RAILWAY ANCHOR APPLICATOR

Information

  • Patent Application
  • 20100101446
  • Publication Number
    20100101446
  • Date Filed
    January 06, 2010
    15 years ago
  • Date Published
    April 29, 2010
    14 years ago
Abstract
A railway anchor applicator for applying an anchor to a rail includes a frame configured for movement along a track, an anchor input for sequentially delivering an anchor to a workhead assembly, where the workhead assembly is movably mounted on the frame for movement toward and away from the rail. An anchor receiving arm is configured for movement between a first position receiving an anchor from an anchor input and a second position placing the anchor away from the anchor input. A main pivot arm is configured for movement between a first position generally away from the rail and a second position generally adjacent the rail. A bar clamp arm is operatively linked to the main pivot arm and is configured for movement underneath the rail, then upwards and towards the rail. An operator station is located on the gage side of the rail which the anchor is being applied.
Description
BACKGROUND OF THE INVENTION

The present invention relates generally to railroad right-of-way maintenance machinery, and specifically to machinery used for applying anchors to rail ties for securing rail tie plates and rails to the ties.


A railway anchor clamps onto a rail, and is positioned to abut the tie and the tie plate, to resist the movement of the rail relative to the tie. Railway anchors as contemplated herein include different configurations and models of anchors, such as spring-type or drive-on anchors made by different manufacturers, or any other rail fasteners positioned adjacent tie plates and used for retaining tie plates upon the ties, as are known to those skilled in the art.


During the course of railroad maintenance work, it is common that existing rail anchors are removed during the replacement of rail ties, tie plates, rails and for other maintenance operations. Once the desired maintenance is complete, the anchors need to be reinstalled. Alternatively, the anchors themselves can fail and new anchors need to be installed in their place.


Railroad maintenance machines typically include a frame which is either self-propelled or towable along the track, and a workhead configured to perform the maintenance task. Such devices typically have a travel position, where the portion of the workhead is held sufficiently above the track to avoid damage by obstacles including the track itself, and a work position. During operation in the work position, the units typically move between a loading position for loading the repair part, and a track engaging position for applying the repair part. To avoid damage to the mechanisms, such units are designed for operation so that either travel is prohibited when these mechanisms are in the latter two positions, or the mechanisms automatically rise to the travel position when the unit begins to move to the next location.


While protecting the rail anchor applicator mechanisms, these conventional operational precautions tend to take time and limit productivity of the anchor application process. Further, in cases where the anchor applicator is one of a chain of maintenance machines, the productivity of the overall maintenance of the railroad is limited as measured by the rate of the slowest unit.


Further, in some prior art apparatuses for securing anchors onto rails, manual positioning of the anchors adjacent the rail is required before engagement onto the rail by the apparatus. This requires an additional person to place the anchor adjacent the rail, or requires the operator to perform two tasks: placement and application. In other prior art apparatuses, such as the apparatus disclosed by Freymuth et al., U.S. Pat. No. 5,142,987, anchors are continuously transported by a delivery mechanism. These known delivery mechanisms are unnecessarily complex and include multiple moving parts such as drive chains, pulleys, hydraulic motors, among other components.


Thus, there is a need for an improved rail anchor applicator which enables a high frequency of anchor applications while protecting the anchor applicator mechanisms.


There is also a need for an improved rail anchor applicator which is configured to continuously deliver anchors with minimal moving parts.


BRIEF SUMMARY OF THE INVENTION

The above-listed needs are met or exceeded by the present rail anchor applicator for applying an anchor to a rail of a railroad track. Provided on the anchor applicator is an anchor receiving mechanism, an anchor positioning mechanism and an anchor clipping mechanism. The anchor clipping mechanism compresses the anchor between components of the anchor clipping mechanism on both the field side and the gage side to positively engage the anchor onto the rail.


The above-listed needs are met or exceeded by the present rail anchor applicator for applying an anchor to a rail of a railroad track. The anchor applicator includes a frame configured for movement in a specified direction of travel along the track, and a workhead assembly movably mounted on the frame for movement toward and away from a tie. Also provided is an anchor receiving mechanism configured for movement between a first position receiving at least one anchor from an anchor input and a second position placing the anchor in a position away from the anchor input. An anchor positioning mechanism is configured for movement between a retracted position and an extended position for positioning the anchor adjacent to the rail. An anchor clipping mechanism is provided for positively engaging the anchor onto the rail by applying pressure from either the field or the gage side. The anchor clipping mechanism compresses the anchor between components on both the field side and the gage side such that compressive forces act on the anchor transversely across the rail.


More specifically, the present invention includes a rail anchor applicator for applying an anchor to a tie-mounted rail of a railroad track. The anchor applicator includes a frame configured for movement in a specified direction of travel along the track, an anchor input for sequentially delivering at least one anchor to the workhead assembly, and a workhead assembly movably mounted on the frame for movement toward and away from the rail. The workhead assembly includes an anchor receiving arm configured for movement between a first position sequentially receiving the anchor from the anchor input and a second position placing the anchor in a position away from the anchor input. The workhead assembly further includes a main pivot arm associated with the frame configured for movement between a first position generally away from the rail and a second position generally adjacent the rail, and a bar clamp arm operatively linked to the main pivot arm. The bar clamp arm is configured for movement with respect to the anchor receiving arm to positively engage the anchor against the rail in a direction transverse to the rail.


