This application is a national phase application of International Patent Application Serial No. PCT/GB2014/050182 filed Jan. 24, 2014 and entitled “A RAILWAY RAIL ANCHORING DEVICE,” which claims the benefit of the filing date of Great Britain Application Serial No. 1301956.7 filed Feb. 4, 2013 and entitled “A Railway Rail Anchoring Device.” The disclosures of these applications are fully incorporated herein by reference.
The present invention relates to a railway rail anchoring device.
In railway track fastening applications, two important parameters associated with a track fastening are its ability to provide vertical adjustment and its vertical stiffness.
Vertical adjustment is required to make corrections to rail level, particularly in the case of slab track applications (i.e. those without ballast) where it is not possible to adjust (i.e. “tamp”) the ballast.
For such applications which require moderate levels of stiffness, it is typical to provide a fastening system with an adjustable baseplate where the only resilience comes from a rail pad that fits between the rail and the baseplate. The baseplate provides the capability of adjustment, but adds significantly to the cost and weight of the rail fastening system.
Accordingly, a rail fastening assembly that can provide moderate stiffness and vertical adjustment without an expensive or heavy baseplate is desirable.
The present disclosure seeks to address this issue.
According to a first aspect of the invention there is provided a railway rail anchoring device for fastening a railway rail to an underlying foundation, the anchoring device comprising a protrusion provided on a lower surface of the anchoring device, the anchoring device protrusion being configured to engage with a corresponding recess provided in a receiving portion associated with the underlying foundation, wherein the anchoring device protrusion is further configured such that the engagement of the anchoring device protrusion with the receiving portion recess permits a substantially vertical adjustment of the anchoring device relative to the underlying foundation and that the anchoring device protrusion and recess remain in engagement during such vertical adjustment.
The anchoring device may be configured to receive a first fastening means for fastening the anchoring device to the underlying foundation when in an installed configuration. The anchoring device may be further configured to receive a second fastening means, which bears down on the rail when in the installed configuration. The second fastening means may be separate from the first fastening means.
Accordingly, the rail may be clamped to the underlying foundation indirectly, e.g. via the first fastening means, anchoring device and second fastening means.
Accordingly, the present invention advantageously provides a means for fastening a railway that may have moderate stiffness and the ability to make positional adjustments.
The anchoring device protrusion may be configured such that the cooperation of the anchoring device protrusion with the receiving portion recess may limit lateral movement and/or rotation of the anchoring device relative to the underlying foundation.
The anchoring device protrusion may be provided on a lower surface of the anchoring device. The anchoring device protrusion may extend from the lower surface, e.g. in a downwards direction when in the installed configuration.
The anchoring device protrusion may be provided at a position further away from the railway rail than the first fastening means configured to fasten the anchoring device to the underlying foundation when in an installed configuration. Alternatively, the anchoring device protrusion may be provided at a position closer to the railway rail than the first fastening means configured to fasten the anchoring device to the underlying foundation when in an installed configuration.
The anchoring device protrusion may be provided in a region of the anchoring device away from the railway rail when in the installed configuration. Alternatively, the anchoring device protrusion may be provided in a region of the anchoring device adjacent to the railway rail when in the installed configuration.
The second fastening means may comprise a rail fastening clip. The anchoring device may be configured to receive the rail fastening clip, which may bear down on the rail when in the installed configuration. In the event that the anchoring device engages a clip, the anchoring device protrusion may be provided on the lower surface of the anchoring device at a point spaced apart from a contact point at which the clip contacts the anchoring device in an installed configuration. The railway rail anchoring device may comprise a railway rail fastening clip anchoring device.
The anchoring device may engage directly with the underlying foundation, for example, the anchoring device may be directly fastened to the underlying foundation. The anchoring device may further comprise an opening configured to cooperate with the first fastening means, e.g. a bolt. The first fastening means may be configured to fasten the anchoring device to the underlying foundation. The opening may be provided in a region of the anchoring device adjacent to the rail when in the installed configuration, e.g. so that the opening may be closer to the rail than the protrusion. Alternatively, the opening may be provided in a region of the anchoring device away from the rail when in the installed configuration.
