Raise to speak

Abstract
Systems and processes for operating an intelligent automated assistant are provided. An example process includes detecting input representing motion of an electronic device and sampling an audio input with a microphone of the electronic device. The example process further includes determining, based on the audio input and the input representing motion of the electronic device, whether to initiate a virtual assistant session. In accordance with a determination to initiate the virtual assistant session, the example process includes initiating the virtual assistant session. In accordance with a determination not to initiate the virtual assistant session, the example process includes forgoing initiating the virtual assistant session.
Description
FIELD

This relates generally to intelligent automated assistants and, more specifically, to initiating a speech based service such as an intelligent automated assistant.


BACKGROUND

Intelligent automated assistants (or digital assistants) can provide a beneficial interface between human users and electronic devices. Such assistants can allow users to interact with devices or systems using natural language in spoken and/or text forms. For example, a user can provide a speech input containing a user request to a digital assistant operating on an electronic device. The digital assistant can interpret the user's intent from the speech input and operationalize the user's intent into tasks. The tasks can then be performed by executing one or more services of the electronic device, and a relevant output responsive to the user request can be returned to the user.


Operating a digital assistant requires electrical power, which is a limited resource on handheld or portable devices that rely on batteries and on which digital assistants often run. Accordingly, it is desirable to initiate and operate a digital assistant in an energy efficient manner.


SUMMARY

Example methods are disclosed herein. An example method includes, at an electronic device with a microphone and a display: detecting input representing motion of the electronic device, and sampling, with the microphone, an audio input. The method further includes determining, based on the audio input and the input representing motion of the electronic device, whether to initiate a virtual assistant session. The method further includes, in accordance with a determination to initiate the virtual assistant session, initiating the virtual assistant session, and in accordance with a determination not to initiate the virtual assistant session, forgoing initiating the virtual assistant session.


Example non-transitory computer-readable media are disclosed herein. An example non-transitory computer-readable storage medium stores one or more programs. The one or more programs comprise instructions, which when executed by one or more processors of an electronic device with a microphone and a display, cause the electronic device to: detect input representing motion of the electronic device, sample, with the microphone, an audio input, determine, based on the audio input and the input representing motion of the electronic device, whether to initiate a virtual assistant session, in accordance with a determination to initiate the virtual assistant session, initiate the virtual assistant session, and in accordance with a determination not to initiate the virtual assistant session, forgo initiating the virtual assistant session.


Example electronic devices are disclosed herein. An example electronic device comprises a microphone, a display, one or more processors, a memory, and one or more programs, where the one or more programs are stored in the memory and configured to be executed by the one or more processors, the one or more programs including instructions for: detecting input representing motion of the electronic device, sampling, with the microphone, an audio input, determining, based on the audio input and the input representing motion of the electronic device, whether to initiate a virtual assistant session, in accordance with a determination to initiate the virtual assistant session, initiating the virtual assistant session, and in accordance with a determination not to initiate the virtual assistant session, forgoing initiating the virtual assistant session.


An example electronic device comprises means for: detecting input representing motion of the electronic device, sampling an audio input, determining, based on the audio input and the input representing motion of the electronic device, whether to initiate a virtual assistant session, in accordance with a determination to initiate the virtual assistant session, initiating the virtual assistant session, and in accordance with a determination not to initiate the virtual assistant session, forgoing initiating the virtual assistant session.


Determining, based on audio input and input representing motion of the electronic device (e.g., “motion input”), whether to initiate a virtual assistant session provides a natural and efficient way of initiating and interacting with a virtual assistant. For example, to initiate a virtual assistant and to have a task performed by the virtual assistant based on a spoken request, a user simply raises a device near his or her mouth and utters the request at approximately the same time (e.g., without the request including a spoken trigger such as “Hey Siri”). Facilitating virtual assistant interaction in this manner enables efficient virtual assistant interaction (e.g., no spoken trigger is required before each interaction) and quick virtual assistant response to spoken requests. Additionally, using both audio input and motion input to initiate a virtual assistant session prevents inadvertent virtual assistant activation based on either audio input or motion input alone. This decreases the chance of inadvertently initiating a virtual assistant and saves battery power otherwise consumed due to operating a virtual assistant when not desired. In this manner, the user-device interface is made more efficient (e.g., by reducing the amount of audio input users provide, by decreasing virtual assistant response time, by preventing inadvertent virtual assistant activation), which additionally, reduces power usage and improves battery life of the device by enabling the user to use the device more quickly and efficiently.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a block diagram illustrating a system and environment for implementing a digital assistant, according to various examples.



FIG. 2A is a block diagram illustrating a portable multifunction device implementing the client-side portion of a digital assistant, according to various examples.



FIG. 2B is a block diagram illustrating exemplary components for event handling, according to various examples.



FIG. 3 illustrates a portable multifunction device implementing the client-side portion of a digital assistant, according to various examples.



FIG. 4 is a block diagram of an exemplary multifunction device with a display and a touch-sensitive surface, according to various examples.



FIG. 5A illustrates an exemplary user interface for a menu of applications on a portable multifunction device, according to various examples.



FIG. 5B illustrates an exemplary user interface for a multifunction device with a touch-sensitive surface that is separate from the display, according to various examples.



FIG. 6A illustrates a personal electronic device, according to various examples.



FIG. 6B is a block diagram illustrating a personal electronic device, according to various examples.



FIG. 7A is a block diagram illustrating a digital assistant system or a server portion thereof, according to various examples.



FIG. 7B illustrates the functions of the digital assistant shown in FIG. 7A, according to various examples.



FIG. 7C illustrates a portion of an ontology, according to various examples.



FIGS. 8A-D illustrate exemplary techniques for initiating a virtual assistant session at an electronic device based on audio input and input representing motion of the electronic device.



FIGS. 8E-F illustrate exemplary techniques for deactivating a virtual assistant session.



FIG. 9 illustrates a block diagram of a system configured to process audio input and motion input in accordance with some examples.



FIGS. 10A-D illustrate a process for operating a digital assistant according to various examples.



FIG. 11 illustrates a process for transmitting a communication according to various examples.





DETAILED DESCRIPTION

In the following description of examples, reference is made to the accompanying drawings in which are shown by way of illustration specific examples that can be practiced. It is to be understood that other examples can be used and structural changes can be made without departing from the scope of the various examples.


As discussed, the present disclosure relates to techniques for initiating a virtual assistant session based on audio input and motion input. For example, to initiate a virtual assistant session on a wrist-wearable device (e.g., a smart watch), a user wearing the device raises the device near the user's mouth and provides audio input (e.g., “What's the weather like in Palo Alto”) when (or shortly before or after) the device is raised near the user's mouth. In some examples, the audio input does not include a spoken trigger (e.g., “Hey Siri”) for initiating a virtual assistant. A virtual assistant session is initiated on the device based on the detected motion input and the sampled audio input, and the initiated virtual assistant session responds to the audio input (e.g., by providing the response “It's 70 degrees and sunny”). Accordingly, an intuitive and efficient way of initiating and interacting with virtual assistant sessions is provided.


Although the following description uses terms “first,” “second,” etc. to describe various elements, these elements should not be limited by the terms. These terms are only used to distinguish one element from another. For example, a first input could be termed a second input, and, similarly, a second input could be termed a first input, without departing from the scope of the various described examples. The first input and the second input are both inputs and, in some cases, are separate and different inputs.


The terminology used in the description of the various described examples herein is for the purpose of describing particular examples only and is not intended to be limiting. As used in the description of the various described examples and the appended claims, the singular forms “a,” “an,” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will also be understood that the term “and/or” as used herein refers to and encompasses any and all possible combinations of one or more of the associated listed items. It will be further understood that the terms “includes,” “including,” “comprises,” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.


The term “if” may be construed to mean “when” or “upon” or “in response to determining” or “in response to detecting,” depending on the context. Similarly, the phrase “if it is determined” or “if [a stated condition or event] is detected” may be construed to mean “upon determining” or “in response to determining” or “upon detecting [the stated condition or event]” or “in response to detecting [the stated condition or event],” depending on the context.


1. System and Environment



FIG. 1 illustrates a block diagram of system 100 according to various examples. In some examples, system 100 implements a digital assistant. The terms “digital assistant,” “virtual assistant,” “intelligent automated assistant,” or “automatic digital assistant” refer to any information processing system that interprets natural language input in spoken and/or textual form to infer user intent, and performs actions based on the inferred user intent. For example, to act on an inferred user intent, the system performs one or more of the following: identifying a task flow with steps and parameters designed to accomplish the inferred user intent, inputting specific requirements from the inferred user intent into the task flow; executing the task flow by invoking programs, methods, services, APIs, or the like; and generating output responses to the user in an audible (e.g., speech) and/or visual form.


