1. Field of the Invention
The invention pertains to a rail vehicle undercarriage according to the preamble of the first claim.
2. Description of the Related Art
A known rail vehicle undercarriage of this type (DE 37 25 574 A1) is realized in the form of a two-axle bogie. Both wheels of each wheel pair are arranged on a common wheel axle. The wheel bearing of each wheel is realized in a two-armed fashion and respectively carries two spring elements arranged symmetrically referred to the wheel axle and elastic in the longitudinal and the transverse direction. One respective arm of the bogie frame is respectively supported on two spring elements. The longitudinally and transversally elastic spring elements form the primary spring suspension, whereas secondary spring elements arranged on the bogie frame serve for supporting an assigned vehicle body. A steering rod is respectively coupled in a pivoted fashion to the individual wheel carriers in coupling points. In this case, the respective steering rods essentially extend toward the centre of the corresponding longitudinal beam of the bogie frame in the running direction of the wheels. These ends of the steering rods are coupled in a pivoted fashion to the opposite ends of a two-armed steering lever in coupling points. The two-armed steering lever is supported in a pivoted fashion in its centre point on an axle that extends transversally to the running direction of the wheels. The length of the steering rods is chosen such that the two-armed steering lever extends approximately vertical when driving on a straight track. With this arrangement it is intended to realize that, with a simple wheelset coupling controlled independently of the vehicle body, an automatic radial adjustment of the wheel axles in curves and, simultaneously, a superior stability at high speeds is achieved, and the longitudinal forces resulting from acceleration or deceleration manoeuvres are transmitted from the wheel pairs onto the undercarriage in a reactionless fashion.
A rail vehicle undercarriage with an arrangement for stabilizing the rail vehicle course at high speeds is also known from U.S. Pat. No. 4,510,871. In this undercarriage, the steering rods are directly coupled to the load bearing implement in order to realize the turning movements of the wheel pairs. The steering rods are arranged trapezoidally in the horizontal plane such that the axial displacement of the wheel pairs caused by the tracking forces while driving through a curve results in an adjustment that is directed opposite to the radial curve adjustment and intended to stabilize the rail vehicle.
The invention, in contrast, is based on the objective of developing a rail vehicle undercarriage with two wheel pairs and a load bearing implement supported by means of at least one spring element on at least one of the two wheel pairs, the wheel pairs arranged to be turnable relative to the load bearing implement in such a way that a turning movement of the wheel pair(s) towards the curve-radial adjustment corresponding to the curve radius of the currently used track is achieved with simple means independently of steering forces that result from the wheel/rail geometry.
This objective is attained by the use steering rods extending approximately in the running direction of a respective wheel, one end of each steering rod connected to a corresponding wheel carrier adjacent to the respective wheel at a first coupling point and the other end of the respective steering rod coupled to the load bearing implement at a second coupling point. The second coupling points of the steering rods of at least one wheel pair are arranged, with respect to the plane defined by the contact points between the wheels and the rails, on the load bearing implement either above the first coupling points of the steering rods on the respective wheel carrier if the steering rods are situated within an intermediate space between the wheel pairs in the running direction of the wheels, or underneath the first coupling points of the steering rods on the respective wheel carrier if the steering rods are situated outside the intermediate space between the wheel pairs in the running direction of the wheels.
The design of the rail vehicle undercarriage in accordance with the invention makes use of the fact that, when driving a rail vehicle through a curve with excess centrifugal force, e.g., among others due to the fact that the vehicle body is inclined radially outward referred to the curve, the wheels on the outer side of the curve are subjected to a higher load than the wheels on the inner side of the curve. As a consequence, the corresponding load bearing implement is subjected to a higher load in the region of the wheels on the outer side of the curve than in the region of the wheels on the inner side of the curve. Thus, the spring elements between the load bearing implement and the wheel carrier(s) on the outer side of the curve are additionally compressed in their longitudinal direction such that the distance between the load bearing implement and the respective wheel carrier is reduced. However, the corresponding wheels on the inner side of the curve are alleviated from the load such that the vertical distance between the load bearing implement and the respective wheel carrier is increased on this side. Due to the defined incline of the steering rods and their direct coupling to the load bearing implement with one end and the respective wheel carrier with the other end, this change in distance causes the wheel carriers on the outer side of the curve and consequently the corresponding wheels to move apart from one another in opposite directions while the wheel carriers on the inner side of the curve and, consequently, the corresponding wheels move toward one another. This results in a pivoting or turning movement of the wheel pairs revolving about a common axis of rotation referred to a real yaw axis or a yaw axis that is defined by the respective spring elements. Since the axial distance between the wheels on the outer side of the curve is increased and the axial distance between the wheels on the inner side of the curve is reduced, an automatic turning movement of the wheel pairs towards the curve-radial adjustment takes place. Thus, a passive radial adjustment of the wheel sets of two-axle bogies with primary spring suspension or of rail vehicles with two single-axle, spring-suspended running gears or bogies is achieved. Thereby the steering rods may simultaneously transmit deceleration or acceleration forces between the wheel bearings and the corresponding vehicle body if the vehicle body is used as the load bearing implement. In any case, the steering rods of one wheel pair are inclined by the same angle of inclination relative to the plane of wheel/rail contact which is defined by the contact points between the wheels and the respective rails. A symmetric pivoting motion of the corresponding axles about their yaw axis then takes place under the different operating conditions.