The anchoring device protrusion may comprise a first side surface and a second side surface. The first side surface and/or the second side surface may be substantially perpendicular to a lower surface of the anchoring device. The first side surface and/or the second side surface may be angled relative to the lower surface of the anchoring device, e.g. such that the first side surface and/or the second side surface are vertical in the installed configuration.
A railway rail fastening assembly may comprise the railway rail anchoring device described above.
The railway rail fastening assembly may further comprise the receiving portion associated with the underlying foundation. The receiving portion may comprise the recess. The recess may be provided in the underlying foundation. The receiving portion may be a portion of the underlying foundation. The receiving portion may be separate from the underlying foundation. The receiving portion may be substantially level with the underlying foundation. For example, a top surface of the receiving portion may be substantially level with a top surface of the underlying foundation.
The receiving portion recess may comprise a first side surface and a second side surface. The first side surface and/or the second side surface may be substantially perpendicular to a lower surface of the anchoring device and/or the local top surface of the receiving portion when in the installed configuration. The first side surface and/or the second side surface may be angled relative to the lower surface of the anchoring device and/or the local top surface of the receiving portion, e.g. such that the first side surface and/or the second side surface are vertical in the installed configuration.
The railway rail fastening assembly may further comprise an intermediate member. The intermediate member may comprise the receiving portion such that the recess is provided in the intermediate member. The intermediate member may be configured for placement between the anchoring device and the underlying foundation. Alternatively, the underlying foundation may comprise the receiving portion with the recess.
The intermediate member may advantageously provide a mould surface to form the recess in the underlying foundation. The intermediate member may also advantageously provide a more resilient surface for the anchoring device protrusion to engage with.
The intermediate member may comprise a protrusion. The intermediate member protrusion may be configured to engage a further recess provided in the underlying foundation. Alternatively, the intermediate member may not comprise a protrusion and the intermediate member may fit in a further recess provided in the underlying foundation.
The recess may be provided on a first surface of the intermediate member. The intermediate member protrusion may be provided on a second surface of the intermediate member. The first surface may oppose the second surface. The recess and intermediate member protrusion may or may not be coincident. A structure forming the intermediate member protrusion may also form the recess.
The intermediate member may further comprise one or more fastening means receiving portions. The fastening means receiving portions may be configured to cooperate with the first fastening means. The first fastening means may be configured to fasten the anchoring device to the underlying foundation. The fastening means receiving portions may be integral with or separate from the remainder of the intermediate member.
The intermediate member and the underlying foundation may be joined together, e.g. by virtue of casting. The intermediate member may be configured such that it may be cast into the underlying foundation. For example, the intermediate member may comprise formations for interacting with the underlying foundation when cast.
The railway rail fastening assembly may further comprise one or more shims. The shims may be configured for placement between the anchoring device and the underlying foundation. The one or more shims may comprise a first side and a second side. The first and/or second sides may be substantially flat.
The railway rail fastening assembly may further comprise one or more fastening means, one or more rail clips, a further anchoring device for other side of rail and/or one or more base-plates.
According to a second aspect of the present invention there may provided a railway rail fastening assembly, the railway rail fastening assembly comprising: a railway rail anchoring device for fastening a railway rail to an underlying foundation; and an intermediate member, the intermediate member being configured for placement between the anchoring device and the underlying foundation, wherein the anchoring device is configured to receive a first fastening means for fastening the anchoring device to the underlying foundation when in an installed configuration, wherein the anchoring device is further configured to receive a second fastening means, which bears down on the rail when in the installed configuration, the second fastening means being separate from the first fastening means, wherein the anchoring device comprises a protrusion provided on a lower surface of the anchoring device, the anchoring device protrusion being configured to engage with a corresponding recess provided in the intermediate member, wherein the anchoring device protrusion is further configured such that the engagement of the anchoring device protrusion with the intermediate member recess permits a substantially vertical adjustment of the anchoring device relative to the underlying foundation and that the anchoring device protrusion and recess remain in engagement during such adjustment, and wherein the intermediate member is configured such that it may be cast into the underlying foundation.
