This disclosure relates generally to railroad systems and more specifically to railway fastening systems for use with crossties when fastened to steel structures such as bridges having girders.
In conventional railroad systems, rails are supported on crossties using rail support assemblies. One such assembly is shown and described in commonly assigned U.S. Pat. No. 4,561,589 to Hixson. As shown in
Commonly, the crossties 14 are disposed on railroad beds. However, when railroad tracks run over bridges or other steel structures, special supports are needed to attach the crossties to these structures. One such support structure is disclosed in U.S. Pat. No. 4,795,091 to Burwell, which discloses a railway fastening system that includes a resilient clip that is designed to engage and secure a crosstie to a steel girder. The clip is fastened to the crosstie with a bolt passing vertically through the wooden crosstie. The support must be mounted below the crosstie and, therefore, is difficult and time consuming to install. Moreover, over time, the vertical bolt weakens the crosstie, increases wear and tear of the crosstie and the head of the clip poses a tripping hazard. Additionally, because the clip is disposed under the tie, it is difficult to determine when the clip is properly positioned during installation, or whether the clip has been corroded by extensive wear and tear and exposure to extreme weather conditions and, as a result, needs to be replaced. There are similar problems with U.S. Pat. No. 3,552,649 to Burnwell.
U.S. Pat. No. 9,512,573 to Austin, et al. shows a support system that includes a horizontal bar mounted by vertical spikes on top of two adjacent crossties. A spring loaded bolt extends from the horizontal bar downwardly between the crossties and terminates with a hook engaging the top of a girder. Again, the spikes weaken the crossties and the horizontal bar and bolt extend above the crossties and as a result, present a tripping hazard. Moreover the system is difficult to install correctly.
Broadly, the present disclosure is directed to a resilient fastener assembly that engages both a railway crosstie and a supporting structure (e.g., a steel girder). Tension on the resilient fastener transfers a lateral and a vertical force between the crosstie and the supporting structure. The fastener assembly includes a plate mounted to vertical fascia of the crosstie from which at least one flange extends and a clip that extends through an opening in the flange to secure the crosstie to a supporting structure.
It is an objective of the present invention to improve railway fastening of crossties to support structures, such as steel girder beams and in turn prevent the crosstie from movement.
It is another objective of the present intention to improve occupational safety for the installation of crossties on structures and increase the efficiency of the installation of crossties on supporting structures.
A still further objective of the present invention is to provide a railway fastening device that does not interfere with the support structure, secures the crosstie from lateral and vertical movement.
A yet further objective of the present invention is to remove tripping hazards of conventional railway crosstie fastening to structures by removing hardware for crosstie fastening clear of the crosstie top horizontal surface and installing it on the crosstie's vertical surface.
With reference to the drawings, wherein the same reference number indicates the same element throughout, exemplary embodiments of a railway fastener will be described.
As described above,
The railroad fastening system 100 includes a plate 110 (e.g., metal, steel, etc.) that is attached a sidewall 101 of the crosstie 102 by a plurality of fasteners 112. The fasteners 112 can be, for example, bolts that include threaded and/or unthreaded shanks and are used in combination with or without a nut, screws, spikes, etc. Attached to the plate 110 are two flanges 114. Each flange 114 may include a wall 116 that extends vertically from the plate 110 and a support 118 that is included to ensure that the walls 116 can withstand large lateral forces without bending or breaking. Each wall 116 includes a through-hole 120. As shown in
The railroad fastening system 100 further includes a J-shaped clip 122 that, as can be seen, for example, in
To secure the crosstie 102 to the steel structure 104, the railroad fastening system 100 is first attached to crosstie 102 by the fasteners 112 (e.g., bolts). This step can be performed remotely. Importantly, the walls 114 form sockets for the clip 122 with the clip 122 and the through-holes 120 forming interference or frictional fits to ensure that the clip 122 remains attached to the plate 110 and is not separated during transportation. Prior to the attachment of the crosstie 102 to the steel structure 104, the clip 122 can be turned about 180 degrees upward, in the position A shown by the broken lines in
When the crosstie 102 is transported to the installation site and positioned on the girder 104, the clip 122 can then be rotated downward to the position shown in
Next, the rounded section 126 is contacted laterally (e.g., with a hammer or other appropriate tool) to force the clip 122 to move laterally with respect to the plate 110, crosstie 102 and girder 104 in a direction B (see
Importantly, the railroad fastening system 100 can be installed from the top of the crosstie 102, thereby ensuring that an individual(s) installing the system 100 does not have to work beneath the crosstie 102 and the girder 104. Moreover, the final position of the clip 122 is clearly visible from the top of the crosstie 102 so that the individual(s) installing the system 100 can be sure that the clip 122 has been installed correctly and securely. Due to the fact that the clip 122 is visible from above the crosstie 102, the fastening system 100 can be easily inspected, as desired, and the clip 122 can be replaced as necessary.