A method of applying anchors adjacent rails, tie plates and ties of a railroad track, includes the step of providing a rail anchor applicator. The anchor applicator includes an anchor receiving mechanism for receiving an anchor and positioning it on an anchor holder, an anchor positioning mechanism for positioning the anchor adjacent the rail and tie, and an anchor clipping mechanism for positively engaging the anchor against the rail. The anchor applicator also includes an anchor input configured for sequentially feeding anchors to the anchor receiving mechanism. The anchor holder is configured for movement between a first position receiving at least one anchor from the anchor input and a second position placing the at least one anchor in a position away from the anchor input. The method also includes the steps of positioning the anchor supplied by the anchor input to the anchor holder, moving the anchor receiving mechanism from the first position to the second position, positioning the anchor positioning mechanism adjacent the rail, and moving the anchor clipping mechanism to clip the anchor to the rail.


A bar clamp arm is provided that is suitable for use with a rail anchor applicator having an anchor receiving mechanism for receiving at least one anchor, an anchor positioning mechanism for positioning the anchor adjacent the rail, and an anchor clipping mechanism for clipping the anchor against the rail. The bar clamp arm includes a generally elongate arm portion having an end, and a rail stop portion provided on the end of the elongate arm. The rail stop has a clipping surface generally perpendicular to the arm portion and configured to impart pressure and clip the anchor against the rail.


Also provided is an anchor holder suitable for use with a rail anchor applicator having an anchor receiving mechanism receiving at least one anchor, and an anchor positioning mechanism for positioning the anchor adjacent the rail. The anchor holder includes an open end configured to receive an anchor, and a closed end having a throughbore disposed generally centrally. A seat is configured to receive and retain the anchor, and a plunger is provided in the throughbore and is configured to bias a head end of the anchor toward the rail.





BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS


FIG. 1 is a perspective view of an anchor applicator machine incorporating the present invention;



FIG. 2 is a partial perspective view of a workhead assembly of FIG. 1 positioned over the track with the remainder of the anchor applicator machine omitted;



FIG. 3 is a side elevation of the workhead assembly loading an anchor;



FIGS. 4A-K are a sequence of side elevations of the workhead assembly applying an anchor to the rail;



FIG. 5 is an exploded perspective view of a bar clamp arm and a rail stop of the workhead assembly of FIG. 1;



FIG. 6 is a side elevation of an anchor magazine of the workhead assembly of FIG. 1 with a portion of the magazine removed to view anchors;



FIG. 7A is a top view of the anchor magazine of FIG. 5;



FIG. 7B is a top view of a top guide with a first anchor;



FIG. 7C is a top view of the top guide with a second anchor;



FIG. 7D is a top view of the anchor magazine of FIG. 5 with a bottom guide disposed along the magazine;



FIG. 8 is a perspective view of an anchor holder of the workhead assembly of FIG. 1; and



FIG. 9 is a vertical cross-section of the anchor holder of FIG. 8.





DETAILED DESCRIPTION OF THE INVENTION

Referring now to FIGS. 1 and 2, a railway anchor applicator incorporating the present invention is generally designated 10 and is designed for applying railway anchors 12 onto railroad rails 14 to secure rail tie plates 16 and ties 18 to the rails. The anchors 12, the rails 14, the tie plates 16 and the ties 18 are often collectively referred to as the railroad track, generally designated 20.


Included on the applicator 10 is a frame 22 supported on wheels 24 such that the frame is movable along the track 20, either by being self-propelled by a source of motive power such as an engine 26 (shown schematically), or by being towable by another powered vehicle, as is well known in the art. At or near the rear of the applicator 10, an operator's station 28 is preferably included for housing an operator 30 (FIG. 3). A bulk storage compartment 32 (shown schematically) is preferably located in front of the operator's station 28 (in the direction of travel of the anchor applicator 10 along the track 20). Other components of railway maintenance machines can also be incorporated, as are known in the art.


For purposes of discussion, the forward direction “F” is towards the direction of travel, and the rearward direction “R” is away from the direction of travel. Also, the gage side “GG” of the track 12 is between the rails 14, while the field side “FD” is outside of each rail 14. Upwards “U” is away from the ground and downwards “D” is towards the ground. The length of the vehicle is measured along the track 12, and the width of the vehicle is measured across the track.


Referring now to FIG. 3, at least one operator's seat 34 is disposed in the operator's station 28 in operational relationship to a work area generally designated 36 having at least one operator input 37 such as a trigger, a switch, a joystick, a button or any other input mechanism. Extending from the bulk storage compartment 32 (FIG. 1) into the operator's station 28 is a bulk-loading conveyer 38 for receiving anchors 12 in the station. The anchors 12 (shown in phantom) travel from the bulk storage compartment 32, up the conveyer 38, and into the operator's station 28 where the operator can remove the anchors from the conveyer.