Specifically, a digital assistant is capable of accepting a user request at least partially in the form of a natural language command, request, statement, narrative, and/or inquiry. Typically, the user request seeks either an informational answer or performance of a task by the digital assistant. A satisfactory response to the user request includes a provision of the requested informational answer, a performance of the requested task, or a combination of the two. For example, a user asks the digital assistant a question, such as “Where am I right now?” Based on the user's current location, the digital assistant answers, “You are in Central Park near the west gate.” The user also requests the performance of a task, for example, “Please invite my friends to my girlfriend's birthday party next week.” In response, the digital assistant can acknowledge the request by saying “Yes, right away,” and then send a suitable calendar invite on behalf of the user to each of the user's friends listed in the user's electronic address book. During performance of a requested task, the digital assistant sometimes interacts with the user in a continuous dialogue involving multiple exchanges of information over an extended period of time. There are numerous other ways of interacting with a digital assistant to request information or performance of various tasks. In addition to providing verbal responses and taking programmed actions, the digital assistant also provides responses in other visual or audio forms, e.g., as text, alerts, music, videos, animations, etc.


As shown in FIG. 1, in some examples, a digital assistant is implemented according to a client-server model. The digital assistant includes client-side portion 102 (hereafter “DA client 102”) executed on user device 104 and server-side portion 106 (hereafter “DA server 106”) executed on server system 108. DA client 102 communicates with DA server 106 through one or more networks 110. DA client 102 provides client-side functionalities such as user-facing input and output processing and communication with DA server 106. DA server 106 provides server-side functionalities for any number of DA clients 102 each residing on a respective user device 104.


In some examples, DA server 106 includes client-facing I/O interface 112, one or more processing modules 114, data and models 116, and I/O interface to external services 118. The client-facing I/O interface 112 facilitates the client-facing input and output processing for DA server 106. One or more processing modules 114 utilize data and models 116 to process speech input and determine the user's intent based on natural language input. Further, one or more processing modules 114 perform task execution based on inferred user intent. In some examples, DA server 106 communicates with external services 120 through network(s) 110 for task completion or information acquisition. I/O interface to external services 118 facilitates such communications.


User device 104 can be any suitable electronic device. In some examples, user device 104 is a portable multifunctional device (e.g., device 200, described below with reference to FIG. 2A), a multifunctional device (e.g., device 400, described below with reference to FIG. 4), or a personal electronic device (e.g., device 600, described below with reference to FIG. 6A-B.) A portable multifunctional device is, for example, a mobile telephone that also contains other functions, such as PDA and/or music player functions. Specific examples of portable multifunction devices include the Apple Watch, iPhone®, iPod Touch®, and iPad® devices from Apple Inc. of Cupertino, Calif. Other examples of portable multifunction devices include, without limitation, earphones/headphones, speakers, and laptop or tablet computers. Further, in some examples, user device 104 is a non-portable multifunctional device. In particular, user device 104 is a desktop computer, a game console, a speaker, a television, or a television set-top box. In some examples, user device 104 includes a touch-sensitive surface (e.g., touch screen displays and/or touchpads). Further, user device 104 optionally includes one or more other physical user-interface devices, such as a physical keyboard, a mouse, and/or a joystick. Various examples of electronic devices, such as multifunctional devices, are described below in greater detail.


Examples of communication network(s) 110 include local area networks (LAN) and wide area networks (WAN), e.g., the Internet. Communication network(s) 110 is implemented using any known network protocol, including various wired or wireless protocols, such as, for example, Ethernet, Universal Serial Bus (USB), FIREWIRE, Global System for Mobile Communications (GSM), Enhanced Data GSM Environment (EDGE), code division multiple access (CDMA), time division multiple access (TDMA), Bluetooth, Wi-Fi, voice over Internet Protocol (VoIP), Wi-MAX, or any other suitable communication protocol.


Server system 108 is implemented on one or more standalone data processing apparatus or a distributed network of computers. In some examples, server system 108 also employs various virtual devices and/or services of third-party service providers (e.g., third-party cloud service providers) to provide the underlying computing resources and/or infrastructure resources of server system 108.


In some examples, user device 104 communicates with DA server 106 via second user device 122. Second user device 122 is similar or identical to user device 104. For example, second user device 122 is similar to devices 200, 400, or 600 described below with reference to FIGS. 2A, 4, and 6A-B. User device 104 is configured to communicatively couple to second user device 122 via a direct communication connection, such as Bluetooth, NFC, BTLE, or the like, or via a wired or wireless network, such as a local Wi-Fi network. In some examples, second user device 122 is configured to act as a proxy between user device 104 and DA server 106. For example, DA client 102 of user device 104 is configured to transmit information (e.g., a user request received at user device 104) to DA server 106 via second user device 122. DA server 106 processes the information and returns relevant data (e.g., data content responsive to the user request) to user device 104 via second user device 122.


In some examples, user device 104 is configured to communicate abbreviated requests for data to second user device 122 to reduce the amount of information transmitted from user device 104. Second user device 122 is configured to determine supplemental information to add to the abbreviated request to generate a complete request to transmit to DA server 106. This system architecture can advantageously allow user device 104 having limited communication capabilities and/or limited battery power (e.g., a watch or a similar compact electronic device) to access services provided by DA server 106 by using second user device 122, having greater communication capabilities and/or battery power (e.g., a mobile phone, laptop computer, tablet computer, or the like), as a proxy to DA server 106. While only two user devices 104 and 122 are shown in FIG. 1, it should be appreciated that system 100, in some examples, includes any number and type of user devices configured in this proxy configuration to communicate with DA server system 106.


Although the digital assistant shown in FIG. 1 includes both a client-side portion (e.g., DA client 102) and a server-side portion (e.g., DA server 106), in some examples, the functions of a digital assistant are implemented as a standalone application installed on a user device. In addition, the divisions of functionalities between the client and server portions of the digital assistant can vary in different implementations. For instance, in some examples, the DA client is a thin-client that provides only user-facing input and output processing functions, and delegates all other functionalities of the digital assistant to a backend server.


2. Electronic Devices


Attention is now directed toward embodiments of electronic devices for implementing the client-side portion of a digital assistant. FIG. 2A is a block diagram illustrating portable multifunction device 200 with touch-sensitive display system 212 in accordance with some embodiments. Touch-sensitive display 212 is sometimes called a “touch screen” for convenience and is sometimes known as or called a “touch-sensitive display system.” Device 200 includes memory 202 (which optionally includes one or more computer-readable storage mediums), memory controller 222, one or more processing units (CPUs) 220, peripherals interface 218, RF circuitry 208, audio circuitry 210, speaker 211, microphone 213, input/output (I/O) subsystem 206, other input control devices 216, and external port 224. Device 200 optionally includes one or more optical sensors 264. Device 200 optionally includes one or more contact intensity sensors 265 for detecting intensity of contacts on device 200 (e.g., a touch-sensitive surface such as touch-sensitive display system 212 of device 200). Device 200 optionally includes one or more tactile output generators 267 for generating tactile outputs on device 200 (e.g., generating tactile outputs on a touch-sensitive surface such as touch-sensitive display system 212 of device 200 or touchpad 455 of device 400). These components optionally communicate over one or more communication buses or signal lines 203.


As used in the specification and claims, the term “intensity” of a contact on a touch-sensitive surface refers to the force or pressure (force per unit area) of a contact (e.g., a finger contact) on the touch-sensitive surface, or to a substitute (proxy) for the force or pressure of a contact on the touch-sensitive surface. The intensity of a contact has a range of values that includes at least four distinct values and more typically includes hundreds of distinct values (e.g., at least 256). Intensity of a contact is, optionally, determined (or measured) using various approaches and various sensors or combinations of sensors. For example, one or more force sensors underneath or adjacent to the touch-sensitive surface are, optionally, used to measure force at various points on the touch-sensitive surface. In some implementations, force measurements from multiple force sensors are combined (e.g., a weighted average) to determine an estimated force of a contact. Similarly, a pressure-sensitive tip of a stylus is, optionally, used to determine a pressure of the stylus on the touch-sensitive surface. Alternatively, the size of the contact area detected on the touch-sensitive surface and/or changes thereto, the capacitance of the touch-sensitive surface proximate to the contact and/or changes thereto, and/or the resistance of the touch-sensitive surface proximate to the contact and/or changes thereto are, optionally, used as a substitute for the force or pressure of the contact on the touch-sensitive surface. In some implementations, the substitute measurements for contact force or pressure are used directly to determine whether an intensity threshold has been exceeded (e.g., the intensity threshold is described in units corresponding to the substitute measurements). In some implementations, the substitute measurements for contact force or pressure are converted to an estimated force or pressure, and the estimated force or pressure is used to determine whether an intensity threshold has been exceeded (e.g., the intensity threshold is a pressure threshold measured in units of pressure). Using the intensity of a contact as an attribute of a user input allows for user access to additional device functionality that may otherwise not be accessible by the user on a reduced-size device with limited real estate for displaying affordances (e.g., on a touch-sensitive display) and/or receiving user input (e.g., via a touch-sensitive display, a touch-sensitive surface, or a physical/mechanical control such as a knob or a button).


