Railroad crossing arms are in widespread use as traffic barriers at railroad road crossings. The crossing arms are normally positioned upright and are lowered to a horizontal position when an approaching train is detected. The crossing arms of railroad crossing gates are typically provided with various signal lights that are secured to the crossing arm.
Conventionally, three signal lights are used. A first light is disposed at the far end of the crossing arm. The remaining two lights are generally spaced along the crossing arm. It is conventional that the lights be incorporated into an electrical circuit such that the light at the far end is constantly illuminated when the crossing arm is in its horizontal position. The remaining signal lights are configured such that they alternately flash off and on. Other configurations have also been used.
The environments in which railroad crossing gates are employed are often harsh. Therefore, from time to time the gate lamps need to be replaced due to damage to the lamps and or damage to the gate arm itself. There is a need for gate lamp systems that are robust, modular, and easy and efficient to install.
The present disclosure provides a new gate lamp system and method. The system and method is configured to facilitate the installation of the gate lamp onto a gate arm and to facilitate the replacement of one or more of the gate lamps. The present disclosure provides a system and method of installing gate lamps on a gate arm in the field in a robust manner with relative ease.
Referring to the FIGS. generally, the present disclosure is described in further detail below.
In the depicted embodiment, the lamps 12, 14 and 16 are EZ Gate® LED Lamps with Light Out Detection (LOD). They are railroad crossing gate arm lamps that adjust their operating current based on whether or not the lamp illuminates. The purpose of such lamps 12, 14 and 16 is to provide light at the gate arm 10 and to provide electrical feedback of their state of illumination. It should be understood that although in the depicted embodiment the lamps are EZ Gate® LED lamps with Light Out Detection, the lamps 12, 14 and 16 could alternatively be any other type of light emitting diodes (LED) or a non-LED lamp such as an ordinary incandescent bulb. It should be appreciated that the terms “lamp” and “light” are used interchangeably herein.
Referring to
Referring generally to
In the depicted embodiment, the gate lamp system includes a connector 28 including a first end 30 that is configured to mate with the plug portion 20 of the gate lamp 16. In the depicted embodiment, the first end 30 of the connector 28 includes a first conductive receptacle 34, a second conductive receptacle 36, and a third conductive receptacle 38. In the depicted embodiment, the connector 28 is a multi-position connector. In particular, the rotational orientation of the first end 30 of the connector 28 relative to the plug 20 dictates which conductive receptacles 34, 36, 38 receive which conductive prongs 22, 24, 26. In the depicted embodiment, depending on the rotational orientation of the connector 28 and plug 20, the lamp 16 can be made to stay on when a train is approaching, flash at a first timing sequence, or flash at a second timing sequence. It should be appreciated that many other alternative configurations are also possible.
In the depicted embodiment, the system includes an electrical cord 40 having a non-circular outer profile (e.g., a flat cord as shown). In the depicted embodiment, the electrical cord 40 includes a first conductor 42, a second conductor 44, and a third conductor 46 therein. In the depicted embodiment, each of the first, second, and third conductors 42, 44, 46 are electrically insulated from each other with a known predefined location within the electrical cord 40. It should be appreciated that the terms “cord” and “cable” are used interchangeably herein. Also it should be appreciated that the electrical cord 40 and conductors 42, 44, 46 can be used to deliver power and/or a control signal. It should be appreciated that many other alternative configurations are also possible.
In the depicted embodiment, the electrical cord 40 is connected to a second end 32 of the connector 28 such that the first conductor 42 of the electrical cord 40 is electrically connected to the first conductive receptacle 34, the second conductor 44 of the electrical cord 40 is electrically connected to the second conductive receptacle 36, the third conductor 46 of the electrical cord 40 is electrically connected to the third conductive receptacle 38. It should be appreciated that many other alternative configurations are also possible. For example, the connector 28 can be rotated relative to the plug 20 to align different conductors with different receptacles.
