The present disclosure relates to the field of railway roadbed detection, and in particular to detection for railway roadbed deformation and an early warning system.
Railway roadbed is a structure that supports and transmits a gravity of a rail track and a dynamic action of a train. The railway roadbed is foundation of the track, and is an important structure to ensure the train to operate normally. The roadbed is a structure in earth and stone. In a variety of topographic environments, geological environments, hydrological environments and climate environments, the roadbed may sometimes suffer from various disasters, such as floods, mudslides, collapses, earthquakes, resulting in deformation of the roadbed in various directions. When the roadbed is deformed, the track may be deformed accordingly, such that the track made of steel may be fractured and deflected easily under a pressure of the train, resulting in potential risks while the train is running. Regardless of a ballast track or a non-ballast track, as long as the roadbed below a track bed is deformed, the track above the roadbed may be deformed, thus affecting safety of the train while running.
In the art, the deformation is detected manually, a precision instrument may be applied to measure the deformation of the roadbed, and the steel track may be adjusted. A height of the steel track, a track gauge, and the like, may be adjusted to an original position. The solution may only detect the roadbed that has been deformed already, but may not forecast the deformation of the roadbed. Therefore, a potential failure of the steel track may not be forecasted before the steel track being deformed along with the deformation of the roadbed. Further, manual inspection along the track may be performed intermittently. Deformation of the roadbed may not be monitored in real time. Detecting the roadbed deformation along the railway point by point may not monitor an interval between roadbed deformation points, and working intensity of staff may be increased. In addition, a settlement plate buried under the roadbed may detect information of settlement of the roadbed, but the deformation of the roadbed in other directions may not be detected. Therefore, such the solution may not detect the deformation of the roadbed in other directions, such that it may not be determined whether the steel track is deflected in a horizontal direction.
According to the present disclosure, a system for detecting the railway roadbed deformation and a system for warning the railway roadbed deformation in advance are provided. A plurality of optical-fiber and pressure sensors may be disposed to form a cuboid monitoring network to monitor the deformation of the roadbed in all directions and to forecast a trend of the deformation of the roadbed in all directions. In this way, the staff may perform appropriate measures to eliminate any potential malfunction before magnitude of the deformation of the roadbed reaching a limit, ensuring the safety of the train while running.
In order to achieve the above purpose, the present disclosure provides a system for detecting and pre-warning railway roadbed deformation.
The system for detecting and pre-warning railway roadbed deformation includes a control box and an optical fiber-pressure sensor group. The control box is disposed on a road shoulder and connected to the optical fiber-pressure sensor group, for processing information collected by the optical fiber-pressure sensor group. The optical fiber-pressure sensor group is formed by disposing a plurality of optical fiber-pressure sensors into a cuboid shape, and is buried in the railway roadbed for detecting magnitude of roadbed deformation in each direction.
In the present disclosure, the optical fiber-pressure sensor group is formed by disposing a plurality of optical fiber-pressure sensors into a cuboid shape, and is able to detect the magnitude of roadbed deformation in an upward direction, a downward direction, a frontward direction, a backward direction, a leftward direction, and a rightward direction of the roadbed. The staff may acknowledge the direction of the roadbed deformation, and a reference basis is provided for the staff to overhaul the track.
