This application claims the benefit and priority of Chinese patent application No. 202222062763.1, filed on Aug. 5, 2022, disclosure of which is hereby incorporated by reference in its entirety.
The present application relates to the technical field of rainwater collection, and more particularly, to a rainwater collector.
With the development of social economy and the continuous increase of population, the shortage of water resources has become a very serious environmental problem faced by human society at present, and even a problem of human survival in the future. Water is the source of life and the basic condition for human survival. Only 3% of the freshwater resources on the earth are available for human use. For thousands of years, human beings have been making unremitting efforts to maximize the use of freshwater, and gradually realized that water resources are not inexhaustible, and the efficient use of freshwater resources has become a new trend. Nowadays, the utilization of water resources is often improved by using rainwater. After the rainwater is collected, it can be simply treated to achieve the standard of water reuse. It can be used to water flowers and wash cars. Compared with the use of tap water, it has a high utilization value. The use of rainwater can save the use of tap water while saving the consumption of tap water, and the overall cost savings is considerable. The value of rainwater reuse and treatment reasonably and efficiently to society has been more and more accepted by contemporary people.
The existing rainwater collectors are installed in the open air, and the rainwater is often mixed with large debris such as branches and leaves, which are easy to cause blockage in the pipeline, and the corrosion of the branches and leaves will also affect the water quality, which is not conducive to the recycling of rainwater.
In addition, most of the existing rainwater collectors cannot adapt to various pipe sizes, and the efficiency of collecting rainwater is low. In the weather of strong wind, it will collide with the wall and generate noise.
The above shortcomings need to be improved.
In order to overcome the fact that the existing rainwater collector does not filter the impurities in the rainwater, which is likely to cause pipe blockage and contamination of the collected rainwater, the present application provides a rainwater collector.
The technical solution of the present application is as follows:
A rainwater collector, comprising a housing, which is configured to penetrate from top to bottom, wherein an opening at upper end of the housing is a water inlet, an opening at lower end of the housing is a water outlet, wherein inside the housing are arranged: a filter for filtering rainwater; a diverter arranged above the filter. After the rainwater enters from the water inlet, the diverter diverts the rainwater, so that the rainwater flows through the filter, so as to filter the rainwater, reduce the impurities in the rainwater, and facilitates the utilization.
Furthermore, the housing is in the shape of a waist drum with a smaller diameter at both ends and a bigger diameter at middle, wherein the housing comprises a top cover, an upper cover and a base, and the top cover, the upper cover and the base are snapped together in sequence, a snap joint between the upper cover and the base is located at the largest diameter of the housing. Each part of the housing is connected by snap connection, which is easy to install and disassemble, and the parting surface is set at the largest diameter. When installing the internal components of the housing, the opening between the upper cover and the base is large, this facilitates the installation of components in the upper cover or the base.
Furthermore, connecting ribs are provided on outer side of lower end of the top cover and inner side of top end of the base, and grooves are provided on outer side of top end of the filter, and the groove on the filter and the connecting rib on the base are engaged with each other.
Furthermore, one side of the housing is a plane, and an edge of the plane is provided with a nailing lug, which is convenient for fixing the rainwater collector
Furthermore, the filter comprises a water-passing pipe, and grid plates are evenly arranged on outer side of upper end of the water-passing pipe.
Furthermore, the grid plates are arranged vertically, and one end of the grid plates close to inner wall of the housing is higher than the other end, so that the impurities filtered on the grid plate can slide down into the water passage and then be discharged from the water outlet.
Furthermore, water collecting ports are arranged on both sides of the housing and the height of the water collecting port is lower than upper end face of the water-passing pipe, and the water collecting port is configured to connect valve, which is convenient to connect the valve from different directions of the rainwater collector according to the needs, which is convenient for use.
Furthermore, a connecting seat is provided at bottom of the housing, which is convenient for connecting the drain pipe.
Furthermore, a baffle plate is provided in the connecting seat, which is convenient to apply to the diameter of the drain pipes of different sizes.
Furthermore, support columns are inserted into the bottom of the diverter, bottom of the support column is inserted into the filter, and the four sides of the diverter are inclined surfaces, so that the rainwater naturally slides onto the grid plate on the diverter, so as to avoid the accumulation of rainwater and impurities on the diverter.