Referring back to FIGS. 1 and 2, a work area generally designated 40 is preferably defined between a work frame 42 and the operator's station 28 as a recess corresponding to one of the two rails 14 of the track 20. As is known in the art, the work frame 42 includes at least one piston rod or shaft 44 extending from a fluid power cylinder 46 used to selectively position a moving frame 47 vertically to the rails 14 over portions of the track 20 needing maintenance. The moving frame 47 is moved under hydraulic power from the fluid power cylinder 46 within the work frame 42. Other arrangements are contemplated for controlling movement vertical to the rail 14. Further, arrangements configured for movement parallel to the rail (forward) “F” and rearward “R” and movement transverse to the rail (gage “66” to field “FD”) are contemplated.


In the anchor applicator 10, preferably the work area 40 is provided with at least one and preferably two workhead assemblies 48. Only one such assembly will be described in detail, since the units are preferably identical or substantially identical to each other. The workhead assembly 48 is movably mounted on the work frame 42 for vertical movement toward and away from a tie 18 (upward “U” and downward “D”) to adjust the movement of the workhead 48 to a particular height of the rail 14.


As seen in FIG. 3, the workhead assembly 48 preferably includes three mechanisms, an anchor receiving mechanism 50, an anchor positioning mechanism 52 and an anchor clipping mechanism 54. While these mechanisms will be described in detail with respect to FIGS. 4A-4K, a brief overview of the mechanisms will be provided. First, the anchor receiving mechanism 50 is configured for movement between a first position receiving at least one anchor 12 from an anchor input 56 and a second position placing the anchor at a location away from the anchor input. Preferably, the anchor receiving mechanism 50 pivots the anchor 12 downward “D” towards the rail 14.


The second mechanism is the anchor positioning mechanism 52 which is configured for movement of the workhead assembly 48 between a retracted and an extended position for positioning the anchor 12 adjacent to the rail 14. The movement of the anchor positioning mechanism 52 is preferably vertical movement downward “D”, as well as rotation about the work frame 42.


Third, the anchor clipping mechanism 54 positively engages the anchor 12 against the rail 14 by imparting pressure on the anchor transversely across the rail. In the preferred embodiment, the anchor 12 is positioned from the gage side “GG” as the mechanism 54 moves underneath the rail 14 towards the field side “FD” of the rail. Then, the anchor 12 is clipped onto the rail 14 by moving the anchor upwards and back towards the gage side “GG” to compress it against the flange of the rail. The three mechanisms will be described in greater detail with respect to FIGS. 4A-4K after additional structure is introduced.


Before the workhead assembly 48 can apply an anchor 12 to the rail 14, the anchor must be input into the workhead assembly 48 from the anchor input 56. While the anchor input 56 is contemplated as any manner of feeding anchors to the workhead assembly 48, including manual feeding directly to the anchor receiving mechanism, an anchor magazine 58 is preferably provided for each workhead assembly.


Referring now to FIGS. 3, 6 and 7A-7C, the anchor magazine 58 is configured for storing a plurality of rail anchors 12 and delivering them sequentially, preferably under gravity feed, for engagement with the anchor receiving mechanism 50. The magazine 58 is preferably a chute structure 60, preferably having an inclined orientation, which preferably extends generally from the operator's work area 36 to a drop off point 62 adjacent the anchor receiving mechanism 50. While the chute structure 60 preferably is inclined, it is contemplated that any orientation may be used.


The magazine 58 guides the anchors 12 disposed within the chute 60 toward a delivery point 68 in a sequential alignment. While other orientations and configurations are contemplated, the present anchor magazine 58 is configured for accommodating the anchors 12 in an arrangement such that a head 70 of the anchor is oriented in the direction of the rails 14 and a belly 72 is facing upwards “U” (best seen in FIG. 3a). Further, the anchors 12 have tails 74, and are preferably disposed in a head-to-tail arrangement, although a tail-to-head arrangement is also contemplated.


The magazine 58 is preferably made of a top guide 64 and at least one tray 66 forming the confines of the chute 60. In the preferred embodiment, two generally “L”-shaped trays 66 oppose each other and substantially define a generally “U”-shaped chute 60 to sequentially feed anchors from a top end 61 of the tray to a bottom end 63 of the tray. FIG. 6 depicts the magazine 58 with one of the trays 66 removed to show the alignment of the anchors 12. A bracket-like assembly structure 65 preferably connects the trays 66 together. Further, windows 67 are preferably disposed in each tray 66 to reduce material and weight of the tray, and also to enable the operator 30 to view the anchors 12 within the magazine 58.


The top guide 64 is an elongate member disposed within the chute 60 and configured to slidingly receive the anchors 12 substantially along the length of the chute. The top guide 64 preferably also positions each anchor 12 into sliding engagement with a bottom portion 69 of the chute opposite of the top guide.


To facilitate different sizes and shapes of anchor 12, the top guide 64 is preferably adjustable within the trays 66. While the top guide 64 is generally aligned with the chute 60, the top guide is displaceable generally in the direction transverse to the length of the chute. Preferably secured to at least one of the trays 66 by threaded fasteners 82 engaging the corresponding assembly structure 65, the top guide 64 can be adjusted to change the inner cross-sectional area of the chute 60 to accommodate and align various types, shapes and sizes of anchors 12.