According to a third aspect of the present invention there may provided an intermediate member configured for placement between the above-mentioned anchoring device and the underlying foundation, the intermediate member comprising one or more receiving portions with recesses, wherein the recesses are configured to engage with the anchoring device protrusions so as to permit a substantially vertical adjustment of the anchoring devices relative to the underlying foundation with the anchoring device protrusion and recess remaining in engagement during such adjustment.
The intermediate member may comprise two receiving portions each with a recess for engagement with a respective anchoring device. The two receiving portions may be arranged such that anchoring devices may be provided either side of the rail.
The intermediate member may further comprise one or more fastening means receiving portions. The fastening means receiving portions may be configured to cooperate with a first fastening means. The first fastening means may be configured to fasten the anchoring device to the underlying foundation. The intermediate member may be configured such that it may be cast into the underlying foundation.
According to a fourth aspect of the present invention there is provided a method of forming an underlying foundation, the method comprising: positioning the above-mentioned intermediate member; pouring a mixture, such as concrete or cement, around the intermediate member; and solidifying the mixture so as to form the underlying foundation with the intermediate member fixed to the underlying foundation. The method may comprise: placing the above-mentioned intermediate member in a mould; and forming the underlying foundation in the mould such that the underlying foundation is formed around the intermediate member.
The underlying foundation may comprise a sleeper or a slab, e.g. as used in track slab application. The underlying foundation may be formed from concrete, cement or any other mouldable material.
Reference will now be made to the accompanying drawings in which:
With reference to
The clip 14 may be configured such that it can be deflected from a non-operative configuration to at least one operative configuration in which a toe portion 15 of the clip bears on the rail. The clip 14 may be resilient and may be made from a rod of resilient material. The clip 14, as shown in
The railway rail fastening assembly 10 may further comprise a railway rail pad 20. The pad 20 may comprise a plate of resilient material for providing cushioning between the rail foot 17 and the underlying foundation 18.
The railway rail fastening assembly 10 may further comprise one or more electrically insulating wear pieces, such as a toe insulator 22 and a side post insulator 24. The toe insulator 22 may be carried by the toe portion 15 of the clip 14 and may bear against the rail foot 17 in an installed configuration. The toe insulator 22 may electrically insulate the rail from the clip and/or limit wear between the rail and the clip. The side post insulator 24 may be positioned between the anchoring device 12 and the rail foot 17 in an installed configuration and the side post insulator 24 may extend along the width of the anchoring device. The side post insulator 24 may electrically insulate the rail from the anchoring device and/or limit wear between the rail and the anchoring device.
With particular reference to
Referring now to
It is appreciated that the rail may be angled with respect to the vertical, e.g. due to opposing rails being angled towards one another and/or due to a cant angle. As a result, references to a substantially vertical adjustment of the anchoring device may also comprise a component of lateral adjustment, e.g. the adjustment may be in a direction substantially parallel to a midline of the respective rail. Alternatively, the adjustment may be in a vertical direction whether the rail is angled or not. In any event, references to a vertical adjustment of the anchoring device may simply mean that the anchoring device has been adjusted to a higher or lower position.