Furthermore, a projected area of the diverter on horizontal plane is larger than the flow area of the water inlet and the water-passing pipe, so that the diverter fully plays the role of diverting the rainwater.
The beneficial effects of the present application based on the above-mentioned technical solutions are:
In order to illustrate the technical solutions in the embodiments of the present application more clearly, the following briefly introduces the accompanying drawings that need to be used in the description of the embodiments or the prior art. Obviously, the drawings in the following description are only some embodiments of the present application, and for those of ordinary skill in the art, other drawings can also be obtained from these drawings without creative effort.
1. Housing; 11. Water inlet; 12. Water outlet; 13. Top cover; 131. Connecting ribs; 14. Upper cover; 15. Base; 16. Nailing lug; 17. Water collecting port; 18. Connecting seat; 19. Baffle plate; 2. Filter; 21. Water-passing pipe; 22. Grid plate; 23. Groove; 3. Diverter; 31. Support column.
In order to make the technical problems, technical solutions and beneficial effects to be solved by the present application more clear, the present application will be further described in detail below with reference to the accompanying drawings and embodiments. It should be understood that the specific embodiments described herein are only used to explain the present application, but not to limit the present application.
It should be noted that when a component is referred to as being “fixed” or “disposed” or “connected” to another component, it can be directly or indirectly located on the other component. The terms “center”, “upper”, “lower”. “left”, “right”, “vertical”, “horizontal”, “inner”, “outer”, etc. which are used to indicate position or positional relationship are based on the position or positional relationship shown in the drawings, and are only for the convenience of describing the application and simplifying the description, therefore cannot be understood as a limitation of the present application. The terms “first”, “second”, etc. are only used for the purpose of description, and should not be construed as indicating or implying relative importance or implying indicating the number of technical features. “A plurality of” means two or more, unless expressly and specifically limited otherwise. “Several” means one or more than one, unless expressly specifically defined otherwise.
As shown in
Before the application is used, the rainwater collector is communicated with various components in the rainwater collection system, wherein the water inlet 11 is communicated with the rainwater collecting pipeline, the water outlet 12 is communicated with the drain pipe, and the water collecting port 17 is installed with a valve, and the other end of the valve is connected with the rainwater collecting bucket through a pipeline; When in use, the rainwater collecting pipe will collect rainwater and enter it into the rainwater collector, and the collected rainwater will enter the housing 1 from the water inlet 11. Since the diverter 3 is arranged above the filter 2, the rainwater flows to the grid plate 22 of the filter 2 after being diverted in the housing 1 through the diverter 3. Rainwater enters the space between the water pipe 21 and the housing 1 through the grid plate 22. Open the valve to collect rainwater into the rainwater collecting bucket. A valve can be installed on the water collecting port 17 on one side, a plug can be installed on the water collecting port 17 on the other side, or valves can be installed on both sides as required. When the rainfall is large or the rainwater in the rainwater collecting bucket is full, the rainwater accumulated in the housing 1 exceeds the upper end surface of the water pipe 21, so that the rainwater overflows through the water pipe 21 and flows into the drain pipe for discharge. The rainwater flowing from the drain pipe can be collected and used for occasions with lower water quality requirements, which improves the efficiency of rainwater utilization. Large debris such as branches and leaves in the rainwater are trapped on the grid plate 22, and the accumulation on the grid plate 22 will reduce the penetration gap and improve the filtering effect of the grid plate 22. When the accumulation is too much, the rainwater cannot pass through the grid plate 22. At this time, it is directly discharged from the drain pipe, and the debris on the grid plate 22 need to be cleaned regularly during use to ensure the filtering effect of the grid plate 22.
In a preferred example, as shown in
In a preferred example, as shown in
In a preferred example, as shown in
In a preferred example, as shown in
In a preferred example, as shown in
In a preferred example, as shown in
The above are only the preferred embodiments of the present application, and are not intended to limit the present application. Therefore, any modification, equivalent replacement, improvement, etc. made to the above embodiments according to the technical practice of the present application still fall within the scope of the technical solution of the present application.
Number | Date | Country | Kind |
---|---|---|---|
202222062763.1 | Aug 2022 | CN | national |