relative to the bolster. To suppress a meander motion, the bogie frame is provided with a side bearing which contacts a slide portion of a lower surface of the bolster to apply turning resistance to the bogie frame. To reduce a slide stroke length between the side bearing and the slide portion of the bolster, the side bearing is generally arranged close to a center plate that is a turning center.
PTL 2 discloses a bogie including a turning resistance adjuster capable of adjusting the turning resistance depending on travel conditions. The turning resistance adjuster includes: a damper provided at a bogie frame and capable of contacting an outer peripheral surface of a slide center plate of a carbody from a lateral direction; and an actuator configured to cause the damper to contact or separate from the slide center plate depending on the travel conditions. As above, according to PTL 2, a region in the vicinity of the turning center of the bogie frame is occupied by the turning resistance adjuster. Therefore, PTL 2 discloses an embodiment in which side bearings are arranged at both respective left and right ends of the bogie frame to be separated from the turning center.
PTL 1: Japanese Laid-Open Patent Application Publication No. 2010-70000
PTL 2: Japanese Laid-Open Patent Application Publication No. 2007-216876
However, in the bogie of PTL 2, the side bearing is biasedly arranged at a car width direction outer side of an upper surface of a side sill of the bogie frame, the side sill extending in a car longitudinal direction. Therefore, a load biased toward the car width direction outer side is applied to the side sill by a carbody load applied to the side bearing. With this, the requirement of the strength of the bogie frame increases. On this account, the bogie frame needs to be reinforced or the like, and therefore, the bogie frame becomes complex and heavy. In a case where the side bearing is located on an upper surface of a cross beam of the bogie frame, a bending load is applied to the cross beam by the weight of the carbody. This also becomes a cause of the increase in the requirement of the strength of the bogie frame.
An object of the present invention is to reduce a biased load and bending load applied to a bogie frame by the weight of a carbody, simplify the bogie frame, and reduce the weight of the bogie frame.
A railcar bogie according to the present invention is a bogie supporting a carbody of a railcar, the bogie including: a bogie frame including a cross beam and side members and being rotatable relative to the carbody in a yawing direction, the cross beam extending in a car width direction, the side members supporting both respective car width direction end portions of the cross beam and extending in a car longitudinal direction; axles extending in the car width direction; bearings provided at both respective car width direction sides of each of the axles and rotatably supporting the axles; axle boxes accommodating the respective bearings and supporting the side members from below; and rubbing plates provided on an upper surface of the bogie frame to slidingly contact respective rubbed plates provided on a lower surface of a member attached to the carbody, in a plan view, each of the rubbing plates being arranged within a region where the cross beam and the side member intersect with each other and being arranged on a center line of the side member, the center line extending in the car longitudinal direction.
According to the above configuration, in a plan view, the rubbing plate is arranged on the center line of the side member so as to be located within the region where the cross beam and the side member intersect with each other, the center line extending in the car longitudinal direction. Therefore, the carbody load applied through the rubbed plate to the rubbing plate is applied to the side member from right above, the side member being supported by the axle boxes. On this account, a load biased in the car width direction is prevented from being applied to the side member, and a bending load by the weight of the carbody is prevented from being applied to the cross beam. As a result, the requirement of the strength of the bogie frame can be relaxed, and the bogie frame can be simplified and reduced in weight.
As is clear from the above explanations, according to the present invention, the load biased in the car width direction is prevented from being applied to the side member, and the bending load by the weight of the carbody is prevented from being applied to the cross beam. Therefore, the requirement of the strength of the bogie frame can be relaxed, and the bogie frame can be simplified and reduced in weight.
Hereinafter, embodiments will be explained in reference to the drawings. In the following explanations, each of a direction in which a railcar travels and a length direction in which a carbody extends is defined as a car longitudinal direction, and a lateral direction perpendicular to the car longitudinal direction is defined as a car width direction (in the embodiments, the car longitudinal direction is also referred to as a forward/rearward direction, and the car width direction is also referred to as a leftward/rightward direction). In the drawings, the same reference signs are used for the same components.
The cross beam 5 is turnably connected to the bolster 3 via a turn guide mechanism 13. The bolster 3 is connected to the carbody (not shown) via the air springs 2 and bolster anchors 12. In the present embodiment, the turn guide mechanism 13 includes a concave portion 13a and a convex portion 13b. The concave portion 13a is formed on an upper surface of a center portion of the cross beam 5, and the convex portion 13b projects from a lower surface 3b of a center portion of the bolster 3 and is fitted to the concave portion 13a. Front and rear axles 6 extending along the car width direction are arranged in front of and behind the cross beam 5, respectively. Wheels 7 are fixed to both respective car width direction sides of each axle 6. Bearings 8 are provided at both respective car width direction end portions of each axle 6 so as to be located outside the wheels 7 in the car width direction. The bearings 8 rotatably support the axles 6. The bearings 8 are accommodated in respective axle boxes 9. Electric motors 10 are attached to the cross beam 5, and reducers 11 which transmit power to the respective axles 6 are connected to respective output shafts of the electric motors 10.
