Not Applicable
Not Applicable
Since the dawn of man, we have been collecting rainwater for drinking, washing and, farming. Primitive man collected rainwater in banana leaves or excavated cisterns. As man evolved our methods of collecting water became more and more complex.
Although those who live in parts of the world that have limited water resources have continued to harvest water for individual use, most of us have not. As men became city dwellers, we became more dependent on provincial governments for collecting and distributing water for our needs. Man did not have to think twice about water unless there was a shortage. Water shortages because of drought, natural or man-made, can create havoc.
The easiest method for collecting rainwater is using a rain barrel or other catchment systems. Typically, rainwater is caught and stored when it runs off from rooftops via rain gutters. In some cases rain barrels have large opening on top allowing water from gutters to fall into the barrel. The water from these types of barrels is susceptible to pollution such a falling leaves, bugs, or stray animals. Moreover, water collected this way cannot be channeled back to the downspout. Consequently, when the rain barrel is full it will overflow causing the accumulation of unwanted water at rain barrel footing. The accumulated rainwater can seep into a building's foundation or basement resulting in structure damage.
Newer rain barrels try to address this issue by defining a smaller opening. To use this type of rain barrel, the gutter downspout is usually fitted with an attachment that leads a hose to the rain barrel. This type of attachment must be removed in freezing weather otherwise, the water in the rain barrel as well as in the attachment freezes causing both to burst. Additionally, this type of attachment can become clogged with debris if they are not regularly monitored. Finally, the downspout attachments, discussed above, often requires the existing gutter or drain spout to be redesigned.
Information relevant to addressing some of the concerns described above can be found in Adamson (WO2008/000016). However, Adamson is lacking. First, Adamson addresses the freezing problem, discussed above, by removing the apparatus. Second, the filter on Adamson is placed directly below the cut-away downspout. Consequently, any debris coming out from the downspout will be pushed against the filter instead of being pushed away from the filter. This configuration promotes clogging at the filter. Finally, this apparatus is not covered above the filter. Presumably, water is coming into the filter is moving at a high velocity. The size of the filter area coupled with rushing water will cause water to splash onto the exterior wall of the building. The amount of water that is splashed will be magnified when the filter is clogged, resulting in structural damages to the building.
Rosebrock (U.S. Pat. No. 5,114,594) has also tried to addresses a few of the concerns raised above. Rosebrock teaches a rain diverter that allows water to enter into a barrel or bypass the barrel when the barrel is full, the by-passed water flow out through its normal flow channel. Like Adamson, the Roseburg apparatus can freeze in cold temperatures. Additionally, Rosebrock does not provide a filtration system.
It is an object of this invention to provide an apparatus that is attached to existing rain gutters having a downspout system which: (1) allows easy collection of rainwater into a rain barrel with minimal maintenance; (2) has a user activated collection bypass where, the bypass prevents freezing of the apparatus in freezing temperatures; (3) screens out debris from rainwater; (4) can self-clean debris from its filter; and; (5) allows automatic overflow of excessive water from rain barrel back to the downspout.
Other features and advantages of the present invention will become apparent in the following detailed descriptions of the preferred embodiment with reference to the accompanying drawings, of which:
In the description of the invention above and in the detailed description of the invention, and the claims below, and in the accompanying drawings, reference is made to particular features of the invention. It is to be understood that the disclosure of the invention in this specification includes all possible combinations of such particular features. For example, where a particular feature is disclosed in the context of a particular aspect or embodiment of the invention, or a particular claim, that feature can also be used, to the extent possible, in combination with and/or in the context of other particular aspects and embodiments of the invention, and in the invention generally. Referring now in detail to the
Referring to
Referring to
The downspout compartment (200) also comprises a water input end (210) and a water output end (220). In its preferred embodiment, the water input end (210) will accept a building downspout (701). Dispersed between the water input end (210) and water output end (220) is a venturi (230).
Referring to
Referring to
When the deflector (400) is in the closed position, rainwater flows from downspout (700) through the input end (210) and out the output end (220) through the downspout compartment (710). Preferably, the closed position would be used when rainwater collection is undesirable; for example, during the winter when standing rainwater can freeze and cause damage to rain barrel (620). When the deflector (400) is in the open position, rainwater from the downspout (700) is channeled by the deflector (400) to the reservoir compartment (300) where it is accumulated before being sent to rain barrel through the spout (330, 720).
In the preferred embodiment, a hose (610) is connected to the spout (330) allowing rainwater to be efficiently directed into a rain barrel. However, it will be obvious to a person having ordinary skill in the art that the Regulator (100) can also be used without a hose. Referring to
The reservoir side (410) of the deflector (400) comprises a plurality fins (411) located on the center section (401) of the deflector and one fin (412) located on each edge (402). The fins (412) located on the edges (402) are larger than the fins (411) located in the center section (401). The Regulator (100) has a means to lock the deflector (400) it in the open position and the closed position. In a preferred embodiment the fins (412) comprise at least one pin (413) and the side wall (252) defines a plurality of holes (240). The plurality of holes (240) accepts the at least one pin (413) locking the defector (400) in the open or closed position.
When the deflector (400) is in the open position, the fins (411, 412) are used to regulate the flow of water towards the screen (310). The larger fins (412) on each edge (402) also prevent rainwater from flowing down the inner sidewalls (250, 252) of the downspout compartment (200). The force of the rainwater through the angle of the deflector (400) and through the fins (411, 412) pushes debris off the angled screen (310).
The mid wall defines a hole (510). When the reservoir compartment (300) is full, the hole (510) allows rainwater to flow from reservoir compartment (300) to downspout compartment (200). The reservoir compartment (300) is considered full when rainwater has reached the level of the hole (510); this level is referred to as the water line (270).
If the spout (330) delivers water to a rain barrel via a hose (610), as shown in
Referring to
Referring to
Number | Name | Date | Kind |
---|---|---|---|
334386 | Hough et al. | Jan 1886 | A |
371697 | Miller | Oct 1887 | A |
542934 | Kleespies | Jul 1895 | A |
949972 | Burgert | Feb 1910 | A |
4182376 | Nilsson | Jan 1980 | A |
4386484 | van Berne et al. | Jun 1983 | A |
4428394 | Wright | Jan 1984 | A |
4726151 | Vitale | Feb 1988 | A |
5114594 | Rosebrock et al. | May 1992 | A |
5533303 | Harvey | Jul 1996 | A |
5681455 | Takai et al. | Oct 1997 | A |
5863151 | Chapotelle | Jan 1999 | A |
6240680 | Estes | Jun 2001 | B1 |
20080086953 | Graf | Apr 2008 | A1 |
Number | Date | Country |
---|---|---|
WO2008000016 | Jan 2008 | WO |
Number | Date | Country | |
---|---|---|---|
20110290355 A1 | Dec 2011 | US |