As used in the specification and claims, the term “tactile output” refers to physical displacement of a device relative to a previous position of the device, physical displacement of a component (e.g., a touch-sensitive surface) of a device relative to another component (e.g., housing) of the device, or displacement of the component relative to a center of mass of the device that will be detected by a user with the user's sense of touch. For example, in situations where the device or the component of the device is in contact with a surface of a user that is sensitive to touch (e.g., a finger, palm, or other part of a user's hand), the tactile output generated by the physical displacement will be interpreted by the user as a tactile sensation corresponding to a perceived change in physical characteristics of the device or the component of the device. For example, movement of a touch-sensitive surface (e.g., a touch-sensitive display or trackpad) is, optionally, interpreted by the user as a “down click” or “up click” of a physical actuator button. In some cases, a user will feel a tactile sensation such as an “down click” or “up click” even when there is no movement of a physical actuator button associated with the touch-sensitive surface that is physically pressed (e.g., displaced) by the user's movements. As another example, movement of the touch-sensitive surface is, optionally, interpreted or sensed by the user as “roughness” of the touch-sensitive surface, even when there is no change in smoothness of the touch-sensitive surface. While such interpretations of touch by a user will be subject to the individualized sensory perceptions of the user, there are many sensory perceptions of touch that are common to a large majority of users. Thus, when a tactile output is described as corresponding to a particular sensory perception of a user (e.g., an “up click,” a “down click,” “roughness”), unless otherwise stated, the generated tactile output corresponds to physical displacement of the device or a component thereof that will generate the described sensory perception for a typical (or average) user.


It should be appreciated that device 200 is only one example of a portable multifunction device, and that device 200 optionally has more or fewer components than shown, optionally combines two or more components, or optionally has a different configuration or arrangement of the components. The various components shown in FIG. 2A are implemented in hardware, software, or a combination of both hardware and software, including one or more signal processing and/or application-specific integrated circuits.


Memory 202 includes one or more computer-readable storage mediums. The computer-readable storage mediums are, for example, tangible and non-transitory. Memory 202 includes high-speed random access memory and also includes non-volatile memory, such as one or more magnetic disk storage devices, flash memory devices, or other non-volatile solid-state memory devices. Memory controller 222 controls access to memory 202 by other components of device 200.


In some examples, a non-transitory computer-readable storage medium of memory 202 is used to store instructions (e.g., for performing aspects of processes described below) for use by or in connection with an instruction execution system, apparatus, or device, such as a computer-based system, processor-containing system, or other system that can fetch the instructions from the instruction execution system, apparatus, or device and execute the instructions. In other examples, the instructions (e.g., for performing aspects of the processes described below) are stored on a non-transitory computer-readable storage medium (not shown) of the server system 108 or are divided between the non-transitory computer-readable storage medium of memory 202 and the non-transitory computer-readable storage medium of server system 108.


Peripherals interface 218 is used to couple input and output peripherals of the device to CPU 220 and memory 202. The one or more processors 220 run or execute various software programs and/or sets of instructions stored in memory 202 to perform various functions for device 200 and to process data. In some embodiments, peripherals interface 218, CPU 220, and memory controller 222 are implemented on a single chip, such as chip 204. In some other embodiments, they are implemented on separate chips.


RF (radio frequency) circuitry 208 receives and sends RF signals, also called electromagnetic signals. RF circuitry 208 converts electrical signals to/from electromagnetic signals and communicates with communications networks and other communications devices via the electromagnetic signals. RF circuitry 208 optionally includes well-known circuitry for performing these functions, including but not limited to an antenna system, an RF transceiver, one or more amplifiers, a tuner, one or more oscillators, a digital signal processor, a CODEC chipset, a subscriber identity module (SIM) card, memory, and so forth. RF circuitry 208 optionally communicates with networks, such as the Internet, also referred to as the World Wide Web (WWW), an intranet and/or a wireless network, such as a cellular telephone network, a wireless local area network (LAN) and/or a metropolitan area network (MAN), and other devices by wireless communication. The RF circuitry 208 optionally includes well-known circuitry for detecting near field communication (NFC) fields, such as by a short-range communication radio. The wireless communication optionally uses any of a plurality of communications standards, protocols, and technologies, including but not limited to Global System for Mobile Communications (GSM), Enhanced Data GSM Environment (EDGE), high-speed downlink packet access (HSDPA), high-speed uplink packet access (HSUPA), Evolution, Data-Only (EV-DO), HSPA, HSPA+, Dual-Cell HSPA (DC-HSPDA), long term evolution (LTE), near field communication (NFC), wideband code division multiple access (W-CDMA), code division multiple access (CDMA), time division multiple access (TDMA), Bluetooth, Bluetooth Low Energy (BTLE), Wireless Fidelity (Wi-Fi) (e.g., IEEE 802.11a, IEEE 802.11b, IEEE 802.11g, IEEE 802.11n, and/or IEEE 802.11ac), voice over Internet Protocol (VoIP), Wi-MAX, a protocol for e mail (e.g., Internet message access protocol (IMAP) and/or post office protocol (POP)), instant messaging (e.g., extensible messaging and presence protocol (XMPP), Session Initiation Protocol for Instant Messaging and Presence Leveraging Extensions (SIMPLE), Instant Messaging and Presence Service (IMPS)), and/or Short Message Service (SMS), or any other suitable communication protocol, including communication protocols not yet developed as of the filing date of this document.


Audio circuitry 210, speaker 211, and microphone 213 provide an audio interface between a user and device 200. Audio circuitry 210 receives audio data from peripherals interface 218, converts the audio data to an electrical signal, and transmits the electrical signal to speaker 211. Speaker 211 converts the electrical signal to human-audible sound waves. Audio circuitry 210 also receives electrical signals converted by microphone 213 from sound waves. Audio circuitry 210 converts the electrical signal to audio data and transmits the audio data to peripherals interface 218 for processing. Audio data are retrieved from and/or transmitted to memory 202 and/or RF circuitry 208 by peripherals interface 218. In some embodiments, audio circuitry 210 also includes a headset jack (e.g., 312, FIG. 3). The headset jack provides an interface between audio circuitry 210 and removable audio input/output peripherals, such as output-only headphones or a headset with both output (e.g., a headphone for one or both ears) and input (e.g., a microphone).


/O subsystem 206 couples input/output peripherals on device 200, such as touch screen 212 and other input control devices 216, to peripherals interface 218. I/O subsystem 206 optionally includes display controller 256, optical sensor controller 258, intensity sensor controller 259, haptic feedback controller 261, and one or more input controllers 260 for other input or control devices. The one or more input controllers 260 receive/send electrical signals from/to other input control devices 216. The other input control devices 216 optionally include physical buttons (e.g., push buttons, rocker buttons, etc.), dials, slider switches, joysticks, click wheels, and so forth. In some alternate embodiments, input controller(s) 260 are, optionally, coupled to any (or none) of the following: a keyboard, an infrared port, a USB port, and a pointer device such as a mouse. The one or more buttons (e.g., 308, FIG. 3) optionally include an up/down button for volume control of speaker 211 and/or microphone 213. The one or more buttons optionally include a push button (e.g., 306, FIG. 3).


A quick press of the push button disengages a lock of touch screen 212 or begin a process that uses gestures on the touch screen to unlock the device, as described in U.S. patent application Ser. No. 11/322,549, “Unlocking a Device by Performing Gestures on an Unlock Image,” filed Dec. 23, 2005, U.S. Pat. No. 7,657,849, which is hereby incorporated by reference in its entirety. A longer press of the push button (e.g., 306) turns power to device 200 on or off. The user is able to customize a functionality of one or more of the buttons. Touch screen 212 is used to implement virtual or soft buttons and one or more soft keyboards.


Touch-sensitive display 212 provides an input interface and an output interface between the device and a user. Display controller 256 receives and/or sends electrical signals from/to touch screen 212. Touch screen 212 displays visual output to the user. The visual output includes graphics, text, icons, video, and any combination thereof (collectively termed “graphics”). In some embodiments, some or all of the visual output correspond to user-interface objects.