Each of the plate springs 30 extending in the car longitudinal direction is provided between the cross beam 5 and the axle box 9. Longitudinal direction middle portions 30a (see
Spring seats 33 are attached to respective upper portions of the axle boxes 9. The end portions 30b of the plate springs 30 are disposed on the respective spring seats 33 from above. To be specific, the end portions 30b of each of the plate springs 30 are supported by the respective axle boxes 9 via the respective spring seats 33. The spring seats 33 support both respective end portions 30b of each of the plate springs 30 such that upper surfaces of the end portions 30b of each of the plate springs 30 are inclined in a direction toward the middle portion 30a. The middle portion 30a of the plate spring is pressed by the lower surface 31a of the pressing member 31 (see
The axle boxes 9 are coupled to the car width direction end portions of the cross beam 5 by coupling devices 15 constituting axle box suspensions. Each of the coupling devices 15 includes axle beams 16, a pair of receiving seats 17 and 18, and coupling portions 19. Each of the axle beams 16 projects integrally from the axle box 9 toward the cross beam 5. The receiving seats 17 and 18 project from the cross beam 5 toward the axle beams 16. Each of the coupling portions 19 includes a rubber bushing or the like (not shown), and elastically couples a tip end portion 16a of the axle beam 16 to the receiving seats 17 and 18. To be specific, the coupling device 15 of the present embodiment is an axle beam type device.
In a plan view, the rubbing plate 37 is arranged so as not to protrude from a region A1 where the cross beam 5 and the plate spring 30 intersect with each other. To be specific, in a plan view, the rubbing plate 37 is arranged within the region A1 (a hatching portion in
When viewed from a lateral direction that is a direction (car width direction) perpendicular to the longitudinal direction of the plate spring 30, the lower surface 31a of the pressing member 31 has a circular-arc shape that is convex downward, the lower surface pressing the plate spring 30. Similarly, when viewed from the lateral direction that is the direction (car width direction) perpendicular to the longitudinal direction of the plate spring 30, an upper surface of the middle portion 30a has a circular-arc shape that is convex downward, the upper surface being pressed by the pressing member 31. In a state where the bogie 1 is not supporting the carbody (not shown), a curvature of the lower surface 31a of the pressing member 31 is larger than a curvature of the upper surface of the middle portion 30a of the plate spring 30. In a state where the bogie 1 is supporting the carbody (not shown), the plate spring 30 elastically deforms by the weight of the carbody such that the cross beam 5 moves downward. Thus, the curvature of the middle portion 30a of the plate spring 30 increases. However, when the car is empty, that is, when no passengers are in the carbody (not shown), the curvature of the lower surface 31a of the pressing member 31 is maintained to be larger than the curvature of the middle portion 30a of the plate spring 30. Therefore, a space is formed between the lower surface 31a of the pressing member 31 and the upper surface of the middle portion 30a of the plate spring 30 so as to be located at each of both longitudinal direction sides of a lowermost end of the pressing member 31.
As shown in
According to the configuration explained as above, when the bogie frame 4 rotates relative to the bolster 3 in the yawing direction, the rubbing plates 37 provided on the upper surface of the bogie frame 4 contact and slide on the respective rubbed plates 23 provided on the lower surface of the bolster 3, and therefore, appropriate rotation resistance is applied to the bogie frame 4. In a plan view, the rubbing plate 37 is arranged on the center line C1 of the plate spring 30 so as to be located within the region where the cross beam 5 and the plate spring 30 intersect with each other. Therefore, the carbody load applied through the rubbed plate 23 to the rubbing plate 37 is applied to the plate spring 30 from right above, the plate spring 30 being supported by the axle boxes 9. On this account, the load biased in the car width direction is prevented from being applied to the plate spring 30, and the bending load by the weight of the carbody is prevented from being applied to the cross beam 5.
In addition, in the present embodiment, the pressing member 31 and the plate spring 30 separably contact each other. Therefore, the biased load tends to be applied from the pressing member 31 to the plate spring 30. However, since the rubbing plate 37 is arranged as above, the plate spring 30 is prevented from being biasedly distorted. Thus, the plate spring 30 can be suitably protected. As a result, the requirement of the strength of the bogie frame 4 can be relaxed, and the bogie frame 4 can be simplified and reduced in weight.