Referring now to FIGS. 7A-7C, in the preferred embodiment of the top guide 64, there are a first and a second elongate member 71, 73 disposed substantially along the length of the chute 60. The first member 71 has a front surface 71a that is generally coplanar with a front surface 73a of the second member 73. A third elongate member 75 is disposed substantially along the length of the chute 60 between the first and second members 71, 73, preferably forming a channel. The third member 75 also has a front surface 75a, the front surface being offset from the first and second front surfaces 71a, 73a. At least one of the front surfaces 71a, 73a, 75a is configured to slidingly receive the anchor 12 along the length of the chute 60 and to position the anchor into sliding engagement with the bottom portion 69 of the chute.


In this configuration of first, second and third members 71, 73, 75, a variety of anchors 12 can be accommodated (FIGS. 7B and 7C). The first, second and third members 71, 73, 75 can be separate members adjustably moveable with respect to each other, or can be integral or attached to each other. Further, the first, second and third members 71, 73, 75 are displaceable generally in the direction transverse to the length of the chute 60 to effectively decrease the inside surface area of the chute. The top guide 64 is displaced by adjusting the fasteners 82 on the assembly structure 65. By decreasing the inside surface area of the chute 60, the top guide 64 can maintain the anchors into confinement between the members 71, 73, 75 and the bottom portion 69 of the chute to keep the anchors in an orderly, sequential alignment in the chute 60.


For ease of retrieving anchors 12 from the bulk-loading conveyor 38 and feeding the anchors to the magazine, a loading portion 77, preferably flared in shape, preferably extends into the operator's station 28, preferably at the operator's work area 40, and more preferably within the operator's reach. The loading portion 77 is also preferably integral with or disposed adjacent to the top end 61 of the trays 66 for facilitating the deposit of anchors 12 into the chute 60. The loading portion 77 is a funnel-like structure providing an enlarged area in which to load the anchors into the magazine 58.


Specifically, the loading portion 77 has a first end 79 preferably defining a generally rectangular orifice 81, and an expanded width. Opposite the first end 79, a second end 83 also preferably defines a generally rectangular orifice 85 and has a relatively decreased width. In the preferred embodiment, the width at the first end 79 is about three times the width at the second end 83.


Between the first end 79 and the second end 83, a taper portion 87 is disposed which has sloping sides and a tapering width between the first rectangular orifice 81 of expanded width and the second rectangular orifice 85 of decreased width. The taper portion 87 is configured to receive the anchor 12 at the orifice 81, and to position the anchor at the second end 83 to be aligned with the chute 60 of the magazine 58.


A bottom portion 89 is disposed adjacent the taper portion 87. The bottom portion 89 is configured to align and to feed the anchor 12, preferably under gravity down the chute 60 in a head-to-tail or tail-to-head orientation when the anchor exits the second end 83.


The bottom portion 69 is preferably elongate and disposed substantially along the length of the chute 60. Configured to slidingly receive the anchor 12, the bottom portion 69 is preferably a smooth, integral surface with the trays 66.


At the opposite end of the chute 60 from the loading portion 77 is the delivery point 68. Preferably at least one escapement pin 76 (FIG. 6), powered by a fluid power cylinder (not shown) which selectively permits the delivery of one anchor 12 at a time under operator control, is located at the delivery point 68. More preferably, two escapement pins 76 work in tandem to permit one anchor 12 to pass between the two pins, from the delivery point 68 to the drop-off point 62, and one anchor to be delivered from the drop-off point 62 to the anchor receiving mechanism 50. The operator 30 preferably operates the escapement pins 76 using the operator input 37.


The magazine 58 is preferably pivotable with respect to the frame 22, specifically about a magazine pivot point 84 to allow the operator 30 to accurately place a variety of anchors 12 into the anchor receiving mechanism 50. The pivoting of the magazine 58 is used to correct any off-center placement of certain types of anchors 12 into the anchor receiving mechanism 50.


Referring now to FIGS. 3, 4A-4C and 8, the anchor receiving mechanism 50 includes an anchor holder 86 (FIG. 8) configured for movement between a first, or loading position for sequentially receiving an anchor 12 from the anchor input 56, and a second position placing the anchor in an applying position away from the anchor input 56. The anchor receiving mechanism 50 is preferably configured for lowering and axially rotating each anchor 12 from the first position to the second position. Preferably, the vertical (lowering) movement component and the rotational movement of the anchor receiving mechanism 50 about main pivot 88 are performed in close temporal succession, and even more preferably, these movements occur simultaneously, as will be described below.


