1. Field of the Invention
The invention relates to positioning systems for railways. Such devices measure the absolute and relative position and speed of railway vehicles and supply their measured values to driver displays, signalling, traction control systems and other users. In the railway context, absolute positioning refers to preset mile or kilometer positions on a track which is recorded in files and on wayside milestones. Relative positioning refers to a distance travelled since an earlier point in time.
2. Description of Related Art
Known solutions for relative positioning apply wheel rotation measurements, see e.g. GB388761, Radar, see e. g. U.S. Pat. No. 4,791,424 and induced magnetic fields measurements. Known solutions for absolute positioning apply wayside tags in the form of electronic transponders, see e. g. EP1813499 or track cable crossing locations, see e.g. EP0593910. The need to provide 2 separate systems for absolute and relative positioning drives cost and the amount of hardware to be installed. Satellite positioning combines absolute and relative positioning, see e. g. DE19731110 A1. However, data availability in tunnels and narrow valleys is low precluding its use as a universal solution. Magnetic speed measurement devices using pulsed coils to create magnetic markers in the rail are known from DE2164312 and FR-A-2673901. As shown in WO 01/66401 A1, absolute and relative positioning have been combined in one system using a speed measurement device measuring induced magnetic fields known from U.S. Pat. No. 5,825,177 which recognises patterns in the track like the rail gaps at points. This method only has limited coding opportunities and due to the similarity between points, dependability is not optimised.
One object of this invention is a cost and performance optimised absolute and relative positioning system.
The object is met by a positioning system with a coded tag for a railway magnetic speed measurement device, in particular as defined in the claims which define the scope of the invention.
The railway positioning system of the present invention comprises:
It is proposed that a coded wayside tag provides a coding recognisable by the on-board speed measurement device. In particular, the coding may be represented by an arrangement of electrically conducting blocks (e.g. metal blocks). E.g. the sizes and/or positions of the electrically conducting blocks at the tag correspond to the specific code. In this case, another expression for “coded tag” is arrangement of electrically conducting blocks with predefined sizes and/or positions of the electrically conducting blocks. Preferably, the tag can be modified to represent another coding, in particular by selecting another combination of electrically conducting block sizes and positions. Furthermore, tags having different arrangements of electrically conducting blocks can be located at different locations along the railway. The tag (e.g. at a bar) may comprise a plurality of mounting locations (e.g. slots) at predefined positions relative to each other where the electrically conducting blocks can be mounted to.
E.g. by using analogue outputs of the magnetic speed measurement device, magnetic patterns can be analysed in the same way as the point detection described above. By creating a known signature at a certain position, the position can be detected in a safe way.
The coding may represent telegrams which contain safety measures like cyclic redundancy checks if needed. The tag is simple and cheap. It can be mounted some centimeters aside of the rail and/or slightly below the rail head. Therefore, it doesn't interfere with ballast maintenance.
For example, use of Quadrature Amplitude Modulation provides good signal to noise ratio. A high information rate per tag length can achieved, in particular if one information unit represents a 4-bit-digital word.
The telegrams could be linked to other tags, e.g. they could announce the next tag and the distance to it. In this way, sections where the speed measurement device is not available can be bridged.
If the telegrams are changed by a control device, information depending on the dynamic state of other systems can be transmitted to the speed measurement device, e.g. signal aspects. A safety telegram format can be used for coding with the basic same performance of availability and wrong side failure rate as for a state-of-the-art tag system.
The coding can also be able to detect in which direction the vehicle is entering the tag. If the telegram is read by two autonomous sensors of the speed measurement device and if the result shall be the same, the number of Cyclic Redundancy Check bits will be relatively low.
For example, a 15 to 16 bit safety telegram will give a range of 500 to 700 unique telegrams with a reasonable distribution of 0 and 1 bits. The received signal is varying over time and the bit rate is depending on the speed of the vehicle. By using the actual speed and the correlation between the 2 speed measurement device channels, a transformation of the time varying signal to a spatial distribution can be achieved and the telegram can be read.
A bar may be fastened on the rail foot or on sleepers. Alternatively, the coding can be created by standard size metal blocks representing 1 and gaps representing 0.
Examples of the invention will be described with reference to the attached drawings. Therein, interpretations and more detailed information concerning the expressions used above are given.
As shown in
s(t)=A(t)·ei[2πf
As shown in U.S. Pat. No. 5,825,177, the magnet speed measurement device can sense the amplitude and position along the travelling direction of signals generated by the wayside structure. The coded tag 1 exploits this by providing metal blocks 2 of different sizes as shown in
An embodiment of the invention may be summarised by the following:
A railway positioning system provides an on-board speed measurement device (6) inducing eddy currents in the wayside structure at two spots along the travelling direction, measuring the variations of the magnetic field emitted by the wayside structure and determining position and speed by correlating the 2 measured signals known from U.S. Pat. No. 5,825,177 and a wayside coded tag (1) providing a coding recognisable by the on-board speed measurement device (6). The coded tag (1) consists of a bar (4) with several slots (3) or holes in which protruding pins of metal blocks (2) of different sizes are mounted. The block sizes and positions are selected to represent a coding detectable according to Quadrature Amplitude Modulation.
Number | Date | Country | Kind |
---|---|---|---|
07023053 | Nov 2007 | EP | regional |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2008/010286 | 11/28/2008 | WO | 00 | 5/5/2010 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2009/068323 | 6/4/2009 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4791424 | Pore | Dec 1988 | A |
5294081 | Malon | Mar 1994 | A |
5825177 | Finnestad et al. | Oct 1998 | A |
6011508 | Perreault et al. | Jan 2000 | A |
7741956 | Nysen | Jun 2010 | B1 |
20080142645 | Tomlinson et al. | Jun 2008 | A1 |
Number | Date | Country |
---|---|---|
2164312 | Dec 1971 | DE |
3200811 | Jul 1983 | DE |
19731110 | Jan 1999 | DE |
19944896 | Mar 2001 | DE |
0496650 | Jul 1992 | EP |
0593910 | Apr 1994 | EP |
1813499 | Aug 2007 | EP |
2673901 | Sep 1992 | FR |
388761 | Feb 1933 | GB |
9712796 | Apr 1997 | WO |
0166401 | Sep 2001 | WO |
Number | Date | Country | |
---|---|---|---|
20100266005 A1 | Oct 2010 | US |