In a railway freight car truck, two axles are held in a pair of laterally spaced sideframes, with a bolster extending laterally between and supported on each sideframe. The wheels are press fit on the axles, with the ends of the axles also fitted with a roller bearing assembly. The roller bearing assembly itself is fit into a bearing adapter that is fit into a pedestal jaw opening at the longitudinal end of each sideframe. The ends of the bolsters are themselves supported on spring groups, which are supported on the lower portion of the center openings of the sideframes.
U.S. Pat. No. 5,562,045 discloses a adapter and pad assembly useful in the fitting of the bearing assembly into the pedestal jaw opening of each sideframe. The bearing adapter, which is itself fit on top of the bearing assembly, is comprised of a unitary cast steel piece. This piece includes shoulders that are laterally spaced to form a receiving opening at each longitudinal edge of the bearing adapter. An elastomeric adapter pad is fitted on top of the bearing adapter. The adapter pad itself is disclosed to be comprised of an injection molded polymer or a castable polyurethane. The adapter pad itself includes depending legs which extend from opposite longitudinal edges of the adapter pad. The depending legs are spaced laterally at each longitudinal edge of the adapter pad such that the depending legs are received in openings between the laterally spaced shoulders of the bearing adapter. One problem with this assembly is the tendency of the adapter pad to move longitudinally across the top of the bearing adapter. This movement is exacerbated by the slight steering movement of the wheel axles in the pedestal jaw openings, such that the movement of the adapter pad completely off the bearing adapter occurs. This is an undesirable situation leading to poor performance of the railway freight car truck. It is also desirable to be able to readily determine the wear condition of the adapter pad.
Accordingly, it is an object of the present invention to provide an improved bearing adapter and pad assembly having a wear member.
A railway freight car truck of the so-called three piece standard design, is comprised of two laterally spaced, unitary cast steel sideframes and a laterally extending bolster, also of a unitary cast steel structure. The ends of the bolster are received and supported on spring groups that themselves are supported on the bottom section of a bolster opening in each sideframe.
The wheel axle assemblies themselves are received in openings, commonly referred to as pedestal jaw openings, at longitudinal ends of each sideframe. The wheel axle assemblies themselves extend laterally between the sideframes, and hence, also laterally between the two spaced railway tracks. For improved performance of the railway freight car truck, it is desirable to receive the bearings press fit on each axle end into a bearing adapter assembly. The improved bearing adapter assembly of the present invention is comprised of a cast steel, unitary bearing adapter. This bearing adapter includes lateral edges themselves having arcuate cutouts to be placed over the bearing assembly. The bearing adapter further comprises depending shoulders that extend from each longitudinal edge of the bearing adapter. The shoulders at each longitudinal edge of the bearing adapter themselves are laterally spaced to form an opening there between. Further, the bearing adapter includes depressions that extend laterally and are spaced longitudinally across the top section of the bearing adapter. It should be understood that the top section of such bearing adapter is generally rectangular in structure, such that the depressions are near each longitudinal edge of the bearing adapter. These depressions can be of a general v-shape, formed by acute angle cuts into the top section of the bearing adapter, or they could be of an arcuate nature as well.
The improved adapter pad in accordance with the present invention is comprised of an improved elastomer or polymer, usually a polyurethane. Such improved adapter pad is usually formed in a casting operation, although recent improvements have allowed the improved adapter pad to also be formed in an injection molding operation. The adapter pad itself is seen to be comprised of a generally rectangular top section, with depending legs extending from each longitudinal edge thereof. The depending legs are spaced laterally on each longitudinal edge. Such depending legs are fit downwardly into the opening in the bearing adapter and abut the shoulders of the bearing adapter to provide lateral support for the adapter pad. Further lateral support is provided by raised projections extending from the top of the bearing adapter that abut lateral edges of the adapter pad. Further, the adapter pad includes laterally extending projections extending downwardly from the top section of the adapter pad. Such projections are received in the complementary depressions in the top section of the bearing adapter itself. These projections will correspond to the depressions in the bearing adapter, so it is seen that such projections may be of a general v-shape, formed by two wall sections extending downwardly at an acute angle from the lower surface of the top section. It is also seen that such projections could be of an arcuate nature, extending into complementary arcuate depressions in the top section of the bearing adapter.
