The invention concerns the field of track geometry and more particularly the long base level parameter that characterizes vertical deformation of lengths of rail in the range of long wavelengths.
The passage of high-speed trains necessitates very accurate track geometry. Track geometry has a direct impact on rail traffic. In fact, if the parameters that define the track are outside their nominal range train speeds must be reduced for reasons of safety and comfort, which can disturb all the traffic.
Monitoring rail track geometry for maintenance purposes thus proves indispensable to guaranteeing an optimum train speed. Any improvement in track geometry monitoring makes it possible to improve the management and maintenance of traffic on the rail network. Monitoring track geometry notably includes determining the signal of long base level and the long base straightness. Geometry monitoring of this kind proves particularly important in areas of fast change and areas of transition between ballast and a metal structure.
A known example of monitoring rail track geometry is employed on the French rail network using the IRIS320 high-speed train. This train travels over each of the high-speed lines every two weeks. This train carries out optical and inertial measurement of the track geometry on each of its passes.
The use of a train of this kind has a number of drawbacks. On the one hand, some track geometry parameters can change at a much higher frequency than that of the passage of the train. Thus the thermal expansion of a mixed steel-concrete structure, linked to temperature variations, notably induces relatively rapid track geometry variations. If this train measures a geometry variation that is out of range caused by a temporary factor, the speed of high-speed trains will have to be reduced although the track geometry is potentially satisfactory at the time of passage of high-speed trains operated commercially. As the passage of the IRIS320 train must interfere minimally with the operation of commercial trains, geometry monitoring during its passage is not necessarily representative of the geometry of the track during the passage of commercial trains. On the other hand, track geometry monitoring is not necessarily available in real time.
It is difficult to envisage significantly increasing the frequency of passages of monitoring trains of this kind given the cost of a geometry monitoring train of this kind and the impact that it can have on traffic.
The invention aims to eliminate one or more of these drawbacks. The invention aims in particular to calculate precisely a global deformation of the rail at a relatively high frequency without degrading commercial traffic on high-speed tracks. The invention therefore relates to a guide system as defined in claim 1.
The invention also relates to the variants in the dependent claims. The person skilled in the art will understand that each of the features of the dependent variants can be independently combined with the features of claim 1 without this constituting an intermediate generalisation.
Other features and advantages of the invention will emerge clearly from the description thereof given hereinafter by way of nonlimiting illustration and with reference to the appended drawings, in which:
The determination in accordance with the invention of the deformation of a guide rail addresses a certain number of constraints:
The guide rail 2 includes:
A processing circuit 4 is configured to recover attitude measurements supplied by the attitude sensors 31 and 32. The processing circuit 4 is configured to calculate a deformation of the rail 2 relative to its longitudinal axis. Here the processing circuit 4 is offset relative to the rail 2. The processing circuit 4 is for example implemented in the form of software executed on a computer. Here the processing circuit 4 is connected to the attitude sensor 32 via a wired connection 41 including power supply wiring and communication wiring. The attitude sensors, here the attitude sensors 31 and 32 in particular, are connected one after the other by a wired connection 40 including in particular power supply wiring and communication wiring.
Fixing the attitude sensors 30 by means of a film of glue 39 makes it possible to avoid degrading the structural integrity of the rail and to guarantee excellent positioning of each attitude sensor 30 relative to the rail 2 despite the mechanical loads linked to the passage of trains or maintenance trains. A fixing of this kind makes it possible not to introduce uncertainties that could be linked to relative movement between an attitude sensor 30 and the rail 2.
An appropriate choice of the film of glue 39, i.e. choosing an electrically insulative glue, makes it possible to increase the dielectric strength between the rail 2 and the interior of the box 320 (described in detail hereinafter).
The film of glue 39 can for example employ Henkel's Loctite EA 9466 epoxy glue or 3M's DP8405NS epoxy glue. A glue of this kind is for example chosen for its properties of mechanical resistance to pulling off, peeling and shearing, electrical insulation, resistance to a large number of chemical products, long-term strength and resistance to vibrations. Pull-off and temperature resistance tests have demonstrated the satisfactory properties of the chosen films of glue 39. The film of glue 39 is advantageously applied after grinding and degreasing the surfaces 231 and 222.
Moreover, a gap 240 is formed in a lateral recess 24 between an upper face of the attitude sensor 30 and the upper element 21. This gap is intended to allow the passage of a rail maintenance device (for example a ballast tamping train) pinching the upper element 21 without risk of damaging the attitude sensor 30.
The attitude sensor 30 further includes a box 320. The box 320 includes a shell 321 and a lid 322 defining a housing 323. The housing 323 is weatherproof to make it possible to carry out measurements under difficult climatic conditions, including temperature variations, the presence of moisture, wind and dust or rain or snow. The box 320 is fixed to the support 310 by any appropriate means, for example by gluing. The box 320 is advantageously configured to form a Faraday cage around the housing 323. The housing 323 is therefore protected from high levels of electromagnetic interference originating from power supplies or power transmission lines during the passage of a train. The box 320 (in particular its shell 321 and its cover 322) can for example be made from a plastic (for example PA) charged with metal particles or covered with metal walls for example produced by electroplating.
The attitude sensor 30 includes an electronic circuit 342 including processing means and an accelerometer 341 fixed for example to the substrate of the electronic circuit 342. The electronic circuit 342 and the accelerometer 341 are housed inside the housing 323. The electronic circuit and/or the accelerometer 341 can be coated in resin to improve their resistance to external attack. The coating material is for example polyurethane or epoxy and protects against chemical and physical-chemical attack and favours the absorption of possible impacts and stresses. The electronic circuit 342 can be glued to the box 320.