The control box includes an aluminum box, a blower, a power voltage dropping and stabilizing module, a relay group, an analog data collector, a control circuit board, a BeiDou positioning module, a shutter, an indicator, a GPRS module, a humidity sensor, and a temperature sensor. Each of the plurality of optical fiber-pressure sensors is connected to the analog data collector and is configured to transmit collected data information to the analog data collector. The power voltage dropping and stabilizing module is configured to supply power for the plurality of optical fiber-pressure sensors, the analog data collector, and the control circuit board. The analog data collector is configured to communicate with the control circuit board through an RS485 communication mode. The analog data collector is configured to convert analog information sent from the humidity sensor, the temperature sensor, and the optical fiber-pressure sensor group into corresponding digital information, and is further configured to transmit the digital information to the control circuit board through an RS485 line. The control circuit board is configured to determine the magnitude of roadbed deformation and a direction of the roadbed deformation based on the information of the optical fiber-pressure sensor group. The BeiDou positioning module is configured to transmit location information of the roadbed deformation to the control circuit board, and the control circuit board is configured to control the GPRS module to transmit the magnitude of roadbed deformation, the direction of roadbed deformation, and the location information of the roadbed deformation to a PC of relevant railroad department for display. The indicator is disposed on an upper surface of the aluminum box and is configured to light up in response to the magnitude of roadbed deformation of a location reaching the preset magnitude value to remind staff that a track at the location needs to be corrected. The humidity sensor is configured to detect humidity information inside the aluminum box, the temperature sensor is configured to detect temperature information inside the aluminum box. The blower is disposed on a left side of the aluminum box, the shutter is disposed on a right side of the aluminum box. The control circuit board is configured to control a working state of the relay group to open the shutter and turn on the blower, in response to a temperature value and a humidity value detected by the temperature sensor and the humidity sensor being greater than the preset temperature value and the present humidity value respectively, to cool down and dehumidify the aluminum box. The control circuit board is further configured to control blower to blow hot air into the aluminum box and to shut the shutter in response to the temperature value and the humidity value detected by the temperature sensor and the humidity sensor being less than the preset temperature value and the preset humidity value respectively. The temperature inside the aluminum box may be adjusted to reach the optimal temperature, providing the optimal temperature and humidity environment for the power voltage dropping and stabilizing module, the relay group, the analog data collector, the control circuit board, the BeiDou positioning module, and the GPRS module.
In the present embodiment, a heating wire is disposed at a vent of the blower. When the aluminum box needs to be heated, the control circuit board is configured to turn on the relay group to further turn on the blower and the heating wire to work. The blower is configured to blow heat generated by the heating wire into the aluminum box to supply heat for the aluminum box to supply heat for the aluminum box.
In the present disclosure, the shutter is movable. A slide groove, a gear rod, a gearwheel, a stepping motor, and a steel rod are disposed on an inner wall of the aluminum box on a side of the shutter. The gear rod is embedded in the slide groove, the gear wheel is disposed on a rotation shaft of the stepping motor, the stepping motor is connected to a relay. The control circuit board is configured to control a working state of the relay to control the stepping motor to rotate forwardly or reversely to drive the gear wheel to rotate. The gear wheel is configured to transmit rotation to the gear rod. Each blade of the shutter is connected to the gear rod through the steel rod. The gear rod is configured to drive the steel rod to move to open or shut the shutter.
According to the present disclosure, a method for detecting and pre-warning the railway roadbed deformation includes following operations.
The system may be initialized first. The optical fiber-pressure sensor group may detect the magnitude of the deformation of the railway roadbed in various directions, and may transmit the collected information to the analog data collector. Collection of the roadbed deformation may be completed. The analog data collector may transmit the received information to the control circuit board through the RS485 line. The control circuit board may determine magnitude and the direction of deformation of the roadbed based on the information of the optical fiber-pressure sensor group. Further, control circuit board may control the GPRS module to transmit the magnitude the roadbed deformation, the direction of the deformation, and the location of the deformation to the PC of the relevant railroad department for display. A corresponding upper computer may be configured at the PC. The collected information may be displayed on the upper computer. A time series prediction algorithm may be written in the control circuit board 9 to forecast the magnitude of the deformation of roadbed in each direction. The algorithm may forecast at which time point the magnitude of the deformation of the roadbed at a certain location in each direction may exceed the preset magnitude value. When the optical fiber-pressure sensor in one direction detects that the magnitude of the roadbed deformation exceeds the preset magnitude value, the control circuit board may control the indicator to light up and may send early warning information and the location information of the deformation to the PC of the railroad department for display. Relevant staff may be reminded to go to the deformation site to overhaul and correct the track. After the staff overhauls and corrects the track, the staff may press reset information of the control circuit board 9 to update the preset magnitude value of magnitude of the roadbed deformation in various directions, and may wait arrival of next early warning information.
According to the present disclosure, a method for identifying the direction of roadbed deformation may include following operations.