Touch screen 212 has a touch-sensitive surface, sensor, or set of sensors that accepts input from the user based on haptic and/or tactile contact. Touch screen 212 and display controller 256 (along with any associated modules and/or sets of instructions in memory 202) detect contact (and any movement or breaking of the contact) on touch screen 212 and convert the detected contact into interaction with user-interface objects (e.g., one or more soft keys, icons, web pages, or images) that are displayed on touch screen 212. In an exemplary embodiment, a point of contact between touch screen 212 and the user corresponds to a finger of the user.


Touch screen 212 uses LCD (liquid crystal display) technology, LPD (light emitting polymer display) technology, or LED (light emitting diode) technology, although other display technologies may be used in other embodiments. Touch screen 212 and display controller 256 detect contact and any movement or breaking thereof using any of a plurality of touch sensing technologies now known or later developed, including but not limited to capacitive, resistive, infrared, and surface acoustic wave technologies, as well as other proximity sensor arrays or other elements for determining one or more points of contact with touch screen 212. In an exemplary embodiment, projected mutual capacitance sensing technology is used, such as that found in the iPhone® and iPod Touch® from Apple Inc. of Cupertino, Calif.


A touch-sensitive display in some embodiments of touch screen 212 is analogous to the multi-touch sensitive touchpads described in the following U.S. Pat. No. 6,323,846 (Westerman et al.), U.S. Pat. No. 6,570,557 (Westerman et al.), and/or U.S. Pat. No. 6,677,932 (Westerman), and/or U.S. Patent Publication 2002/0015024A1, each of which is hereby incorporated by reference in its entirety. However, touch screen 212 displays visual output from device 200, whereas touch-sensitive touchpads do not provide visual output.


A touch-sensitive display in some embodiments of touch screen 212 is as described in the following applications: (1) U.S. patent application Ser. No. 11/381,313, “Multipoint Touch Surface Controller,” filed May 2, 2006; (2) U.S. patent application Ser. No. 10/840,862, “Multipoint Touchscreen,” filed May 6, 2004; (3) U.S. patent application Ser. No. 10/903,964, “Gestures For Touch Sensitive Input Devices,” filed Jul. 30, 2004; (4) U.S. patent application Ser. No. 11/048,264, “Gestures For Touch Sensitive Input Devices,” filed Jan. 31, 2005; (5) U.S. patent application Ser. No. 11/038,590, “Mode-Based Graphical User Interfaces For Touch Sensitive Input Devices,” filed Jan. 18, 2005; (6) U.S. patent application Ser. No. 11/228,758, “Virtual Input Device Placement On A Touch Screen User Interface,” filed Sep. 16, 2005; (7) U.S. patent application Ser. No. 11/228,700, “Operation Of A Computer With A Touch Screen Interface,” filed Sep. 16, 2005; (8) U.S. patent application Ser. No. 11/228,737, “Activating Virtual Keys Of A Touch-Screen Virtual Keyboard,” filed Sep. 16, 2005; and (9) U.S. patent application Ser. No. 11/367,749, “Multi-Functional Hand-Held Device,” filed Mar. 3, 2006. All of these applications are incorporated by reference herein in their entirety.


Touch screen 212 has, for example, a video resolution in excess of 100 dpi. In some embodiments, the touch screen has a video resolution of approximately 160 dpi. The user makes contact with touch screen 212 using any suitable object or appendage, such as a stylus, a finger, and so forth. In some embodiments, the user interface is designed to work primarily with finger-based contacts and gestures, which can be less precise than stylus-based input due to the larger area of contact of a finger on the touch screen. In some embodiments, the device translates the rough finger-based input into a precise pointer/cursor position or command for performing the actions desired by the user.


In some embodiments, in addition to the touch screen, device 200 includes a touchpad (not shown) for activating or deactivating particular functions. In some embodiments, the touchpad is a touch-sensitive area of the device that, unlike the touch screen, does not display visual output. The touchpad is a touch-sensitive surface that is separate from touch screen 212 or an extension of the touch-sensitive surface formed by the touch screen.


Device 200 also includes power system 262 for powering the various components. Power system 262 includes a power management system, one or more power sources (e.g., battery, alternating current (AC)), a recharging system, a power failure detection circuit, a power converter or inverter, a power status indicator (e.g., a light-emitting diode (LED)) and any other components associated with the generation, management and distribution of power in portable devices.


Device 200 also includes one or more optical sensors 264. FIG. 2A shows an optical sensor coupled to optical sensor controller 258 in I/O subsystem 206. Optical sensor 264 includes charge-coupled device (CCD) or complementary metal-oxide semiconductor (CMOS) phototransistors. Optical sensor 264 receives light from the environment, projected through one or more lenses, and converts the light to data representing an image. In conjunction with imaging module 243 (also called a camera module), optical sensor 264 captures still images or video. In some embodiments, an optical sensor is located on the back of device 200, opposite touch screen display 212 on the front of the device so that the touch screen display is used as a viewfinder for still and/or video image acquisition. In some embodiments, an optical sensor is located on the front of the device so that the user's image is obtained for video conferencing while the user views the other video conference participants on the touch screen display. In some embodiments, the position of optical sensor 264 can be changed by the user (e.g., by rotating the lens and the sensor in the device housing) so that a single optical sensor 264 is used along with the touch screen display for both video conferencing and still and/or video image acquisition.


Device 200 optionally also includes one or more contact intensity sensors 265. FIG. 2A shows a contact intensity sensor coupled to intensity sensor controller 259 in I/O subsystem 206. Contact intensity sensor 265 optionally includes one or more piezoresistive strain gauges, capacitive force sensors, electric force sensors, piezoelectric force sensors, optical force sensors, capacitive touch-sensitive surfaces, or other intensity sensors (e.g., sensors used to measure the force (or pressure) of a contact on a touch-sensitive surface). Contact intensity sensor 265 receives contact intensity information (e.g., pressure information or a proxy for pressure information) from the environment. In some embodiments, at least one contact intensity sensor is collocated with, or proximate to, a touch-sensitive surface (e.g., touch-sensitive display system 212). In some embodiments, at least one contact intensity sensor is located on the back of device 200, opposite touch screen display 212, which is located on the front of device 200.


Device 200 also includes one or more proximity sensors 266. FIG. 2A shows proximity sensor 266 coupled to peripherals interface 218. Alternately, proximity sensor 266 is coupled to input controller 260 in I/O subsystem 206. Proximity sensor 266 is performed as described in U.S. patent application Ser. No. 11/241,839, “Proximity Detector In Handheld Device”; Ser. No. 11/240,788, “Proximity Detector In Handheld Device”; Ser. No. 11/620,702, “Using Ambient Light Sensor To Augment Proximity Sensor Output”; Ser. No. 11/586,862, “Automated Response To And Sensing Of User Activity In Portable Devices”; and Ser. No. 11/638,251, “Methods And Systems For Automatic Configuration Of Peripherals,” which are hereby incorporated by reference in their entirety. In some embodiments, the proximity sensor turns off and disables touch screen 212 when the multifunction device is placed near the user's ear (e.g., when the user is making a phone call).


Device 200 optionally also includes one or more tactile output generators 267. FIG. 2A shows a tactile output generator coupled to haptic feedback controller 261 in I/O subsystem 206. Tactile output generator 267 optionally includes one or more electroacoustic devices such as speakers or other audio components and/or electromechanical devices that convert energy into linear motion such as a motor, solenoid, electroactive polymer, piezoelectric actuator, electrostatic actuator, or other tactile output generating component (e.g., a component that converts electrical signals into tactile outputs on the device). Contact intensity sensor 265 receives tactile feedback generation instructions from haptic feedback module 233 and generates tactile outputs on device 200 that are capable of being sensed by a user of device 200. In some embodiments, at least one tactile output generator is collocated with, or proximate to, a touch-sensitive surface (e.g., touch-sensitive display system 212) and, optionally, generates a tactile output by moving the touch-sensitive surface vertically (e.g., in/out of a surface of device 200) or laterally (e.g., back and forth in the same plane as a surface of device 200). In some embodiments, at least one tactile output generator sensor is located on the back of device 200, opposite touch screen display 212, which is located on the front of device 200.


Device 200 also includes one or more accelerometers 268. FIG. 2A shows accelerometer 268 coupled to peripherals interface 218. Alternately, accelerometer 268 is coupled to an input controller 260 in I/O subsystem 206. Accelerometer 268 performs, for example, as described in U.S. Patent Publication No. 20050190059, “Acceleration-based Theft Detection System for Portable Electronic Devices,” and U.S. Patent Publication No. 20060017692, “Methods And Apparatuses For Operating A Portable Device Based On An Accelerometer,” both of which are incorporated by reference herein in their entirety. In some embodiments, information is displayed on the touch screen display in a portrait view or a landscape view based on an analysis of data received from the one or more accelerometers. Device 200 optionally includes, in addition to accelerometer(s) 268, a magnetometer (not shown) and a GPS (or GLONASS or other global navigation system) receiver (not shown) for obtaining information concerning the location and orientation (e.g., portrait or landscape) of device 200.