The anchor receiving mechanism 50 includes a first actuator 90, preferably a fluid power cylinder having a reciprocating piston (not shown). More specifically, the first actuator 90 pivotally moves an anchor receiving arm 92 about the main pivot 88. The pivoting of the anchor receiving arm 92 displaces the anchor 12 downward toward the rail 14 and outward toward the field side “FD” of the track 20. This preferred rotation not only moves the anchor 12 from the drop-off point 62 to a location where the anchor can be readily applied to the rail 14, but it places the tail end 74 of the anchor towards the rail. Thus, the anchor 12 is generally pivoted about the head 70 of the anchor and has a generally 180-degree orientation from the orientation in which it is placed in the loading portion 77 of the magazine 58.


Referring now in detail to the anchor holder 86 in FIGS. 8 and 9, the anchor holder preferably includes a generally “U”-shaped support block 96, the inside of the “U”-shape preferably defining a seat 98 for receiving the anchor 12. The seat 98 is preferably sized and shaped to accommodate a variety of anchors 12, while maximizing the amount of contact between the anchor and the seat to retain the anchor in the anchor holder 86. When the anchor 12 is deposited into the anchor holder from the magazine 58, the anchor is preferably received head-first in the seat 98 such that the tail end 74 of the anchor extends from the support block 96 (FIG. 8).


When an anchor 12 is received from the magazine 58, the anchor holder 86 has a generally vertical orientation so that the anchor is generally placed or dropped into the seat 98 (FIG. 3). A retaining wall 100 is preferably disposed adjacent the seat 98 to provide an additional restraint to keep the anchor 12 in the seat. Opposite the seat 98 from the retaining wall 100 is an open side 101. Further, a clamp 102 is disposed preferably within the support block 96 generally transverse to the direction of the legs of the “U”-shape. The clamp 102 is preferably a movable member that engages the anchor 12 at the anchor head 70, and retains the anchor within the seat 98 by pushing the anchor against an opposing wall 104 of the seat. As is known in the art, the clamp 102 may be operated by a hydraulic activator 105 (schematically represented as a hose), or by any other means to effect a clamping force on the anchor 12.


The seat 98 in the support block 96 preferably includes a recess 106 that extends backward toward the base of the “U”-shape. The recess 106 is configured for accommodating different types of anchors 12 having different shapes and sizes to allow a variety of types of anchors to be operatively seated. The recess 106 is also configured to provide additional space for allowing the anchor 12 to bend, deform, or otherwise position itself upon the rail 14 in the clipping process (FIG. 9).


At the base of the “U”-shape, the support block 96 is provided with a mounting bore 108 for a plunger rod 110. The plunger rod 110 is disposed within the mounting bore 108 and includes a shaft 112 circumscribed by a compression spring 114. As is known in the art, suitable fasteners 116 are provided at a mounted end 118 of the plunger rod 110 where the rod is slidably received in the bore 108 and secured to the support block 96, preferably to retain the plunger rod 110 in position. Further, preferably the mounted end 118 is disposed in a counterbore 120 so as not to protrude to the outside surface of the anchor holder 86.


In the preferred embodiment, the compression spring 114 acts on a sleeve 122 circumferentially disposed on the shaft 112. The spring 114 biases the sleeve 122 away from the spring, and a plunger tip 124 disposed on the end of the sleeve is configured to bias the head 70 of the anchor 12 in an operational position away from a back recess wall 126.


When the anchor 12 is first positioned in the anchor holder 86, the plunger rod 110 dampens the impact of the anchor in the seat 98. Further, when the anchor 12 is positioned adjacent a rail 14, the plunger tip 124 biases the anchor towards the rail (FIG. 9). Additionally, when the anchor 12 bends, deforms or otherwise positions itself on the rail 14, the force of the anchor can overcome the bias of the spring 114, which allows the anchor to use the space within the recess 106 to maneuver and position itself on the rail.


To engage the anchor 12 on the rail 14, the anchor positioning mechanism 52 must first position the anchor adjacent the rail. The anchor positioning mechanism 52 will be described with respect to the preferred embodiment, however, it is contemplated that other mechanical structures can be used which move between a retracted and extended position, generally vertically and rotationally, for positioning the anchor 12 adjacent to the rail 14 at either the field side “FD” or the gage side “GG” of the rail.


The movement of the workhead assembly 48 will be described with reference to FIGS. 3 and 4A-4K, which are a series of “snapshots” of the movement of the workhead assembly. Generally, the workhead assembly 48 includes a plurality of links including the anchor receiving arm 92, a main pivot arm 128, a bar clamp arm 130, a large arm 132 and a minor arm 134 in operational relationship with each other.


The workhead assembly 48 also includes a plurality of actuators 136 including the first actuator 90 for pivoting the anchor receiving arm 92 with respect to the bar clamp arm 130 to position the anchor 12 adjacent the bar clamp arm, a second actuator 138 for pivoting the main pivot arm 128 with respect to the moving frame 47 to position the anchor adjacent the rail 14, and a third actuator 140 for pivoting the minor arm 134 with respect to the main arm 128 to clip the anchor to the rail. Since movement of any component of the workhead assembly 48 is effected by any actuator 136 and is dictated by the particular structure of the workhead assembly links, it is contemplated that a variety of linkages and actuators may be employed.