As best shown in
As is also depicted in
The protrusion 28 may be provided in a region of the anchoring device 12 away from the railway rail 16 when in the installed configuration. In particular, the protrusion 28 may be provided at an end of the anchoring device 12 furthest from the railway rail 16. For example, the protrusion 28 may, at least in part, form a rear face 27 of the anchoring device. By contrast, the opening 32 may be provided in a region of the anchoring device adjacent to the rail 16 when in the installed configuration, e.g. as shown in
The protrusion 28 may be provided on the lower surface 30 of the anchoring device 12 at a point spaced apart from a contact point at which the clip 14 contacts the anchoring device in the installed configuration. With reference to
As shown in
It will be appreciated that when in the installed configuration the clip 14 may exert a substantially upwards force on the anchoring device, e.g. via the first and second engaging surfaces 35a, 35b. In addition, the clip 14 may exert a substantially downwards force on the anchoring device, e.g. via the top surface 34 of the anchoring device. The fastening means 26 may also exert a substantially downwards force on the anchoring device 12. As a result of these forces, the anchoring device may be subject to a torque. The arrangement of the protrusion mentioned above, e.g. with the perpendicular side surfaces, may assist in resisting such a torque. Furthermore, the arrangement of the protrusion mentioned above ensures that contact is maintained between the protrusion and the recess when a substantially vertical adjustment is made.
Although a particular anchoring device, which cooperates with a corresponding clip, is shown in
Alternatively, the recess 36 may be provided in the underlying foundation itself, for example such that the receiving portion is part of the underlying foundation.
Accordingly, the railway rail fastening assembly 10 may further comprise an intermediate assembly 40 comprising the intermediate member 38. The intermediate member 38 comprises the receiving portion such that the recess 36 is provided in the intermediate member. The intermediate member 38 is configured for placement between the anchoring device 12 and the underlying foundation 18.
As depicted, the recess 36 is provided on a first surface 44 of the intermediate member 38, which is an upper facing surface when in the installed configuration. The first surface 44 of the intermediate member 38 may be substantially level with a top surface of the underlying foundation when in the installed configuration.
Referring to both
The receiving portion recess may comprise corresponding first and second side surfaces 37a, 37b. The first and second side surfaces 37a, 37b may be orientated in the same manner as the first and second side surfaces 29a, 29b of the protrusion. For example, the first recess side surface 37a and/or the second recess side surface 37b may be substantially perpendicular to the first surface 44 of the receiving portion and/or a lower surface of the anchoring device when in the installed configuration. The first and second recess side surfaces 37a, 37b may be substantially parallel to one another. However, one of the first and second recess side surfaces may be perpendicular to the lower surface 30, whilst the other recess side surface may not be perpendicular to the lower surface 30.
An interaction between respective recess side surfaces 37a, 37b and protrusion side surfaces 29a, 29b may restrict lateral movement of the anchoring device. The spacing between the first and second recess side surfaces 37a, 37b and spacing between the first and second protrusion side surfaces 29a, 29b may be configured such that there is a tight fit between the protrusion and recess in the lateral direction. However, the spacing between the first and second recess side surfaces may be greater than the spacing between the first and second protrusion side surfaces, e.g. so that there is a loose fit in the lateral direction.
The first protrusion side surface 29a and anchoring device lower surface 30 may meet at right angles, e.g. so as to define a substantially right-angled corner 30a. Alternatively, the corner between the first protrusion side surface 29a and the anchoring device lower surface 30 may be radiused. Similarly, one or more of the recess side surfaces 37a, 37b may meet the receiving portion upper surface at a right angle, e.g. so as to define a substantially right-angled corner 44a. Alternatively or additionally, the corner 44b between one or more of the recess side surfaces and the receiving portion upper surface 44 may be radiused.
The protrusion 28 may further comprise a first end surface 29c and a second end surface 29d. The first and second end surfaces 29c, 29d may be provided between the first and second side surfaces 29a, 29b. Accordingly, the receiving portion recess may comprise corresponding first and second end surfaces 37c, 37d. The first and second recess end surfaces 37c, 37d may be orientated in the same manner as the first and second end surfaces of the protrusion.