In some embodiments, the software components stored in memory 202 include operating system 226, communication module (or set of instructions) 228, contact/motion module (or set of instructions) 230, graphics module (or set of instructions) 232, text input module (or set of instructions) 234, Global Positioning System (GPS) module (or set of instructions) 235, Digital Assistant Client Module 229, and applications (or sets of instructions) 236. Further, memory 202 stores data and models, such as user data and models 231. Furthermore, in some embodiments, memory 202 (FIG. 2A) or 470 (FIG. 4) stores device/global internal state 257, as shown in FIGS. 2A and 4. Device/global internal state 257 includes one or more of: active application state, indicating which applications, if any, are currently active; display state, indicating what applications, views or other information occupy various regions of touch screen display 212; sensor state, including information obtained from the device's various sensors and input control devices 216; and location information concerning the device's location and/or attitude.


Operating system 226 (e.g., Darwin, RTXC, LINUX, UNIX, OS X, iOS, WINDOWS, or an embedded operating system such as VxWorks) includes various software components and/or drivers for controlling and managing general system tasks (e.g., memory management, storage device control, power management, etc.) and facilitates communication between various hardware and software components.


Communication module 228 facilitates communication with other devices over one or more external ports 224 and also includes various software components for handling data received by RF circuitry 208 and/or external port 224. External port 224 (e.g., Universal Serial Bus (USB), FIREWIRE, etc.) is adapted for coupling directly to other devices or indirectly over a network (e.g., the Internet, wireless LAN, etc.). In some embodiments, the external port is a multi-pin (e.g., 30-pin) connector that is the same as, or similar to and/or compatible with, the 30-pin connector used on iPod® (trademark of Apple Inc.) devices.


Contact/motion module 230 optionally detects contact with touch screen 212 (in conjunction with display controller 256) and other touch-sensitive devices (e.g., a touchpad or physical click wheel). Contact/motion module 230 includes various software components for performing various operations related to detection of contact, such as determining if contact has occurred (e.g., detecting a finger-down event), determining an intensity of the contact (e.g., the force or pressure of the contact or a substitute for the force or pressure of the contact), determining if there is movement of the contact and tracking the movement across the touch-sensitive surface (e.g., detecting one or more finger-dragging events), and determining if the contact has ceased (e.g., detecting a finger-up event or a break in contact). Contact/motion module 230 receives contact data from the touch-sensitive surface. Determining movement of the point of contact, which is represented by a series of contact data, optionally includes determining speed (magnitude), velocity (magnitude and direction), and/or an acceleration (a change in magnitude and/or direction) of the point of contact. These operations are, optionally, applied to single contacts (e.g., one finger contacts) or to multiple simultaneous contacts (e.g., “multitouch”/multiple finger contacts). In some embodiments, contact/motion module 230 and display controller 256 detect contact on a touchpad.


In some embodiments, contact/motion module 230 uses a set of one or more intensity thresholds to determine whether an operation has been performed by a user (e.g., to determine whether a user has “clicked” on an icon). In some embodiments, at least a subset of the intensity thresholds are determined in accordance with software parameters (e.g., the intensity thresholds are not determined by the activation thresholds of particular physical actuators and can be adjusted without changing the physical hardware of device 200). For example, a mouse “click” threshold of a trackpad or touch screen display can be set to any of a large range of predefined threshold values without changing the trackpad or touch screen display hardware. Additionally, in some implementations, a user of the device is provided with software settings for adjusting one or more of the set of intensity thresholds (e.g., by adjusting individual intensity thresholds and/or by adjusting a plurality of intensity thresholds at once with a system-level click “intensity” parameter).


Contact/motion module 230 optionally detects a gesture input by a user. Different gestures on the touch-sensitive surface have different contact patterns (e.g., different motions, timings, and/or intensities of detected contacts). Thus, a gesture is, optionally, detected by detecting a particular contact pattern. For example, detecting a finger tap gesture includes detecting a finger-down event followed by detecting a finger-up (liftoff) event at the same position (or substantially the same position) as the finger-down event (e.g., at the position of an icon). As another example, detecting a finger swipe gesture on the touch-sensitive surface includes detecting a finger-down event followed by detecting one or more finger-dragging events, and subsequently followed by detecting a finger-up (liftoff) event.


Graphics module 232 includes various known software components for rendering and displaying graphics on touch screen 212 or other display, including components for changing the visual impact (e.g., brightness, transparency, saturation, contrast, or other visual property) of graphics that are displayed. As used herein, the term “graphics” includes any object that can be displayed to a user, including, without limitation, text, web pages, icons (such as user-interface objects including soft keys), digital images, videos, animations, and the like.


In some embodiments, graphics module 232 stores data representing graphics to be used. Each graphic is, optionally, assigned a corresponding code. Graphics module 232 receives, from applications etc., one or more codes specifying graphics to be displayed along with, if necessary, coordinate data and other graphic property data, and then generates screen image data to output to display controller 256.


Haptic feedback module 233 includes various software components for generating instructions used by tactile output generator(s) 267 to produce tactile outputs at one or more locations on device 200 in response to user interactions with device 200.


Text input module 234, which is, in some examples, a component of graphics module 232, provides soft keyboards for entering text in various applications (e.g., contacts 237, email 240, IM 241, browser 247, and any other application that needs text input).


GPS module 235 determines the location of the device and provides this information for use in various applications (e.g., to telephone 238 for use in location-based dialing; to camera 243 as picture/video metadata; and to applications that provide location-based services such as weather widgets, local yellow page widgets, and map/navigation widgets).


Digital assistant client module 229 includes various client-side digital assistant instructions to provide the client-side functionalities of the digital assistant. For example, digital assistant client module 229 is capable of accepting voice input (e.g., speech input), text input, touch input, and/or gestural input through various user interfaces (e.g., microphone 213, accelerometer(s) 268, touch-sensitive display system 212, optical sensor(s) 264, other input control devices 216, etc.) of portable multifunction device 200. Digital assistant client module 229 is also capable of providing output in audio (e.g., speech output), visual, and/or tactile forms through various output interfaces (e.g., speaker 211, touch-sensitive display system 212, tactile output generator(s) 267, etc.) of portable multifunction device 200. For example, output is provided as voice, sound, alerts, text messages, menus, graphics, videos, animations, vibrations, and/or combinations of two or more of the above. During operation, digital assistant client module 229 communicates with DA server 106 using RF circuitry 208.


User data and models 231 include various data associated with the user (e.g., user-specific vocabulary data, user preference data, user-specified name pronunciations, data from the user's electronic address book, to-do lists, shopping lists, etc.) to provide the client-side functionalities of the digital assistant. Further, user data and models 231 include various models (e.g., speech recognition models, statistical language models, natural language processing models, ontology, task flow models, service models, etc.) for processing user input and determining user intent.


In some examples, digital assistant client module 229 utilizes the various sensors, subsystems, and peripheral devices of portable multifunction device 200 to gather additional information from the surrounding environment of the portable multifunction device 200 to establish a context associated with a user, the current user interaction, and/or the current user input. In some examples, digital assistant client module 229 provides the contextual information or a subset thereof with the user input to DA server 106 to help infer the user's intent. In some examples, the digital assistant also uses the contextual information to determine how to prepare and deliver outputs to the user. Contextual information is referred to as context data.


In some examples, the contextual information that accompanies the user input includes sensor information, e.g., lighting, ambient noise, ambient temperature, images or videos of the surrounding environment, etc. In some examples, the contextual information can also include the physical state of the device, e.g., device orientation, device location, device temperature, power level, speed, acceleration, motion patterns, cellular signals strength, etc. In some examples, information related to the software state of DA server 106, e.g., running processes, installed programs, past and present network activities, background services, error logs, resources usage, etc., and of portable multifunction device 200 is provided to DA server 106 as contextual information associated with a user input.


In some examples, the digital assistant client module 229 selectively provides information (e.g., user data 231) stored on the portable multifunction device 200 in response to requests from DA server 106. In some examples, digital assistant client module 229 also elicits additional input from the user via a natural language dialogue or other user interfaces upon request by DA server 106. Digital assistant client module 229 passes the additional input to DA server 106 to help DA server 106 in intent deduction and/or fulfillment of the user's intent expressed in the user request.