The optical fiber-pressure sensor disposed on each of six faces, i.e, an upper face, a lower face, a front face, a rear face, a left face and a right face, of the cuboid optical fiber-pressure sensor group may be numbered. Information collected by the optical fiber-pressure sensors disposed on the upper face, the lower face, the front face, the rear face, the left face and the right face may be connected to 0 to 5 channels of the analog data collector and may be numbered as A1, A2, A3, A4, A5, and A6 respectively. The analog data may be placed right after the channel of the analog data collector. A value of each channel of the analog data collector may be converted into a frame of data and transmitted to the control circuit board through the RS485 communication mode. The control circuit board may parse the received data and determine the number of bits of the data to identify from which channel of the analog data collector 8 the information is collected. In this way, the control circuit board may identify the data collected by the optical fiber-pressure sensors disposed on the upper face, the lower face, the front face, the rear face, the left face and the right face of the optical fiber-pressure sensor group. The identification method may include following operations.
(1) Identifying Settlement of the Roadbed
When the roadbed is settling downwardly, the A1 is configured to detect the roadbed deformation first, and subsequently the A2 is configured to detect the roadbed deformation, pressure generated on the A1 and the A2 is obvious, and magnitude of a signal change in the A1 and the A2 is large.
(2) Identifying Protrusion of the Roadbed Upwardly
When the roadbed protrudes upwardly, the A2 is configured to detect the roadbed deformation first, and subsequently, the A1 is configured to detect the upward protrusion of the roadbed, and the magnitude of the deformation detected by the A1 and the A2 is large.
(3) Identifying Leftward Protrusion
When the roadbed is deformed towards the left, the A5 is configured to detect the deformation first, and subsequently, the A6 is configured to detect the deformation, to determine the deformation of the roadbed is the leftward protrusion.
(4) Identifying Rightward Protrusion
When the roadbed protrudes towards a right relative to a vertical direction, the A6 is configured to detect the deformation first, and subsequently, the A5 is configured to detect the deformation, to determine the deformation of the roadbed is the rightward protrusion.
(5) Identifying an Inward Recess of the Roadbed
The inward recess refers to two sides of the roadbed being extruded inwardly relative to the vertical direction, and the roadbed has extruded deformation, the inward recess is less likely to occur, and changes in the A3 and the A4 are obvious.
(6) Identifying Outward Protrusion of the Roadbed
The outward protrusion comprises two-sided protrusion and single-sided protrusion, the two-sided protrusion refers to the roadbed protruding outwardly towards two sides relative to the vertical direction, the single-sided protrusion refers to the roadbed protruding outwardly towards one side relative to the vertical direction, and changes in the A3 and the A4 are obvious.
As the plurality of optical-fiber and pressure sensors are disposed to form the cuboid monitoring network to monitor the deformation of the roadbed in all directions, following technical effects may be achieved.
1. In the present disclosure, a cuboid optical fiber and pressure sensor group may be configured to monitor the deformation of the railroad roadbed in all directions. The direction in which the roadbed is deformed may be determined clearly, such that the staff may eliminate any hidden malfunction particularly.
2. In the present disclosure, a time series prediction algorithm may be performed to forecast the trend of the roadbed deformation in each direction, such that the staff may specifically overhaul and correct the tracks where the roadbed is deformed excessively. At the same time, the staff may overhaul the track before magnitude of the roadbed deformation reaches a predetermined value. Therefore, potential safety hazards may be eliminated in advance, ensuring the safety for the operation of the railroad.
The present disclosure will be illustrated in detail by referring to accompanying drawings and embodiments.
As shown in
As shown in
As shown
As shown in
As shown in
As shown in
The control circuit board 9 may take the STM32F103ZET6 microcontroller as a kernel. The STM32F103ZET6 microcontroller may have a fast processing speed and a plurality of peripheral interfaces, and may identify the magnitude of the deformation collected from various directions by the optical fiber-pressure sensor group 2.