An interaction between respective recess end surfaces 37c, 37d and protrusion end surfaces 29c, 29d may restrict longitudinal movement of the anchoring device, e.g. in a direction parallel to the longitudinal axis of the rail. The spacing between the first and second recess end surfaces 37c, 37d and spacing between the first and second protrusion end surfaces 29c, 29d may be configured such that there is a tight fit between the protrusion and recess in the longitudinal direction. However, the spacing between the first and second recess end surfaces may be greater than the spacing between the first and second protrusion end surfaces, e.g. so that there is a loose fit in the longitudinal direction.
Referring again to
As depicted, the intermediate member recess 36 and intermediate member protrusion 42 may be coincident such that a structure 50 forming the intermediate member protrusion 42 also forms the intermediate member recess 36.
In an alternative configuration (not shown), the intermediate member may not comprise a protrusion and the entire second surface 46 of the intermediate member may fit in a recess provided in the underlying foundation. For example, the entire second surface 46 of the intermediate member may be substantially flat and the intermediate member may be a plate with recesses formed on a top surface. It will be appreciated that with such an arrangement, the thickness of the intermediate member 38 may be greater then the depth of the recess 36 on the first surface 44 of the intermediate member.
Whether an intermediate member is provided or not, the shape and dimensions of the recess 36, 48 may correspond to those of the anchoring device protrusion 28 such that the protrusion 28 fits within the recess 36, 48. For example, the recess 36, 38 may be substantially elongate and the recess 36, 38 may extend in a direction substantially parallel to the longitudinal axis of the rail 16.
It will be appreciated that the cooperation of the anchoring device protrusion with the receiving portion recess permits a substantially vertical adjustment of the anchoring device, and thus the rail, relative to the underlying foundation. It will also be appreciated that at least a portion of a lateral load between the anchoring device and the underlying foundation may be transmitted between the protrusion and the receiving portion recess.
The depth of the recess 36 may be greater than or equal to the height of the protrusion 28. The height of the protrusion 28 may be greater than the maximum anticipated vertical adjustment, e.g. so that there is an overlap between the protrusion 28 and the recess 36 when the maximum vertical adjustment has been made. In particular, the height of the protrusion 28 may be selected such that when the maximum vertical adjustment has been made there is an overlap between the protrusion and the recess sufficient to resist any lateral forces between the anchoring device and the underlying foundation. In other words, the height of the protrusion 28 may be greater than or equal to the sum of the maximum anticipated vertical adjustment and the minimum vertical overlap required between the protrusion and the recess.
By way of example, the height of the protrusion 28 (e.g. from the lower surface) may be approximately 20 mm. The depth of the recess 36 may also be approximately 20 mm, although it may be greater. The maximum anticipated vertical adjustment may be approximately 10 mm. The minimum vertical overlap between the protrusion and the recess may be approximately 10 mm. The first and second protrusion side surfaces 29a, 29b may be spaced apart by approximately 10 mm.
With particular reference to
The cooperation of the anchoring device protrusion 28 with the receiving portion recess 36, 48 may also limit movement of the anchoring device relative to the underlying foundation, e.g. in a horizontal plane. For example, the cooperation of the protrusion 28 with the recess 36 may limit movement of the anchoring device in a direction perpendicular to the longitudinal axis of the rail and/or in a direction parallel to the longitudinal axis of the rail. The cooperation of the protrusion 28 with the recess 36 may limit rotation of the anchoring device relative to the underlying foundation 18.
As shown in
The fastening means receiving portions 52 may be substantially tubular, e.g. so as to receive the fastening means 26, which may be in the form of a bolt. The fastening means receiving portions 52 extend from the second surface 46 of the intermediate member 38 and as such extend into the underlying foundation 18 when in the installed configuration.
The intermediate member 38 may comprise one or more openings 54. Each opening 54 may be associated with a corresponding fastening means receiving portion 52, such that the fastening means 26 may pass through the opening 54 in the intermediate member 38 and into the fastening means receiving portions 52. Accordingly, the fastening means receiving portions 52 may be open at an end which engages the intermediate member 38. By contrast, the opposite end of the fastening means receiving portions 52 may be closed.