A more detailed description of a digital assistant is described below with reference to FIGS. 7A-C. It should be recognized that digital assistant client module 229 can include any number of the sub-modules of digital assistant module 726 described below.


Applications 236 include the following modules (or sets of instructions), or a subset or superset thereof;

    • Contacts module 237 (sometimes called an address book or contact list);
    • Telephone module 238;
    • Video conference module 239;
    • E-mail client module 240;
    • Instant messaging (IM) module 241;
    • Workout support module 242;
    • Camera module 243 for still and/or video images;
    • Image management module 244;
    • Video player module;
    • Music player module;
    • Browser module 247;
    • Calendar module 248;
    • Widget modules 249, which includes, in some examples, one or more of: weather widget 249-1, stocks widget 249-2, calculator widget 249-3, alarm clock widget 249-4, dictionary widget 249-5, and other widgets obtained by the user, as well as user-created widgets 249-6;
    • Widget creator module 250 for making user-created widgets 249-6;
    • Search module 251;
    • Video and music player module 252, which merges video player module and music player module,
    • Notes module 253;
    • Map module 254; and/or
    • Online video module 255.


Examples of other applications 236 that are stored in memory 202 include other word processing applications, other image editing applications, drawing applications, presentation applications, JAVA-enabled applications, encryption, digital rights management, voice recognition, and voice replication.


In conjunction with touch screen 212, display controller 256, contact/motion module 230, graphics module 232, and text input module 234, contacts module 237 are used to manage an address book or contact list (e.g., stored in application internal state 292 of contacts module 237 in memory 202 or memory 470), including: adding name(s) to the address book; deleting name(s) from the address book; associating telephone number(s), e-mail address(es), physical address(es) or other information with a name; associating an image with a name; categorizing and sorting names; providing telephone numbers or e-mail addresses to initiate and/or facilitate communications by telephone 238, video conference module 239, e-mail 240, or IM 241; and so forth.


In conjunction with RF circuitry 208, audio circuitry 210, speaker 211, microphone 213, touch screen 212, display controller 256, contact/motion module 230, graphics module 232, and text input module 234, telephone module 238 are used to enter a sequence of characters corresponding to a telephone number, access one or more telephone numbers in contacts module 237, modify a telephone number that has been entered, dial a respective telephone number, conduct a conversation, and disconnect or hang up when the conversation is completed. As noted above, the wireless communication uses any of a plurality of communications standards, protocols, and technologies.


In conjunction with RF circuitry 208, audio circuitry 210, speaker 211, microphone 213, touch screen 212, display controller 256, optical sensor 264, optical sensor controller 258, contact/motion module 230, graphics module 232, text input module 234, contacts module 237, and telephone module 238, video conference module 239 includes executable instructions to initiate, conduct, and terminate a video conference between a user and one or more other participants in accordance with user instructions.


In conjunction with RF circuitry 208, touch screen 212, display controller 256, contact/motion module 230, graphics module 232, and text input module 234, e-mail client module 240 includes executable instructions to create, send, receive, and manage e-mail in response to user instructions. In conjunction with image management module 244, e-mail client module 240 makes it very easy to create and send e-mails with still or video images taken with camera module 243.


In conjunction with RF circuitry 208, touch screen 212, display controller 256, contact/motion module 230, graphics module 232, and text input module 234, the instant messaging module 241 includes executable instructions to enter a sequence of characters corresponding to an instant message, to modify previously entered characters, to transmit a respective instant message (for example, using a Short Message Service (SMS) or Multimedia Message Service (MMS) protocol for telephony-based instant messages or using XMPP, SIMPLE, or IMPS for Internet-based instant messages), to receive instant messages, and to view received instant messages. In some embodiments, transmitted and/or received instant messages include graphics, photos, audio files, video files and/or other attachments as are supported in an MMS and/or an Enhanced Messaging Service (EMS). As used herein, “instant messaging” refers to both telephony-based messages (e.g., messages sent using SMS or MMS) and Internet-based messages (e.g., messages sent using XMPP, SIMPLE, or IMPS).


In conjunction with RF circuitry 208, touch screen 212, display controller 256, contact/motion module 230, graphics module 232, text input module 234, GPS module 235, map module 254, and music player module, workout support module 242 includes executable instructions to create workouts (e.g., with time, distance, and/or calorie burning goals); communicate with workout sensors (sports devices); receive workout sensor data; calibrate sensors used to monitor a workout; select and play music for a workout: and display, store, and transmit workout data.


In conjunction with touch screen 212, display controller 256, optical sensor(s) 264, optical sensor controller 258, contact/motion module 230, graphics module 232, and image management module 244, camera module 243 includes executable instructions to capture still images or video (including a video stream) and store them into memory 202, modify characteristics of a still image or video, or delete a still image or video from memory 202.


In conjunction with touch screen 212, display controller 256, contact/motion module 230, graphics module 232, text input module 234, and camera module 243, image management module 244 includes executable instructions to arrange, modify (e.g., edit), or otherwise manipulate, label, delete, present (e.g., in a digital slide show or album), and store still and/or video images.


In conjunction with RF circuitry 208, touch screen 212, display controller 256, contact/motion module 230, graphics module 232, and text input module 234, browser module 247 includes executable instructions to browse the Internet in accordance with user instructions, including searching, linking to, receiving, and displaying web pages or portions thereof, as well as attachments and other files linked to web pages.


In conjunction with RF circuitry 208, touch screen 212, display controller 256, contact/motion module 230, graphics module 232, text input module 234, e-mail client module 240, and browser module 247, calendar module 248 includes executable instructions to create, display, modify, and store calendars and data associated with calendars (e.g., calendar entries, to-do lists, etc.) in accordance with user instructions.


In conjunction with RF circuitry 208, touch screen 212, display controller 256, contact/motion module 230, graphics module 232, text input module 234, and browser module 247, widget modules 249 are mini-applications that can be downloaded and used by a user (e.g., weather widget 249-1, stocks widget 249-2, calculator widget 249-3, alarm clock widget 249-4, and dictionary widget 249-5) or created by the user (e.g., user-created widget 249-6). In some embodiments, a widget includes an HTML (Hypertext Markup Language) file, a CSS (Cascading Style Sheets) file, and a JavaScript file. In some embodiments, a widget includes an XML (Extensible Markup Language) file and a JavaScript file (e.g., Yahoo! Widgets).


In conjunction with RF circuitry 208, touch screen 212, display controller 256, contact/motion module 230, graphics module 232, text input module 234, and browser module 247, the widget creator module 250 are used by a user to create widgets (e.g., turning a user-specified portion of a web page into a widget).


In conjunction with touch screen 212, display controller 256, contact/motion module 230, graphics module 232, and text input module 234, search module 251 includes executable instructions to search for text, music, sound, image, video, and/or other files in memory 202 that match one or more search criteria (e.g., one or more user-specified search terms) in accordance with user instructions.


In conjunction with touch screen 212, display controller 256, contact/motion module 230, graphics module 232, audio circuitry 210, speaker 211, RF circuitry 208, and browser module 247, video and music player module 252 includes executable instructions that allow the user to download and play back recorded music and other sound files stored in one or more file formats, such as MP3 or AAC files, and executable instructions to display, present, or otherwise play back videos (e.g., on touch screen 212 or on an external, connected display via external port 224). In some embodiments, device 200 optionally includes the functionality of an MP3 player, such as an iPod (trademark of Apple Inc.).


In conjunction with touch screen 212, display controller 256, contact/motion module 230, graphics module 232, and text input module 234, notes module 253 includes executable instructions to create and manage notes, to-do lists, and the like in accordance with user instructions.


In conjunction with RF circuitry 208, touch screen 212, display controller 256, contact/motion module 230, graphics module 232, text input module 234, GPS module 235, and browser module 247, map module 254 are used to receive, display, modify, and store maps and data associated with maps (e.g., driving directions, data on stores and other points of interest at or near a particular location, and other location-based data) in accordance with user instructions.


In conjunction with touch screen 212, display controller 256, contact/motion module 230, graphics module 232, audio circuitry 210, speaker 211, RF circuitry 208, text input module 234, e-mail client module 240, and browser module 247, online video module 255 includes instructions that allow the user to access, browse, receive (e.g., by streaming and/or download), play back (e.g., on the touch screen or on an external, connected display via external port 224), send an e-mail with a link to a particular online video, and otherwise manage online videos in one or more file formats, such as H.264. In some embodiments, instant messaging module 241, rather than e-mail client module 240, is used to send a link to a particular online video. Additional description of the online video application can be found in U.S. Provisional Patent Application No. 60/936,562, “Portable Multifunction Device, Method, and Graphical User Interface for Playing Online Videos,” filed Jun. 20, 2007, and U.S. patent application Ser. No. 11/968,067, “Portable Multifunction Device, Method, and Graphical User Interface for Playing Online Videos,” filed Dec. 31, 2007, the contents of which are hereby incorporated by reference in their entirety.