The main pivot arm 128 is generally triangular when viewed from the front of the machine and is pivotally attached both to the second actuator 138 and to a frame pivot point 142. Extension of the second actuator 138 effects the counterclockwise pivoting (as viewed in FIGS. 4C-4G) of the main pivot arm 128 about the frame pivot point 142. When the main pivot arm 128 is pivoted, the large arm 132 and the third actuator 140 are pivoted about the frame pivot point 142 with respect to the moving frame 47. Also, when the main pivot arm 128 is pivoted, the bar clamp arm 130, the anchor receiving arm 92 and the minor pivot arm 134 are also rotated and displaced relative to the moving frame 47.


Since the anchor receiving arm 92 is displaced during actuation of the anchor receiving mechanism 50, the anchor receiving arm 92 is generally aligned with the bar clamp arm 130 (FIG. 4C). Thus, when the main pivot arm 128 is pivoted during actuation of the anchor positioning mechanism 52, the anchor receiving arm 92 and the bar clamp arm 130 are both rotated together to be generally parallel with the ties 18 (FIG. 4F). Both the anchor receiving arm 92 and the bar clamp arm 130 are also displaced towards the rail 14 (FIG. 4C-4F).


Simultaneously or in succession with the pivoting of the main pivot arm 128, the workhead assembly is 48 displaced downward towards the rail 14 by movement of the moving frame 47 relative to the work frame 42 (FIG. 4A-4D). As is known in the art, a separate fluid power cylinder is used to control this movement. In particular, through this motion a second actuation pivot point 144 and the frame pivot point 142, displace downward relative to the track 20. This moves the bar clamp arm 130 downward toward to the rail 14.


In FIG. 4F, the anchor positioning mechanism 52 positions the anchor 12 adjacent the rail 14, and depending on the type of anchor used, preferably positions the head 70 of the anchor adjacent the rail. In particular, the head 70 of the anchor 12 is preferably looped around the flange on the gage side “GG” of the track 20 at a point on the rail 14 abutting the tie. Again, depending on the type of anchor 12 used, the tail end 74 of the anchor is preferably positioned adjacent to the field side “FD” of the rail 14. However, the tail end 74 of the anchor 12 is typically not positively engaged on the rail by merely positioning it against the rail by the anchor positioning mechanism 52.


Referring to FIGS. 4G-4H, the rail anchor applicator 10 is provided with the anchor clipping mechanism 54 for clipping both the head 70 and the tail end 74 of the anchor 12 into positive engagement with the rail 14. The anchor clipping mechanism 54 preferably includes the anchor holder 86, the bar clamp arm 130 and a rail stop 146, and all the components and actuators that cause the clipping movement, such as the third actuator 140.


When the anchor holder 86 is pivoted into alignment with the bar clamp arm 130 (FIG. 4C), and the anchor 12 is positioned generally abutting the vertical face of the tie 18 and preferably adjacent the gage side “GG” of the flange during actuation of the anchor positioning mechanism 52 (FIG. 4F), the anchor clipping mechanism 54 is preferably actuated. The anchor clipping mechanism 54 moves generally upward “U”, and then generally transversely to the direction of the rail 14, preferably moving the anchor 12 in a generally elliptical path “P” (FIG. 4A) back towards the gage side “GG”. Actuation of the third actuator 140 causes the bar clamp arm 130 to move the anchor 12 back toward the gage side “GG” of the rail 14 in the generally elliptical path. The anchor 12 is positively engaged on the rail by “clipping” the head 70 of the anchor with the anchor holder 86 on the gage side “GG”, and the tail end 74 of the anchor with the bar clamp arm 130 on the field side “FD”. In this configuration, the tail end 74 of the anchor 12 is compressed to clip onto the flange of the rail 14 at the field side “FD” (FIG. 4H).


Referring now to FIG. 5, the bar clamp arm 130 is a generally elongate arm having a distal end 148, preferably including an adjustment formation 150. The rail stop 146 is attached to the distal end 148 of the bar clamp arm 130 and preferably has a general “J”-shape with the toe of the “J” generally perpendicular to the bar clamp arm. A clipping surface 152 is preferably generally perpendicular to the bar clamp arm 130 and is configured to impart pressure on and engage the tail end 74 of the anchor 12 against the rail 14. Further, it is preferable that the rail stop 146 be provided with a corresponding adjustment formation 151, configured for selective attachment on the distal end 148 of the bar clamp arm 130 at a preferred location.


The adjustment formation 150 used to adjust the bar clamp arm 130 and the rail stop 146 preferably includes a series of grooves 150A on the bar clamp arm configured to be engaged by the adjustment formation 151 on the rail stop, preferably including a complementary series of grooves 151A. Preferably, a fastener 156 and a washer 158 are used in conjunction with the adjustment formation 150 to position the rail stop 146 onto the distal end 148 of the bar clamp arm 130 to accommodate the variety of anchors 12.


At the beginning of actuation of the anchor clipping mechanism 154, the bar clamp arm 130 and the anchor holder 86 are positioned adjacent to each other such that the open side 101 of the support block 96 abuts the bar clamp arm. In this configuration, a portion of the rail stop 146 is cantilevered over the bar clamp arm 130 and opposes the anchor holder 86. The tail end 74 of the anchor 12 extends from within the seat 98 away from the support block 96 and towards the rail stop 46. In particular, the clipping surface 152 of the rail stop 146 opposes the tail end 74 of the anchor 12.