The bearing adapter of the present invention has the legs extending around the thrust lugs. In addition to this the new design pad has the additional interlock on the bottom side of the adapter pad, which allows the pad to function in shear. With the proper relationship between cross section and hardness of the pad, a spring rate is designed into the elastomer material of the pad. The elastomer then allows the railway truck wheel-sets to move from a high warp stiffness position to that of radial steering position when the truck passes through curves. Once through the curve the elastomer acts as a spring to re-center the adapter to a neutral position.
In the drawings,
Referring now to
Another part of the present invention includes bearing adapter 30, which is seen to be a generally rectangular structure having depending legs extending therefrom. Bearing adapter 30 is usually comprised of a unitary cast steel structure. Adapter pad 32 is also seen to be a generally rectangular structure with depending legs extending therefrom. Adapter pad 32 is usually comprised of a cast or injection molded polymer or elastomer, which will be further described.
Bearing adapter 30 is seen to be comprised of a unitary, cast steel structure that is generally rectangular in shape. Bearing adapter 30 is comprised of a generally rectangular top section 36, which is seen to be generally flat. Two raised edge supports 38 are seen to extend upwardly from the lateral edges of bearing adapter 30, as are similar raised edge supports 40 from the opposite lateral edge of bearing adapter 30. The combined raised edge supports 38 and 40 form a receiving surface and pocket for adapter pad 32. Bearing adapter 30 is also seen to comprise an arcuate opening 42 on each lower lateral edge; this arcuate opening 42 is adapted to seat against a bearing, which is not shown in this view. Bearing adapter 30 is also seen to comprise four depending shoulders, of which 44 and 46 are shown in this view. Depending shoulders 44 and 46 are seen to be laterally spaced, forming an opening for the adapter pad structure.
Adapter pad 32 is usually comprised of a cast polymer or elastomeric material and is of unitary structure. It is also possible to construct adapter pad 32 with a blown injection method, but casting is the preferred method of forming adapter pad 32. Adapter pad 32 is comprised of a generally rectangular and flat top section 50, with lateral edges, of which lateral edge 52 is shown. Four depending legs, of which depending leg 54 and 56 are shown in this view, are seen to extend downwardly, and form a thrust lug opening 58 there between. A similar thrust lug opening is formed on the other longitudinal edge of adapter pad 32. In assembling adapter pad 32 onto the top of bearing adapter 30, it can be seen that depending legs 54 and 56 project downwardly and are supported laterally against depending shoulders 44 and 46, respectively, of bearing adapter 30.
Referring now to
Referring now to
Referring now to
Bearing adapter pad 432 is also seen to comprise depending protrusions 464 and 466, that extend downwardly from the bottom surface of top section 450. Protrusions 64 and 66 are seen to extend laterally across the width of adapter pad 432, extending to, or nearly to, lateral edges 452 and 453. Protrusions 464 and 466 are designed to be fit into depressions 48 and 49 in top section 36 of bearing adapter 30. Such fitting provides lateral and longitudinal stability for adapter pad 432 when fit against bearing adapter 30. Lateral stability is also provided with edges 452 and 453 of adapter pad 432 abutting raised edge supports 38 and 40, respectively, of bearing adapter 30.
Adapter pad 432 is comprised of a cast elastomer of a durometer hardness between 90A and 58D. It should be understood that it is preferred to have adapter pad 432 formed in a casting operation to obtain the desired hardness ratings, but other forming operations are possible so long as the preferred hardness ratings of adapter pad 432 are provided.
Adapter pad 432 is also seen to comprise wear tabs 470 that extend laterally outwardly from the section 450. The top face of wear tab 470 is seen to be at a height below that of top section 450. The reason for this is that upon installation, top section 450 wears due to contact with roof section 28 of the pedestal section of sideframe 14. When the section 450 is worn to the design limit for replacement, roof section 28 of the pedestal section of sideframe 14 will be just contacting top face of the wear tabs 470. Thusly, wear tabs 470 provide a ready indication when adapter pad is worn to the point it should be replaced.