Each of the above-identified modules and applications corresponds to a set of executable instructions for performing one or more functions described above and the methods described in this application (e.g., the computer-implemented methods and other information processing methods described herein). These modules (e.g., sets of instructions) need not be implemented as separate software programs, procedures, or modules, and thus various subsets of these modules can be combined or otherwise rearranged in various embodiments. For example, video player module can be combined with music player module into a single module (e.g., video and music player module 252, FIG. 2A). In some embodiments, memory 202 stores a subset of the modules and data structures identified above. Furthermore, memory 202 stores additional modules and data structures not described above.


In some embodiments, device 200 is a device where operation of a predefined set of functions on the device is performed exclusively through a touch screen and/or a touchpad. By using a touch screen and/or a touchpad as the primary input control device for operation of device 200, the number of physical input control devices (such as push buttons, dials, and the like) on device 200 is reduced.


The predefined set of functions that are performed exclusively through a touch screen and/or a touchpad optionally include navigation between user interfaces. In some embodiments, the touchpad, when touched by the user, navigates device 200 to a main, home, or root menu from any user interface that is displayed on device 200. In such embodiments, a “menu button” is implemented using a touchpad. In some other embodiments, the menu button is a physical push button or other physical input control device instead of a touchpad.



FIG. 2B is a block diagram illustrating exemplary components for event handling in accordance with some embodiments. In some embodiments, memory 202 (FIG. 2A) or 470 (FIG. 4) includes event sorter 270 (e.g., in operating system 226) and a respective application 236-1 (e.g., any of the aforementioned applications 237-251, 255, 480-490).


Event sorter 270 receives event information and determines the application 236-1 and application view 291 of application 236-1 to which to deliver the event information. Event sorter 270 includes event monitor 271 and event dispatcher module 274. In some embodiments, application 236-1 includes application internal state 292, which indicates the current application view(s) displayed on touch-sensitive display 212 when the application is active or executing. In some embodiments, device/global internal state 257 is used by event sorter 270 to determine which application(s) is (are) currently active, and application internal state 292 is used by event sorter 270 to determine application views 291 to which to deliver event information.


In some embodiments, application internal state 292 includes additional information, such as one or more of: resume information to be used when application 236-1 resumes execution, user interface state information that indicates information being displayed or that is ready for display by application 236-1, a state queue for enabling the user to go back to a prior state or view of application 236-1, and a redo/undo queue of previous actions taken by the user.


Event monitor 271 receives event information from peripherals interface 218. Event information includes information about a sub-event (e.g., a user touch on touch-sensitive display 212, as part of a multi-touch gesture). Peripherals interface 218 transmits information it receives from I/O subsystem 206 or a sensor, such as proximity sensor 266, accelerometer(s) 268, and/or microphone 213 (through audio circuitry 210). Information that peripherals interface 218 receives from I/O subsystem 206 includes information from touch-sensitive display 212 or a touch-sensitive surface.


In some embodiments, event monitor 271 sends requests to the peripherals interface 218 at predetermined intervals. In response, peripherals interface 218 transmits event information. In other embodiments, peripherals interface 218 transmits event information only when there is a significant event (e.g., receiving an input above a predetermined noise threshold and/or for more than a predetermined duration).


In some embodiments, event sorter 270 also includes a hit view determination module 272 and/or an active event recognizer determination module 273.


Hit view determination module 272 provides software procedures for determining where a sub-event has taken place within one or more views when touch-sensitive display 212 displays more than one view. Views are made up of controls and other elements that a user can see on the display.


Another aspect of the user interface associated with an application is a set of views, sometimes herein called application views or user interface windows, in which information is displayed and touch-based gestures occur. The application views (of a respective application) in which a touch is detected correspond to programmatic levels within a programmatic or view hierarchy of the application. For example, the lowest level view in which a touch is detected is called the hit view, and the set of events that are recognized as proper inputs is determined based, at least in part, on the hit view of the initial touch that begins a touch-based gesture.


Hit view determination module 272 receives information related to sub events of a touch-based gesture. When an application has multiple views organized in a hierarchy, hit view determination module 272 identifies a hit view as the lowest view in the hierarchy which should handle the sub-event. In most circumstances, the hit view is the lowest level view in which an initiating sub-event occurs (e.g., the first sub-event in the sequence of sub-events that form an event or potential event). Once the hit view is identified by the hit view determination module 272, the hit view typically receives all sub-events related to the same touch or input source for which it was identified as the hit view.


Active event recognizer determination module 273 determines which view or views within a view hierarchy should receive a particular sequence of sub-events. In some embodiments, active event recognizer determination module 273 determines that only the hit view should receive a particular sequence of sub-events. In other embodiments, active event recognizer determination module 273 determines that all views that include the physical location of a sub-event are actively involved views, and therefore determines that all actively involved views should receive a particular sequence of sub-events. In other embodiments, even if touch sub-events were entirely confined to the area associated with one particular view, views higher in the hierarchy would still remain as actively involved views.


Event dispatcher module 274 dispatches the event information to an event recognizer (e.g., event recognizer 280). In embodiments including active event recognizer determination module 273, event dispatcher module 274 delivers the event information to an event recognizer determined by active event recognizer determination module 273. In some embodiments, event dispatcher module 274 stores in an event queue the event information, which is retrieved by a respective event receiver 282.


In some embodiments, operating system 226 includes event sorter 270. Alternatively, application 236-1 includes event sorter 270. In yet other embodiments, event sorter 270 is a stand-alone module, or a part of another module stored in memory 202, such as contact/motion module 230.


In some embodiments, application 236-1 includes a plurality of event handlers 290 and one or more application views 291, each of which includes instructions for handling touch events that occur within a respective view of the application's user interface. Each application view 291 of the application 236-1 includes one or more event recognizers 280. Typically, a respective application view 291 includes a plurality of event recognizers 280. In other embodiments, one or more of event recognizers 280 are part of a separate module, such as a user interface kit (not shown) or a higher level object from which application 236-1 inherits methods and other properties. In some embodiments, a respective event handler 290 includes one or more of: data updater 276, object updater 277, GUI updater 278, and/or event data 279 received from event sorter 270. Event handler 290 utilizes or calls data updater 276, object updater 277, or GUI updater 278 to update the application internal state 292. Alternatively, one or more of the application views 291 include one or more respective event handlers 290. Also, in some embodiments, one or more of data updater 276, object updater 277, and GUI updater 278 are included in a respective application view 291.


A respective event recognizer 280 receives event information (e.g., event data 279) from event sorter 270 and identifies an event from the event information. Event recognizer 280 includes event receiver 282 and event comparator 284. In some embodiments, event recognizer 280 also includes at least a subset of: metadata 283, and event delivery instructions 288 (which include sub-event delivery instructions).


Event receiver 282 receives event information from event sorter 270. The event information includes information about a sub-event, for example, a touch or a touch movement. Depending on the sub-event, the event information also includes additional information, such as location of the sub-event. When the sub-event concerns motion of a touch, the event information also includes speed and direction of the sub-event. In some embodiments, events include rotation of the device from one orientation to another (e.g., from a portrait orientation to a landscape orientation, or vice versa), and the event information includes corresponding information about the current orientation (also called device attitude) of the device.


Event comparator 284 compares the event information to predefined event or sub-event definitions and, based on the comparison, determines an event or sub event, or determines or updates the state of an event or sub-event. In some embodiments, event comparator 284 includes event definitions 286. Event definitions 286 contain definitions of events (e.g., predefined sequences of sub-events), for example, event 1 (287-1), event 2 (287-2), and others. In some embodiments, sub-events in an event (287) include, for example, touch begin, touch end, touch movement, touch cancellation, and multiple touching. In one example, the definition for event 1 (287-1) is a double tap on a displayed object. The double tap, for example, comprises a first touch (touch begin) on the displayed object for a predetermined phase, a first liftoff (touch end) for a predetermined phase, a second touch (touch begin) on the displayed object for a predetermined phase, and a second liftoff (touch end) for a predetermined phase. In another example, the definition for event 2 (287-2) is a dragging on a displayed object. The dragging, for example, comprises a touch (or contact) on the displayed object for a predetermined phase, a movement of the touch across touch-sensitive display 212, and liftoff of the touch (touch end). In some embodiments, the event also includes information for one or more associated event handlers 290.