An axle box suspension 133 constituted by a coil spring (axle spring) is interposed between a car longitudinal direction end portion 130b of the side sill 130 and the axle box 9. An axle beam 116 extends integrally from the axle box 9 in the forward/rearward direction toward a center of the bogie. An end portion of the axle beam 116 is elastically coupled to the side sill 130 via a rubber bushing or the like. To be specific, the bogie 101 includes a so-called axle beam type axle box suspension. It should be noted that the axle box suspension may be an axle box suspension other than the axle beam type axle box suspension.
In a plan view, the rubbing plate unit 35 is provided on an upper surface of the bogie frame 104 so as to be located in a region A2 where the cross beam 105 and the side sill 130 intersect with each other. In a plan view, the rubbing plate 37 is arranged so as not to protrude from the region A2 where the cross beam 105 and the side sill 130 intersect with each other. To be specific, in a plan view, the rubbing plate 37 is arranged within the region A2. In addition, in a plan view, the rubbing plate 37 is arranged on a center line C4 of the side sill 130, the center line C4 extending in the car longitudinal direction. In the present embodiment, the rubbing plate 37 is arranged at a center of the region A2, and a center of the rubbing plate 37 coincides with the center line C4 of the side sill 130. The other devices (for example, a movable device such as the turning resistance adjuster) are not arranged in a region on an upper surface of the cross beam 105, the region being located between the concave portion 13a of the turn guide mechanism 13 and the rubbing plate unit 35. Although not shown, the bogie frame 104 supports the bolster 3 of the first embodiment from below. The other components are the same as those of the first embodiment. Therefore, the same reference signs are used for the same components, and detailed explanations thereof are omitted.
The present invention is not limited to the above embodiments, and modifications, additions, and eliminations may be made within the scope of the present invention. The above embodiments may be combined arbitrarily. For example, a part of components or methods in one embodiment may be applied to another embodiment. The above embodiments explained the bogie including the bolster. However, the present invention may be applied to a bolsterless bogie. In such a case, the rubbed plate may be directly attached to the carbody.
As above, the railcar bogie according to the present invention includes the above excellent effects. It is useful to widely apply the present invention to railcar bogies which can achieve the significance of the above effects.
Number | Date | Country | Kind |
---|---|---|---|
2013-091156 | Apr 2013 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2014/002103 | 4/14/2014 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2014/174787 | 10/30/2014 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4082043 | Hammonds | Apr 1978 | A |
6305297 | Landrot | Oct 2001 | B1 |
6338300 | Landrot | Jan 2002 | B1 |
8656839 | Nishimura | Feb 2014 | B2 |
9352757 | Nishimura | May 2016 | B2 |
9358989 | Nishimura | Jun 2016 | B2 |
9376127 | Nishimura | Jun 2016 | B2 |
9421987 | Becher | Aug 2016 | B2 |
9493174 | Nishimura | Nov 2016 | B2 |
9527516 | Nishimura | Dec 2016 | B2 |
20160082985 | Nishimura | Mar 2016 | A1 |
Number | Date | Country |
---|---|---|
2 325 909 | Dec 1998 | GB |
31-8411 | Sep 1956 | JP |
2007-216876 | Aug 2007 | JP |
2010-070000 | Apr 2010 | JP |
2012-116279 | Jun 2012 | JP |
2012137257 | Oct 2012 | WO |
Entry |
---|
Jul. 8, 2014 International Search Report issued in International Patent Application No. PCT/JP2014/002103. |
Oct. 27, 2015 International Preliminary Report on Patentability issued in International Patent Application No. PCT/JP2014/002103. |
Apr. 5, 2016 Office Action issued in Chinese Patent Application No. 201480002001.8. |
Jun. 7, 2016 Third Party Submission in Japanese Patent Application No. 2013-91156. |
“Dynamics of Railcars (Latest Technology for Bogies).” Edited by the Japan Society of Mechanical Engineering, Published by Denkisya Kenkyukai Co., Ltd., First Edition, published on Dec. 25, 1994. |
Shimokawa et al., “Development of New Concept Steering Bogie.” Technical Report of Nippon Steel & Sumitomo Metal Corporation, vol. 395, pp. 41-44, Apr. 2013 Issue, published on Mar. 28, 2013. |
Wako et al., “Development of FRP Bogie.” Report of Railway Technical Research Institute, vol. 6, #10, pp. 19-25, published on Mar. 28, 2013. |
Number | Date | Country | |
---|---|---|---|
20160082985 A1 | Mar 2016 | US |