Other aspects of the invention are described in greater detail below with reference to embodiments that are schematically illustrated in the figures.
The figures show:
According to
A vehicle body 11 of a rail vehicle is respectively supported in the region of the longitudinal beams of the bogie 1, namely in the lowered central section, by means of two adjacent secondary spring elements 12 spaced apart from one another transversally to the driving direction of the bogie.
When the load on the bogie frame changes, its vertical distance from the respective wheel carrier 3 and the plane defined by the contact points 6 changes due to the effect of the primary spring elements 2. Since the steering rods 9 are directly coupled to the bogie frame 1 in the coupling points 10, their vertical position also changes accordingly. This means that the vertical distance between the coupling points 10 and the aforementioned plane decreases while the vertical distance between the coupling points 8 and this plane remains unchanged when the load increases. Since the coupling points 10 move perpendicular to the plane of contact, the effective length of the steering rods increases in the normal projection on this plane and on the plane that includes the longitudinal centre lines of the axles 5, respectively, when their angle of inclination is reduced correspondingly, such that the respective coupling point 8 and consequently the assigned wheel carrier 3 and the wheel 4, respectively, are pushed away from the coupling point 10 in the driving direction. If the bogie frame 1 is alleviated from a load, the respective coupling point 10 moves upward from the plane of contact and the axial plane, respectively, such that the effective length of the respective steering rod 9 resulting from the horizontal projection is reduced and the coupling point 8 in question and consequently the wheel carrier 3 and the wheel 4, respectively, are pulled toward the corresponding coupling point 10. This means that only a parallel shift of the axles 5 which leads to an increase or decrease in the distance between the longitudinal centre lines of the axles 5 takes place when the bogie frame 1 is subjected to an even load. Since the vehicle body needs to be loaded in a largely symmetric fashion in accordance with applicable regulations, changes in the loading weight of the vehicle body 11 do not lead to a steering movement of the wheel pairs.
However, when the rail vehicle drives through a curve, the vehicle body 11, in particular, is inclined toward the outer side of the curve due to the occurring centrifugal forces such that the longitudinal beam of the bogie frame 1 on the outer side of the curve is subjected to an increased load while the load on the longitudinal beam on the inner side of the curve usually decreases. The increased load on the longitudinal beam of the bogie frame on the outer side of the curve caused by the centrifugal force leads to the wheel carriers 3 on the outer side of the curve to be pushed apart from one another such that the distance between the axles 5 is increased on the outer side of the curve. If the load on the longitudinal beam of the bogie frame on the inner side of the curve is alleviated, the distance between the wheel carriers 3 on the inner side of the curve is reduced correspondingly. Consequently, the axles 5 of the two wheel pairs 4, 4; 4, 4 are automatically turned towards a curve-radial adjustment by the centrifugal forces occurring while driving through a curve. This makes it possible to achieve a very low wheel flange wear, a corresponding reduction in the sound emission and low Y-forces between the wheel and the rail, i.e., transverse to the driving direction, with comparatively simple means. Since the maximum centrifugal acceleration on rail vehicles in curves is predetermined, an ideal radial adjustment of the wheel pairs can be achieved, in particular, for the most commonly used curve radius of a track by varying the stiffness of the primary springs and by choosing the length and the relative angle of the steering rods accordingly.
In the functional representation according to
In the rail vehicle according to
The arrangement according to
According to
Again, in the arrangement shown in
In
From
Although the arrangement according to the invention can be utilized with classical wheelsets, it is particularly suitable for use with free-wheeling wheelsets that do not generate any steering forces in curves due to the lack of a rigid axle connection between the two wheels. The length of the steering rods 9 may be variable in order to adjust a parallel alignment of the corresponding shafts 5 when a straight track is available. The steering rods 9 may be selectively provided with elastic or inelastic bearings in the coupling points 8 and/or 10. The utilization of at least one elastic rubber bearing is particularly advantageous with wheelsets, the wheels of which are fixed on a common shaft, namely because the forces resulting from the wheel/rail geometry can also be utilized for realizing the functionally appropriate turning movement. In addition, the angle of inclination of the steering rods 9 may be chosen differently depending on the desired steering angle of the axles 5 at a given inclination of the vehicle body 11. The angle of inclination may, for example, amount up to approximately 45 angular degrees, but preferably is chosen smaller than 20 degrees. In other respects, the angle of inclination of the steering rods 9 is, if so required, adjusted by means of height-adjustable coupling points 8 and/or 10, in particular, in such a way that the extensions of the imaginary central longitudinal axes of the steering rods 9 respectively intersect the imaginary central longitudinal axis of the corresponding wheel axle when the axles 5 are aligned parallel to one another.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP01/11099 | 9/26/2001 | WO | 00 | 1/20/2004 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO02/26542 | 4/4/2002 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4742779 | Bevand | May 1988 | A |
5131332 | Smith | Jul 1992 | A |
5909711 | Vogel et al. | Jun 1999 | A |
6035788 | Mau et al. | Mar 2000 | A |
6230631 | Archilla Aldeanueva et al. | May 2001 | B1 |
Number | Date | Country | |
---|---|---|---|
20040112248 A1 | Jun 2004 | US |