As shown in
The system may be initialized first. The optical fiber-pressure sensor group 2 may detect the magnitude of the deformation of the railway roadbed in various directions, and may transmit the collected information to the analog data collector 8. Collection of the roadbed deformation may be completed. The analog data collector 8 may transmit the received information to the control circuit board 9 through the RS485 line. The control circuit board 9 may determine magnitude and the direction of deformation of the roadbed based on the information of the optical fiber-pressure sensor group 2. Further, control circuit board 9 may control the GPRS module 13 to transmit the magnitude the roadbed deformation, the direction of the deformation, and the location of the deformation to the PC of the relevant railroad department for display. A corresponding upper computer may be configured at the PC. The collected information may be displayed on the upper computer. A time series prediction algorithm may be written in the control circuit board 9 to forecast the magnitude of the deformation of roadbed in each direction. The algorithm may forecast at which time point the magnitude of the deformation of the roadbed at a certain location in each direction may exceed the preset magnitude value. When the optical fiber-pressure sensor 3 in one direction detects that the magnitude of the roadbed deformation exceeds the preset magnitude value, the control circuit board 9 may control the indicator 12 to light up and may send early warning information and the location information of the deformation to the PC of the railroad department for display. Relevant staff may be reminded to go to the deformation site to overhaul and correct the track. After the staff overhauls and corrects the track, the staff may press reset information of the control circuit board 9 to update the preset magnitude value of magnitude of the roadbed deformation in various directions, and may wait arrival of next early warning information. In this way, the staff may purposefully repair and correct the track where the roadbed is deformed excessively. At the same time, the staff may overhaul the track before the magnitude of the deformation of the roadbed reaches the preset magnitude value. Safety hazards may be eliminated in advance, the safe operation of the railroad may be guaranteed.
In the present disclosure, a method for the optical fiber-pressure sensor group 2 to identify the direction of the roadbed deformation may include following operations.
The optical fiber-pressure sensor 3 disposed on each of six faces, i.e, an upper face, a lower face, a front face, a rear face, a left face and a right face, of the cuboid optical fiber-pressure sensor group 2 may be numbered. Information collected by the optical fiber-pressure sensors 3 disposed on the upper face, the lower face, the front face, the rear face, the left face and the right face may be connected to 0 to 5 channels of the analog data collector 8 and may be numbered as A1, A2, A3, A4, A5, and A6 respectively. The analog data may be placed right after the channel of the analog data collector 8. A value of each channel of the analog data collector 8 may be converted into a frame of data and transmitted to the control circuit board 9 through the RS485 communication mode. The control circuit board 9 may parse the received data and determine the number of bits of the data to identify from which channel of the analog data collector 8 the information is collected. In this way, the control circuit board 9 may identify the data collected by the optical fiber-pressure sensors 3 disposed on the upper face, the lower face, the front face, the rear face, the left face and the right face of the optical fiber-pressure sensor group 2. A method for identification may include following operations.
(1) Identification of Settlement
As shown in
(2) Identification of Protrusion Upwardly
As shown in
(3) Identification of Leftward Protrusion
As shown in
(4) Identification of Rightward Protrusion
As shown in
(5) Identification of an Inward Recess
As shown in
(6) Identification of an Outward Protrusion
As shown in
A working principle of the present disclosure may be illustrated hereinafter.
As shown in
Number | Date | Country | Kind |
---|---|---|---|
202010077509.1 | Jan 2020 | CN | national |
The present application is a continuation-application of International (PCT) Patent Application No. PCT/CN2020/129761 filed on Nov. 18, 2020, which claims the foreign priority to the Chinese patent application No. 202010077509.1 filed on Jan. 30, 2020 in China National Intellectual Property Administration, and the entire contents of which are hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
7376530 | Bienvenu | May 2008 | B2 |
20110313686 | Saracho Rotaeche | Dec 2011 | A1 |
20120286056 | Qi | Nov 2012 | A1 |
20130193223 | Mei | Aug 2013 | A1 |
Number | Date | Country |
---|---|---|
202433013 | Sep 2012 | CN |
204098005 | Jan 2015 | CN |
208076296 | Nov 2018 | CN |
109680573 | Apr 2019 | CN |
20150137907 | Dec 2015 | KR |
Entry |
---|
Design of multi-point detection system for high-speed railway subgrade deformation, Jiang Zhijun, etc., Automation Instrumentation, vol. 35, Issue 11, pp. 52-55, 59, published Dec. 31, 2014. |
Number | Date | Country | |
---|---|---|---|
20210317618 A1 | Oct 2021 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/CN2020/129761 | Nov 2020 | US |
Child | 17351182 | US |