In the depicted embodiment, the second end 32 of the connector 28 includes an opening 48 that is shaped to axially receive and guide the electrical cord 40 into electrical engagement with conductors within the second end 32 of the connector 28. In the depicted embodiment, the shape of the opening 48 matches the shape of the external profile of the cord 40. In some embodiments, the opening 48 is tapered to facilitate insertion of the electrical cord 40. It should be appreciated that many other alternative configurations are also possible.
In the depicted embodiments, the conductors within the second end 32 of the connector 28 include a first conductive spear 50 that is configured and arranged to axially extend into the first conductor 42 of the electrical cord 40, a second conductive spear 52 that is configured and arranged to axially extend into the second conductor 44 of the electrical cord 40, and a third conductive spear 54 that is configured and arranged to axially extend into the third conductor 46 of the electrical cord 40. In the depicted embodiment, the act of extending the conductive spears 50, 52, 54 into the conductor 42, 44, 46 enables electrical connection between the two components. In the depicted embodiment, the spears 50, 52, 54 are conical in shape and displace the conductor 42, 44, 46 radially as the spear 50, 52, 54 is driving axially into the end of the conductor 42, 44, 46. It should be appreciated that many other alternative configurations are also possible.
In the depicted embodiment, a first conductive body 56 connects the first conductive spear 50 to the first conductive receptacle 34. A second conductive body 58 connects the second conductive spear 52 to the second conductive receptacle 36. A third conductive body 60 connects the third conductive spear 54 to the third conductive receptacle 38. In the depicted embodiment, the spear 50, 52, 54, the conductive body 56, 58, 60, and the receptacle 34, 36, 38 are integrally formed of a conductive material (e.g., copper, brass, etc.). In the depicted embodiment, the body portions 56, 58, 60 that connect the spears 50, 52, 54 to the receptacle 34, 36, 38 share the same structure which can facilitate their manufacturing of the connector. It should be appreciated that many other alternative configurations are also possible.
In the depicted embodiment, the connector 28 is configured to receive a set screw 62 that is configured to secure the electrical cord 40 within the second end 32 of the connector 28. It should be appreciated that many other alternative configurations are also possible. For example, the connector 28 can be configured to clamp the end of the cord 40 in place and/or the cord 40 can be potted in place with an adhesive. Referring generally to
In the depicted embodiment, the electrical cord 40 is connected to the gate lamp by pushing the cord 40 into engagement with the spears 50, 52, 54 at the second end of the connector 100 and then tightening the retaining collar 102. The act of pushing the cord 40 into engagement with the spears 50, 52, 54 deflects the cable grip plug 104 and causes it to grab the sheathing of the cable to prevent it from being pulled outwardly. In the depicted embodiment, the cable grip plug 104 is a thin sheet of steel with feet that deflect and bite into the cable sheathing. The distance between the teeth and the upper edge of the cable opening is substantially larger than the diameter of the conductors in the electrical cord 40. The axial location of the cable grip plug 104 is positioned to prevent shorting of the cable (i.e., the teeth are configured to not be able to contact the conductors in the cord 40.
In the depicted embodiment, the connector 100 is weatherproof (waterproof). In the depicted embodiment, the second end of the connector 100 includes a first seal 106, a second seal 108, and a washer 110. When the collar 102 is tightened, the seals 106, 108 are compressed and deform, thereby preventing moisture from permeating the connection between the connector body and the electrical cord. In the depicted embodiment, the first seal 106 includes assistive on both primary surfaces, and the second seal 108 is comprised of a soft resilient material (e.g., rubber). In the depicted embodiment, the cable grip plug 104, the first and second seals 106, 108 and the washer 110 all include upper and lower locator notches that align with the outwardly extending tab of the connector body 112. This configuration prevents these internal components from rotating as the collar 102 is tightened.