The fastening means receiving portions 52 may or may not be integral with the intermediate member 38. In other words, the fastening means receiving portions 52 may be separate components from the intermediate member 38. The fastening means receiving portions 52 may engage with the respective openings 54 in the intermediate member 38. For example, the fastening means receiving portions 52 may be secured to the intermediate member 38 by virtue of an interference fit. Accordingly, the fastening means receiving portions 52 may be sized and/or shaped to fit in the intermediate member openings 54.
The fastening means receiving portions 52 may comprise an abutment shoulder 56 disposed about an outer surface of the fastening means receiving portions. The abutment shoulder 56 may comprise an annular ring. The abutment shoulder 56 may abut the second surface 46 of the intermediate member 38, e.g. to ensure that the fastening means receiving portions 52 do not protrude beyond the first surface 44 of the intermediate member. Accordingly, the abutment shoulder 56 may be set back from an end of the fastening means receiving portions 52, e.g. by a distance substantially equal to or less than the thickness of the intermediate member 38.
The fastening means receiving portions 52 may further comprise one or more splines (not shown) to resist rotational forces acting on the fastening means receiving portions. The splines may engage the underlying foundation or corresponding splines provided in the openings 54 of the intermediate member 38. The fastening means receiving portions 52 may further comprise one or more engaging surfaces 56 to engage the underlying foundation 18. The engaging surfaces 56 may resist movement of the fastening means receiving portions 52 (and hence fastening means 26) relative to the underlying foundation, e.g. in a vertical direction when in the installed configuration.
The recess 36 and opening 54 of the intermediate member 38 may be spaced apart by a distance corresponding to the spacing between the protrusion 28 and opening 32 of the anchoring device 12. In other words, when the protrusion 28 of the anchoring device 12 is located in the recess 36, the openings 32, 54 may coincide such that the fastening means 26 may pass through the openings to secure the anchoring device to the underlying foundation 18.
As is apparent from the Figures, the intermediate member 38 may comprise two openings 54 and two recesses 36, with each opening 54 and recess 36 corresponding to one anchoring device 12. Similarly, the intermediate member 38 may comprise two fastening means receiving portions 52 and hence two fastening means 26, e.g. one per each anchoring device.
Each intermediate member recess 36 may be provided at opposing ends of the intermediate member and each opening 54 may be set back from the respective ends of the intermediate member. The intermediate member 38 may be symmetrical about an axis substantially parallel to the longitudinal axis of the rail. The intermediate member 38 may also be symmetrical about an axis substantially perpendicular to the longitudinal axis of the rail.
It will be appreciated that the intermediate member 28 may support two anchoring devices 12, one at each end of the intermediate member. As depicted in
The intermediate member 38 and/or fastening means receiving portions 52 may be formed of a plastic, such as a high viscosity nylon or any other suitable plastic. The cost and weight of these components may therefore be kept to a minimum. By contrast, the anchoring device 12 may be made from iron and may be cast iron.
The underlying foundation 18 may be formed by positioning the intermediate member 38; pouring a mixture around the intermediate member; and solidifying the mixture so as to form the underlying foundation with the intermediate member fixed to the underlying foundation. For example, the underlying foundation 18 may be formed by placing the intermediate assembly 40 in a mould (not shown) and filling the mould with an appropriate substance, such as concrete or cement. The intermediate assembly 40 may be held in place with respect to the mould by virtue of the fastening means receiving portions 52. For example, bolts may be inserted into the fastening means receiving portions 52 to hold the intermediate assembly in place relative to the mould. In this way, the intermediate assembly may be cast into the underlying foundation, e.g. such that the intermediate assembly and underlying foundation are joined together. The bolts and mould may then be removed and the underlying foundation can be put in place in the required location.