When actuated, the third actuator 140 extends and rotates with respect to the work frame 42. The third actuator 140 also rotates the minor arm 134 about the major pivot point 94 (FIG. 4F-4H). The pivoting of the minor arm 134, which is attached to the bar clamp arm 130, preferably displaces the bar clamp arm 130 upwards, then transversely back towards the gage side “GG” of the rail 14 in the generally elliptical path “P”. The relative motion between the anchor holder 86 and the rail stop 146 clips the anchor 12 onto the rail 14. It is contemplated that one or both of the bar clamp arm/rail stop 130, 146 and the anchor holder 86 moves relative to the other to effect the clipping movement.


The anchor 12 is compressed between components of the clipping mechanism 54, preferably the bar clamp arm/rail stop 130, 146 and the anchor holder 86, which are positioned on both the field side “FD” and the gage side “GG” of the rail. While the pressure may be applied from one component (one of the bar clamp arm/rail stop 130, 146 or the anchor holder) or more components (both the bar clamp arm/rail stop and the anchor holder) depending on which components move toward the rail, the compression occurs transversely across the rail from both the field side and the gage side. The anchor 12 is “sandwiched” between the anchor clipping mechanism components 154, preferably the anchor holder 86 and the rail stop 146, such that the opposing compressive forces are generally transverse to the rail 14 and parallel with the tie 18.


The clipping surface 152 on the rail stop 146 engages the tail 74 of the anchor 12 and “clips” or positively engages the anchor against the bottom flange of the rail 14. While the anchor 12 is being clipped, the anchor is retained in the seat 98 by the clamp 102 in the anchor holder 86, and is confined by the retaining wall 100 on one side, and the rail stop 146 on the other side.


Since anchors 12 have a variety of shapes and sizes, the bar clamp arm 130 and the rail stop 146 can be adjusted with the adjustment formation 150 to accommodate the particular anchor. For example, if the anchor 12 is long and extends a large distance from the anchor holder 86, the rail stop 146 can be fastened to the bar clamp arm 130 so that the distance between a proximal end 154 of the bar clamp arm 130 and the clipping surface 152 is larger. The longer the anchor 12, the more elongated the bar clamp arm 130 and rail stop 146 structure can be adjusted to accommodate the anchor.


After the anchor 12 has been applied to the rail 14, the clamp 102 on the anchor holder 86 is released, and the mechanical movements of the anchor applicator 10 are preferably reversed to return the anchor applicator to the initial position (FIGS. 4I-4K). Preferably, the workhead assembly 48 is returned to the ready position before the anchor applicator 10 advances down the track 20 to prevent the workhead assembly from colliding with portions of the track or obstructions on the track.


The workhead assembly 48 does not have to be retracted any further than the ready position of FIG. 4A before advancement. That is, the workhead assembly 48 does not have to be taken out of the ready position before traveling to the next location, which saves time in the cycle of the anchor application and in the overall maintenance of the track. Once the vehicle is advanced down the track 20, the workhead assembly 48 is ready to receive another anchor 12 and to cycle through the anchor receiving mechanism 50, the anchor positioning mechanism 52 and the anchor clipping mechanisms 54 to apply another anchor 12.


Referring back to FIG. 3, the operator 30 is preferably seated in the operator's station 28 generally facing towards the workhead assembly 48. It is also contemplated that the operator 30 can be seated to face the direction of travel or both the direction of travel and the workhead assembly 48, or any angle therebetween. In this arrangement, the operator 30 can see down the track 20 to advance the anchor applicator 10 down the track, receive anchors 12 from the bulk loading conveyer 38, feed anchors to the anchor magazine 58, operate the operator input 37, and also monitor the progress of the workhead assembly 48. Further, only one operator 30 is needed for operation of each anchor applicator 10, although it is contemplated that additional operators can be added.


Thus, it will be seen that the present rail anchor applicator 10 provides a relatively reduced application cycle time which is intended to increase operational efficiency of this rail maintenance operation. In addition, the anchor magazine 58 feature has a simple design with a relatively low amount of moving parts. The feature of the plunger 110 in the anchor holder 86 also positively retains the anchor 112 into position against the rail 14 to engage the head 70 onto the flange. Further, the bar clamp arm 130 and the rail stop 146 provide adjustability for different varieties of anchors 12.


Referring back to FIGS. 6-7D, a bottom guide 160 is disposed substantially along the length of the chute 60 along the bottom portion 69. Similar to the top guide 64, the bottom guide 160 is configured to facilitate different sizes and shapes of anchor 12 in the chute 60. Preferably configured to accommodate a FAIR® style anchor (shown in FIG. 7D) in the chute 60, the bottom guide 160 is shown in phantom in FIG. 6. More preferably, when other styles of anchors 12 are used, the bottom guide 160 is preferably removed from the chute 60.