Referring particularly to
In the depicted embodiment, the electrical cord 40 includes a generally flat top periphery portion 62 and a generally flat bottom periphery portion 64. In the depicted embodiment, the first conductor 42, the second conductor 44, and the third conductor 46 of the electrical cord 40 are arranged linearly with the body of the cord 40. Likewise, the spears 50, 52, 54 are also arranged linearly in a row so that they axially align with the conductors 42, 44, 46 in the cord 40. In the depicted embodiment, the plug 20 includes a cylindrical housing defining a recess wherein the first, second, and third prongs 22, 24, 26 are located. The outer surface 66 of the cylindrical housing is threaded. In the depicted embodiment, the cylindrical body of the connector 28 includes an annual flange 78 located between the first and second end of the connector 30, 32. In the depicted embodiment, a cap engages the annular flange 78 configured to engage the threads 66 to secure the connector to the plug 20. It should be appreciated that many other alternative configurations are also possible.
In the depicted embodiment, the system includes an inline connector 68 comprising a first end 70 and a second end 72. In the depicted embodiment, each end is configured to axially receive and secure a distal end of an electrical cord 74, 76. The inline connector 68 can facilitate installation of a lamp system where the connector and cord are pre-connected. It should be appreciated that many other alternative configurations are also possible.
Referring to
The present disclosure also provides a method of installing a gate lamp to a crossing gate arm comprising the steps of securing a gate lamp onto a crossing gate arm, connecting the gate arm to a power source by rotationally orientating a connector to a plug on the gate lamp, axially driving a flat cord into mechanical and electrical engagement with the connector, and securing the flat cord onto the crossing gate arm. It should be appreciated that the method can include more or less steps and that the steps can occur in a number of different sequences. In the depicted embodiment, the step of axially driving a flat cord into mechanical and electrical engagement with the connector occurs before the connector is electrically connected to the plug.
The above specification, examples and data provide a complete description of the manufacture and use of the composition of the invention. Since many embodiments of the invention can be made without departing from the spirit and scope of the invention, the invention resides in the claims hereinafter appended.
This application claims the benefit of U.S. Patent Application Ser. No. 62/445,794, filed Jan. 13, 2017, the disclosure of which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
494390 | Smith | Mar 1893 | A |
516049 | Harden | Mar 1894 | A |
545701 | Lattig | Sep 1895 | A |
752959 | Currier | Feb 1904 | A |
913974 | Pettey | Mar 1909 | A |
1211676 | Coleman | Jan 1917 | A |
1818625 | Hunter | Aug 1931 | A |
2386161 | Hawes | Oct 1945 | A |
2598196 | Staley | May 1952 | A |
2792559 | Maberry | May 1957 | A |
3036146 | Kamen | May 1962 | A |
3251069 | Clark | May 1966 | A |
3538484 | Fassafiume | Nov 1970 | A |
3964704 | Karr | Jun 1976 | A |
3994457 | Teasel | Nov 1976 | A |
4053760 | Glazier | Oct 1977 | A |
4067523 | Kenny | Jan 1978 | A |
4068966 | Johnson | Jan 1978 | A |
4186429 | Johnston | Jan 1980 | A |
4449168 | Ewing | May 1984 | A |
4460811 | Murr | Jul 1984 | A |
4523256 | Small | Jun 1985 | A |
4666108 | Fox | May 1987 | A |
4784356 | Fox | Nov 1988 | A |
7075427 | Pace | Jul 2006 | B1 |
9272721 | Bohme | Mar 2016 | B2 |
9701328 | Martin | Jul 2017 | B2 |
20050284987 | Kande | Dec 2005 | A1 |
20090007661 | Nasiri | Jan 2009 | A1 |
20090194642 | Honeck | Aug 2009 | A1 |
20140028289 | Ohnemus | Jan 2014 | A1 |
20180202636 | Fox | Jul 2018 | A1 |
Number | Date | Country |
---|---|---|
2451743 | May 1976 | DE |
0715690 | Dec 1931 | FR |
993578 | Nov 1951 | FR |
0324007 | Jan 1930 | GB |
0701030 | Dec 1953 | GB |
1480992 | Oct 1975 | GB |
Number | Date | Country | |
---|---|---|---|
20180202636 A1 | Jul 2018 | US |
Number | Date | Country | |
---|---|---|---|
62445794 | Jan 2017 | US |