Alternatively, the underlying foundation 18 may be formed with a “top down” construction in which the intermediate assembly may be suspended in the required position, e.g. connected to the anchoring device and rail, and a mixture may be poured up underneath it to form the underlying foundation and fix the intermediate member in position. In either case, the intermediate member 38 may advantageously provide a mould surface to form the recess 48 in the underlying foundation.
Casting a recess with parallel sidewalls is difficult to reliably achieve. The intermediate member with the recess that may be cast into the underlying foundation advantageously overcomes this issue. The recess may be provided in the intermediate member and the intermediate member does not have to be removed from the underlying foundation.
With reference to
The shim 58 may be securely located in the installed configuration thanks to one or more openings 60 in the shim, through which the fastening means 26 may pass. The shim openings 60 may be spaced apart with the same spacing as the openings 54 in the intermediate member 38. The shim 58 may have substantially the same shape as the intermediate member 38. The shim 58 may be substantially flat on both sides.
The shims may be formed of a plastic, such as a high viscosity nylon or any other suitable plastic.
With reference to
Although not depicted, it will be appreciated that in the further example of the present invention, the opening for receiving the fastening means may be provided in a region of the anchoring device 112 away from the rail 16 when in the installed configuration.
Referring now to
The particular examples shown in
As shown in
In either case, fastening means receiving portions 152, 252 may be provided to facilitate engagement of the fastening means 26 with the underlying foundation 118, 218. The fastening means receiving portions 152, 252 may be cast into the underlying foundations in a manner similar to that described above.
Referring now to
However, in an alternative arrangement depicted in
With the arrangement shown in
The above-mentioned examples comprise an anchoring device which receives a fastening clip, which in turn bears down on the rail. However, as depicted in
Number | Date | Country | Kind |
---|---|---|---|
1301956.7 | Feb 2013 | GB | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/GB2014/050182 | 1/24/2014 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2014/118512 | 8/7/2014 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4382547 | Phillips | May 1983 | A |
4802623 | Fasterding | Feb 1989 | A |
5494212 | Owen | Feb 1996 | A |
5758821 | Wirthwein | Jun 1998 | A |
6761322 | Porrill | Jul 2004 | B1 |
20090045265 | Cox | Feb 2009 | A1 |
20090308943 | Wirthwein | Dec 2009 | A1 |
20100206958 | Cox | Aug 2010 | A1 |
20120091216 | Osler | Apr 2012 | A1 |
20120160924 | Cox | Jun 2012 | A1 |
20120187207 | Cox | Jul 2012 | A1 |
20120318881 | Cox | Dec 2012 | A1 |
20160355991 | Keightley | Dec 2016 | A1 |
Number | Date | Country |
---|---|---|
502 150 | Jan 2007 | AT |
102089478 | Jun 2011 | CN |
954 257 | Dec 1956 | DE |
345 865 | Apr 1931 | GB |
1 336 999 | Nov 1973 | GB |
2 351 515 | Jan 2001 | GB |
2000 265403 | Sep 2000 | JP |
Entry |
---|
International Search Report dated Jul. 17, 2014 in connection with International Application No. PCT/GB2014/050182 (6 pages). |
Written Opinion of the International Searching Authority dated Jul. 17, 2014 in connection with International Application No. PCT/GB2014/050182 (8 pages). |
GB Search Report dated May 29, 2013 in connection with GB Application No. 1301956.7 (4 pages). |
English translation of Abstract of JP 2000 265403. |
English translation of DE 954 257. |
English translation of AT 502 150 A1. |
International Preliminary Report on Patentability and Written Opinion of the International Searching Authority for corresponding PCT application PCT/GB2014/050182, dated Aug. 13, 2015. |
First Office Action for corresponding CN patent application 201480007452.0, dated May 4, 2016. |
English-language translation of First Office Action for corresponding CN patent application 201480007452.0, dated May 4, 2016. |
English-language translation of abstract for CN 102089478 A, published Jun. 8, 2011. |
Number | Date | Country | |
---|---|---|---|
20150376843 A1 | Dec 2015 | US |