In the
Each attitude sensor 30 will advantageously include a three-axis accelerometer 341. The accelerometer 341 can for example be Safran's MS9001 accelerometer. Each attitude sensor 30 can equally further include a temperature sensor and/or a multi-axis magnetometer.
The system 1 can for example be used to determine a long base level. The long base level corresponds to a (spatially) filtered version of the mean level defined as the mean level of each rail length of the track under study. The level of a rail length corresponds to the vertical deformation of that rail length. Consequently, the instrumentation of the two rail lengths that constitute a track by a system that measures the deformation of these rail lengths makes it possible to estimate the long base level.
The guide system 1 includes a plurality of attitude sensors 30 spaced from one another in the longitudinal direction of the rail 2. The attitude of a sensor is defined by the rotation that makes it possible to go from the system of axes of the sensor to a reference system of axes. The attitude can have three angles as parameters: inclination, roll and yaw. There are a number of ways to define these three angles. If the sensor 30 is fixed to the rail 2 so that one of its axes is parallel to the longitudinal axis of the rail 2 then:
Here the system 1 includes in particular attitude sensors (in particular 31 and 32) distributed along the length of the rail 2. The attitude sensors 31 and 32 are fixed to the rail 2, which makes it possible to link their attitude to the deformation of the system 1. The instrumentation with the attitude sensors 31 and 32 according to the invention is typically intended to detect a deformation of 1 mm relative to the axes x, y and z over a 10 metre length of the rail 2.
Each attitude sensor 31 and 32 includes for example an accelerometer configured to measure in a manner known in itself at least one component of acceleration relative to the longitudinal axis of the rail 2 and an electronic circuit 342 configured to calculate the attitude of the sensor as a function of the measurement from its accelerometer 341.
The accelerometers 341 of the sensors 31 and 32 are MEMS devices for example. MEMS sensors of this kind have demonstrated their stability in terms of temperature and time and can at present have acceleration resolutions better than 0.1 10−3 g.
As described in detail hereinafter, the processing circuit 4 recovers attitude measurements supplied by each attitude sensors 31 and 32 (for example raw measurement data from the attitude sensors) and calculates a deformation of the rail 2 as a function of these attitude measurements.
The processing circuit 4 is configured to recover the attitude measurements from the various attitude sensors, in particular the sensors 31 and 32. The processing circuit 4 is configured to calculate the global deformation or curvature of the rail 2 as a function of the various attitude measurements recovered. The processing circuit 4 can effect temporal filtering of the raw data supplied by the attitude sensors to improve the signal-to-noise ratio. Temporal filtering of this kind is justified by the hypothesis that a rail length is static over a window of a few minutes. A sampling frequency of 1 Hz can be envisaged for example.
Upon deformation of the rail 2 in bending or in torsion the attitude of the various attitude sensors is modified because of their mechanical coupling with the rail 2. The processing circuit 4 is programmed to evaluate the attitude at all points of the rail 2 from the measurements supplied by the attitude sensors. Evaluation of this kind is effected for example by means of interpolation methods such as cubic spline interpolation. Examples of interpolation and reconstruction methods are described for example in Chapter 1 of the doctoral thesis of N. Sprynski, “Reconstruction de courbes et surfaces à partir de données tangentielles” [“Reconstruction of curves and surfaces on the basis of tangential data”], Université Joseph Fourier, Grenoble, France, 2007.
Likewise, on deformation of the rail 2 in torsion the attitude of the various sensors is modified because of their mechanical coupling with the rail 2.
An example of calculating the deformation of the rail 2 from attitude/inclination measurements from the various attitude sensors may be as follows. It is assumed that the attitude sensors are 3-axis sensors effecting a measurement m(t,s) expressed in g where t is the measurement time and s is the curvilinear abscissa of a sensor along the rail 2. The inclination φ(t,s) and the roll η(t,s) are those introduced above:
The attitude sensors on the rail 2 with 3-axis accelerometers supply a spatial sampling of the inclination/attitude over the entire length equipped with these sensors as a function of the curvilinear abscissa along this rail 2. It is possible to extrapolate a continuous function representative of the inclination/attitude as a function of the curvilinear abscissa s along the rail 2 using an interpolation or approximation model based on discrete attitudes supplied by the attitude sensors fixed to the rail 2. The vertical deformation of the rail 2 at any point is defined using this function in the following equation:
in the system of axes (◯, ) where is collinear with gravity and is such that the plane (◯, x, y) contains the curve representative of the rail.
Starting from the hypothesis that the point with curvilinear abscissa s0 remains fixed in time, then Def(t,s0)=0. The global deformation is then determined entirely by means of the continuous inclination function.
The precision of the calculation of the global deformation of the rail 2 depends in particular on the following parameters of the attitude sensor:
With the system 1 according to the invention the geometry of the rail 2 can be monitored at a relatively high frequency, for example every 15 minutes, or even every minute, without affecting rail traffic on the tracks. With a temporal frequency of this kind it is in particular possible to minimise the period for which rail traffic speed is reduced because the long base level exceeds a certain threshold.
A step of calibration of the system 1 can be effected. To this end a reference mobile attitude sensor can travel along the rail 2 for example. The measurements from this reference attitude sensor make it possible for example to align the system of axes of each attitude sensor fixed to the rail 2 as a function of the measurements effected by the mobile attitude sensor. The calibration can also include the precise location of the various attitude sensors 30 along the longitudinal axis of the rail 2.
The invention proves particularly advantageous for a transition area between ballast and a structure, particularly if subject to mechanical loads.
Number | Date | Country | Kind |
---|---|---|---|
16 61849 | Dec 2016 | FR | national |