The surface of the clip 122 can be relatively smooth with, as noted above, at least portion 125 of the straight section 124 externally threaded to increase friction between the clip 122 and the walls 114 and prevent the clip 122 from sliding easily about the through-holes 120.
In the description provided above, a single railroad fastening system 100 is shown attached to a crosstie 102. However, two or more such railroad fastening systems 100 can be attached as necessary. Moreover, the fasteners 112 can be sized to penetrate only a part of a respective crosstie 102 to maintain structural integrity.
Another exemplary embodiment of a railroad fastening system 200 is shown in
There may be two (or more) plates 210 near the end of each crosstie 202. Each plate 210 may be secured to the side of the crosstie 202 by a plurality of fasteners 212. The fasteners 212 can be, for example, bolts that include threaded and/or unthreaded shanks and are used in combination with or without a nut, screws, spikes, etc. in an embodiment, at least two fasteners 212 are required to secure the plate 210 to a crosstie 202. The fasteners 210 penetrate a side of the crosstie 202 and, thus, run parallel to the structural support 204, below and the crossties 202 located above the structural support 204. Importantly, the fasteners 210 do not extend all of the way through the crosstie 202 and, as a result, maintain the integrity of the crosstie 202. In another embodiment, the fasteners 210 can extend through the crosstie 202. These fasteners 210 do not impact the top and bottom profile of the crossties 202.
Attached to the plate 210 are two flanges 214. Each flange 214 extends vertically away from the plate 210. Each flange 214 includes a through-hole (not shown). The plate 210 and the flanges 214 can be manufactured as a single, unitary piece. The flanges 214 can include threaded openings and can be, for example, attached to the plate 210 by welding or other conventional means.
Like the fastening system 100 described above, the fastening system shown in
The threading 225 of the straight section 224 is configured to mate with internal threading of a nut 227 that can be used to adjust the position of clip 220 in relation to the plate 210, crosstie 202 and/or structural support 204. Turning the nut 227 to engage the bolt threads 225 advances the clip 222 along the plate 210 and secures the hook end 228 of the clip 222 to the top 205 of the flanged portion of the structural support 204.
The hook end 228 of the clip 222 is oriented so that the hook end 228 points down such that contoured tip 228 can couple with the lower flanged edge 207 of the structural support 204 that run under the crosstie 202 with the coupling being visible and achievable from the top side of the crosstie 202. The contoured tip 228 is configured such that it can compress against the underside 207 of a flanged portion 208 of the structural support 204, thereby coupling the crosstie 202 to the structural support 204 in a compression arch. Thus, the hook end 228 is resiliently deformable to aid in securing the crosstie 202 to the girder 204.
Advancing the clip 222 with the nut 227 further advances the clip 22 along the underside 207 of the structural support 204. Because of the position of the plate 210 and the clip 222, this attachment can be accomplished by one person avoiding trial and error type positioning of the clip 222 and/or the crosstie 202. The contoured tip 228 of the clip 222 is elastically flexible, thereby allowing lateral and vertical movement of the crosstie 202 relative to the structural support 204, which can occur under different weather and load conditions without thereby uncoupling the crosstie 202 from the structural support 204. The resilient clip 222 is configured to transmit lateral and vertical forces between the plate 210 and the flange 208 of the structural support 204.
A second fastening system that includes plate with a flange or flanges, fasteners, clip, and a nut similar or identical to the fastening system 200 described above can be used on both horizontal sides of a railroad crosstie, thereby securely attaching the crosstie in two positions to the structural support or girder below. This side fastening system could be pre-fabricated on railroad crossties, decreasing railroad crosstie installation time and cost. The side fastening system avoids extraneous fasteners from protruding from the top surface of the crossties, reducing occupational hazards.
As can be seen in
The invention is adaptable to different thicknesses of structural supports or girders, different thickness of crossties and various other supporting structures.
Although this invention has been disclosed in the context of certain embodiments and examples, it will be understood by those skilled in the art that the invention extends beyond the specifically disclosed embodiments to other alternative embodiments and/or uses of the invention and obvious modifications and equivalents thereof. It is to be understood that the phraseology or terminology employed herein is for the purpose of description and not of limitation. In addition, while several variations of the embodiments of the invention have been shown and described in detail, other modifications, which are within the scope of this invention, including, but not limited to, the substitutions of equivalent features, materials, or parts, will be readily apparent to those of skill in the art based upon this disclosure without departing from the spirit and scope of the invention.
This application claims priority to U.S. Provisional Patent Application No. 62/597,576, filed Dec. 12, 2017, which is hereby incorporated by reference in its entirety as part of the present disclosure.
Number | Date | Country | |
---|---|---|---|
62597576 | Dec 2017 | US |