Also note that wear tabs 470 extend outwardly beyond the lateral edges 452 and 453 of adapter pad 432. Wear tabs 470 can also extend outwardly beyond the outer lateral extent of legs 454 and 456.
Referring now to
Referring now to
Bearing adapter pad 32 is also seen to comprise depending protrusions 64 and 66, that extend downwardly from the bottom surface of top section 50. Protrusions 64 and 66 are seen to extend laterally across the width of adapter pad 32, extending to, or nearly to, lateral edges 52 and 53. Protrusions 64 and 66 are designed to be fit into depressions 48 and 49 in top section 36 of bearing adapter 30. Such fitting provides lateral and longitudinal stability for adapter pad 32 when fit against bearing adapter 30. Lateral stability is also provided with edges 52 and 53 of adapter pad 32 abutting raised edge supports 38 and 40, respectively, of bearing adapter 30.
Adapter pad 32 is comprised of a cast elastomer of a durometer hardness between 90A and 58D. It should be understood that it is preferred to have adapter pad 32 formed in a casting operation to obtain the desired hardness ratings, but other forming operations are possible so long as the preferred hardness ratings of adapter pad 32 are provided.
Referring now to
Referring now to
Bearing adapter pad 232 is also seen to comprise depending protrusions 264 and 266, that extend downwardly from the bottom surface of top section 250. Protrusions 264 and 266 are seen to extend longitudinally across the length of adapter pad 232, extending nearly to the longitudinal edges 272 and 273. Protrusions 264 and 266 are designed to be fit into depressions 248 and 249 in top section 236 of bearing adapter 230. Such fitting provides lateral and longitudinal stability for adapter pad 232 when fit against bearing adapter 230. Lateral stability is also provided with edges 252 and 253 of adapter pad 232 abutting raised edge supports 240 and 238, respectively, of bearing adapter 230.
Adapter pad 232 is comprised of a cast elastomer of a durometer hardness between 90A and 58D. It should be understood that it is preferred to have adapter pad 232 formed in a casting operation to obtain the desired hardness ratings, but other forming operations are possible so long as the preferred hardness ratings of adapter pad 232 are provided.
Referring now to
Referring now to
Bearing adapter pad 332 is also seen to comprise a plurality of depending protrusions 366, that extend downwardly from the bottom surface of top section 350. Protrusions 366 are spaced and extend laterally across the width of adapter pad 332. Protrusions 366 are designed to be fit into depressions 349 in top section 336 of bearing adapter 330. Such fitting provides lateral and longitudinal stability for adapter pad 332 when fit against bearing adapter 330. Lateral stability is also provided with edges 352 and 353 of adapter pad 332 abutting raised edge supports 340 and 338, respectively, of bearing adapter 330.
Adapter pad 332 is comprised of a cast elastomer of a durometer hardness between 90A and 58D. It should be understood that it is preferred to have adapter pad 332 formed in a casting operation to obtain the desired hardness ratings, but other forming operations are possible so long as the preferred hardness ratings of adapter pad 332 are provided.
This application is a continuation in part to U.S. patent application Ser. No. 10/863,712, filed Jun. 8, 2004, now U.S. Pat. No. 7,308,855 which application is incorporated by reference. The present invention relates to a railway freight car truck and, more particularly, to a pedestal bearing adapter having a wear indicator for use in the pedestal jaw opening of the sideframe of a railway freight car truck
Number | Name | Date | Kind |
---|---|---|---|
5404826 | Rudibaugh et al. | Apr 1995 | A |
5562045 | Rudibaugh et al. | Oct 1996 | A |
5794538 | Pitchford | Aug 1998 | A |
7308855 | Van Auken | Dec 2007 | B2 |
Number | Date | Country | |
---|---|---|---|
20050268813 A1 | Dec 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10863712 | Jun 2004 | US |
Child | 11129738 | US |