In the preferred embodiment of the bottom guide 160, there are a first and a second elongate portion 162, 164 disposed substantially along the length of the chute 60. The first portion 162 has a front surface 162A that is generally coplanar with a front surface 164A of the second portion 164. A third elongate portion 166 is disposed substantially along the length of the chute 60 between the first and second portions 162, 164, preferably forming a channel. The third portion 166 also has a front surface 166A, the front surface being offset from the first and second front portions 162A, 164A. At least one of the front surfaces 162A, 164A and 166A is configured to slidingly receive the anchor 12 along the length of the chute 60 and to position the anchor into sliding engagement with the top guide 64 of the chute, or alternatively, a top portion 168 of said chute.


The bottom guide 160 is preferably removable and made of an abrasive resistant material, although other materials are contemplated. Alternatively, it is contemplated that the bottom guide 160 may be integral with the tray 66. In the preferred embodiment, the third portion 166 extends at an angle from the first and second portions 162, 164 up along the loading portion 77, and secures the bottom guide 160 onto the loading portion with a hook 170.


While a particular embodiment of the present rail anchor applicator has been described herein, it will be appreciated by those skilled in the art that changes and modifications may be made thereto without departing from the invention in its broader aspects and as set forth in the following claims.

Claims
  • 1. A railway anchor applicator for applying an anchor to a rail of a railroad track having two such rails, said applicator comprising: a frame configured for movement in a specified direction of travel along the track;an anchor input for sequentially delivering at least one anchor to a workhead assembly, said workhead assembly movably mounted on said frame for movement toward and away from the rail receiving the anchor, said workhead assembly including:an anchor receiving arm configured for movement between a first position sequentially receiving at least one anchor from said anchor input and a second position placing said anchor away from said anchor input;a main pivot arm associated with said frame configured for movement between a first position generally away from the rail receiving the anchor and a second position generally adjacent that rail;a bar clamp arm operatively linked to said main pivot arm and configured for movement underneath the rail receiving the anchor, then upwards and towards that rail; andan operator station disposed on said frame and located on a gage side of the rail receiving the anchor, wherein the operator station is disposed generally between the two rails and above the rail not receiving the anchor.
  • 2. The applicator of claim 1, wherein said anchor input is an anchor magazine configured for accommodating a plurality of rail anchors, and positioning them sequentially for engagement with said anchor receiving arm.
  • 3. The apparatus of claim 1 wherein said bar clamp arm further comprises a rail stop, and said anchor receiving arm further comprises an anchor holder, wherein at least one of said rail stop and said anchor holder apply pressure on said anchor from at least one of a field side and a gage side and compress said anchor between said rail stop and said anchor holder on both the field side and the gage side such that compressive forces act on said anchor transversely across the rail.
  • 4. The apparatus of claim 1, wherein through movement from said first position to said second position, said bar clamp arm carries said anchor underneath the rail, then upwards and towards the rail in a generally elliptical path.
  • 5. The apparatus of claim 1 wherein said workhead assembly further comprises a plurality of linkages in operational relationship with said main pivot arm, said bar clamp arm and said anchor receiving arm to position and clip the anchor on the rail.
  • 6. A bar clamp arm suitable for use with a rail anchor applicator having a frame configured for movement in a specified direction of travel along the track, a workhead assembly movably mounted on the frame for movement toward and away from a rail, said workhead assembly including an anchor receiving mechanism configured for movement between a first position receiving at least one anchor from an anchor input and a second position placing said anchor in a position away from said anchor input, an anchor positioning mechanism configured for movement between a retracted position and an extended position for positioning said anchor adjacent to the rail, and an anchor clipping mechanism for positively engaging the anchor onto the rail by applying pressure on said anchor from at least one of a field side and a gage side and compressing said anchor between components of said anchor clipping mechanism on both the field side and the gage side such that compressive forces act on said anchor transversely across the rail, said bar clamp arm comprising: a generally elongate arm portion; anda rail stop portion generally provided on an end of said elongate arm, said rail stop having a clipping surface generally perpendicular to said arm and configured to impart pressure on the anchor to clip the anchor against the rail.
  • 7. The bar clamp arm of claim 6 wherein said end of said generally elongate arm portion is a distal end having an adjustment formation, and said rail stop portion is provided with a corresponding adjustment formation configured to be selectively attached on said distal end of said arm.
  • 8. The bar clamp arm of claim 6, wherein said elongate arm portion and said rail stop portion are one of integral and separate components.
  • 9. The bar clamp arm of claim 7, wherein said adjustment formation on said arm comprises a series of grooves configured to be engaged by said adjustment formation on said rail stop comprising of a series of grooves.
CROSS-REFERENCE TO RELATED APPLICATION

This is a divisional of application Ser. No. 11/207,860, filed Aug. 18, 2005, entitled RAILWAY ANCHOR APPLICATOR (Attorney Docket No. 1425.71568) which is related to patent application Ser. No. 11/207,864, filed Aug. 18, 2005, entitled RAILWAY ANCHOR APPLICATOR MAGAZINE (Attorney Docket No. 1425.73514).

Divisions (1)
Number Date Country
Parent 11207860 Aug 2005 US
Child 12683181 US