In some embodiments, event definition 287 includes a definition of an event for a respective user-interface object. In some embodiments, event comparator 284 performs a hit test to determine which user-interface object is associated with a sub-event. For example, in an application view in which three user-interface objects are displayed on touch-sensitive display 212, when a touch is detected on touch-sensitive display 212, event comparator 284 performs a hit test to determine which of the three user-interface objects is associated with the touch (sub-event). If each displayed object is associated with a respective event handler 290, the event comparator uses the result of the hit test to determine which event handler 290 should be activated. For example, event comparator 284 selects an event handler associated with the sub-event and the object triggering the hit test.


In some embodiments, the definition for a respective event (287) also includes delayed actions that delay delivery of the event information until after it has been determined whether the sequence of sub-events does or does not correspond to the event recognizer's event type.


When a respective event recognizer 280 determines that the series of sub-events do not match any of the events in event definitions 286, the respective event recognizer 280 enters an event impossible, event failed, or event ended state, after which it disregards subsequent sub-events of the touch-based gesture. In this situation, other event recognizers, if any, that remain active for the hit view continue to track and process sub-events of an ongoing touch-based gesture.


In some embodiments, a respective event recognizer 280 includes metadata 283 with configurable properties, flags, and/or lists that indicate how the event delivery system should perform sub-event delivery to actively involved event recognizers. In some embodiments, metadata 283 includes configurable properties, flags, and/or lists that indicate how event recognizers interact, or are enabled to interact, with one another. In some embodiments, metadata 283 includes configurable properties, flags, and/or lists that indicate whether sub-events are delivered to varying levels in the view or programmatic hierarchy.


In some embodiments, a respective event recognizer 280 activates event handler 290 associated with an event when one or more particular sub-events of an event are recognized. In some embodiments, a respective event recognizer 280 delivers event information associated with the event to event handler 290. Activating an event handler 290 is distinct from sending (and deferred sending) sub-events to a respective hit view. In some embodiments, event recognizer 280 throws a flag associated with the recognized event, and event handler 290 associated with the flag catches the flag and performs a predefined process.


In some embodiments, event delivery instructions 288 include sub-event delivery instructions that deliver event information about a sub-event without activating an event handler. Instead, the sub-event delivery instructions deliver event information to event handlers associated with the series of sub-events or to actively involved views. Event handlers associated with the series of sub-events or with actively involved views receive the event information and perform a predetermined process.


In some embodiments, data updater 276 creates and updates data used in application 236-1. For example, data updater 276 updates the telephone number used in contacts module 237, or stores a video file used in video player module. In some embodiments, object updater 277 creates and updates objects used in application 236-1. For example, object updater 277 creates a new user-interface object or updates the position of a user-interface object. GUI updater 278 updates the GUI. For example, GUI updater 278 prepares display information and sends it to graphics module 232 for display on a touch-sensitive display.


In some embodiments, event handler(s) 290 includes or has access to data updater 276, object updater 277, and GUI updater 278. In some embodiments, data updater 276, object updater 277, and GUI updater 278 are included in a single module of a respective application 236-1 or application view 291. In other embodiments, they are included in two or more software modules.


It shall be understood that the foregoing discussion regarding event handling of user touches on touch-sensitive displays also applies to other forms of user inputs to operate multifunction devices 200 with input devices, not all of which are initiated on touch screens. For example, mouse movement and mouse button presses, optionally coordinated with single or multiple keyboard presses or holds; contact movements such as taps, drags, scrolls, etc. on touchpads; pen stylus inputs; movement of the device; oral instructions; detected eye movements; biometric inputs; and/or any combination thereof are optionally utilized as inputs corresponding to sub-events which define an event to be recognized.



FIG. 3 illustrates a portable multifunction device 200 having a touch screen 212 in accordance with some embodiments. The touch screen optionally displays one or more graphics within user interface (UI) 300. In this embodiment, as well as others described below, a user is enabled to select one or more of the graphics by making a gesture on the graphics, for example, with one or more fingers 302 (not drawn to scale in the figure) or one or more styluses 303 (not drawn to scale in the figure). In some embodiments, selection of one or more graphics occurs when the user breaks contact with the one or more graphics. In some embodiments, the gesture optionally includes one or more taps, one or more swipes (from left to right, right to left, upward and/or downward), and/or a rolling of a finger (from right to left, left to right, upward and/or downward) that has made contact with device 200. In some implementations or circumstances, inadvertent contact with a graphic does not select the graphic. For example, a swipe gesture that sweeps over an application icon optionally does not select the corresponding application when the gesture corresponding to selection is a tap.


Device 200 also includes one or more physical buttons, such as “home” or menu button 304. As described previously, menu button 304 is used to navigate to any application 236 in a set of applications that is executed on device 200. Alternatively, in some embodiments, the menu button is implemented as a soft key in a GUI displayed on touch screen 212.


In one embodiment, device 200 includes touch screen 212, menu button 304, push button 306 for powering the device on/off and locking the device, volume adjustment button(s) 308, subscriber identity module (SIM) card slot 310, headset jack 312, and docking/charging external port 224. Push button 306 is, optionally, used to turn the power on/off on the device by depressing the button and holding the button in the depressed state for a predefined time interval; to lock the device by depressing the button and releasing the button before the predefined time interval has elapsed; and/or to unlock the device or initiate an unlock process. In an alternative embodiment, device 200 also accepts verbal input for activation or deactivation of some functions through microphone 213. Device 200 also, optionally, includes one or more contact intensity sensors 265 for detecting intensity of contacts on touch screen 212 and/or one or more tactile output generators 267 for generating tactile outputs for a user of device 200.



FIG. 4 is a block diagram of an exemplary multifunction device with a display and a touch-sensitive surface in accordance with some embodiments. Device 400 need not be portable. In some embodiments, device 400 is a laptop computer, a desktop computer, a tablet computer, a multimedia player device, a navigation device, an educational device (such as a child's learning toy), a gaming system, or a control device (e.g., a home or industrial controller). Device 400 typically includes one or more processing units (CPUs) 410, one or more network or other communications interfaces 460, memory 470, and one or more communication buses 420 for interconnecting these components. Communication buses 420 optionally include circuitry (sometimes called a chipset) that interconnects and controls communications between system components. Device 400 includes input/output (I/O) interface 430 comprising display 440, which is typically a touch screen display. I/O interface 430 also optionally includes a keyboard and/or mouse (or other pointing device) 450 and touchpad 455, tactile output generator 457 for generating tactile outputs on device 400 (e.g., similar to tactile output generator(s) 267 described above with reference to FIG. 2A), sensors 459 (e.g., optical, acceleration, proximity, touch-sensitive, and/or contact intensity sensors similar to contact intensity sensor(s) 265 described above with reference to FIG. 2A). Memory 470 includes high-speed random access memory, such as DRAM, SRAM, DDR RAM, or other random access solid state memory devices; and optionally includes non-volatile memory, such as one or more magnetic disk storage devices, optical disk storage devices, flash memory devices, or other non-volatile solid state storage devices. Memory 470 optionally includes one or more storage devices remotely located from CPU(s) 410. In some embodiments, memory 470 stores programs, modules, and data structures analogous to the programs, modules, and data structures stored in memory 202 of portable multifunction device 200 (FIG. 2A), or a subset thereof. Furthermore, memory 470 optionally stores additional programs, modules, and data structures not present in memory 202 of portable multifunction device 200. For example, memory 470 of device 400 optionally stores drawing module 480, presentation module 482, word processing module 484, website creation module 486, disk authoring module 488, and/or spreadsheet module 490, while memory 202 of portable multifunction device 200 (FIG. 2A) optionally does not store these modules.


Each of the above-identified elements in FIG. 4 is, in some examples, stored in one or more of the previously mentioned memory devices. Each of the above-identified modules corresponds to a set of instructions for performing a function described above. The above-identified modules or programs (e.g., sets of instructions) need not be implemented as separate software programs, procedures, or modules, and thus various subsets of these modules are combined or otherwise rearranged in various embodiments. In some embodiments, memory 470 stores a subset of the modules and data structures identified above. Furthermore, memory 470 stores additional modules and data structures not described above.


Attention is now directed towards embodiments of user interfaces that can be implemented on, for example, portable multifunction device 200.



FIG. 5A illustrates an exemplary user interface for a menu of applications on portable multifunction device 200 in accordance with some embodiments. Similar user interfaces are implemented on device 400. In some embodiments, user interface 500 includes the following elements, or a subset or superset thereof:


Signal strength indicator(s) 502 for wireless communication(s), such as cellular and Wi-Fi signals;

    • Time 504;
    • Bluetooth indicator 505;
    • Battery status indicator 506;
    • Tray 508 with icons for frequently used applications, such as:
      • Icon 516 for telephone module 238, labeled “Phone,” which optionally includes an indicator 514 of the number of missed calls or voicemail messages;
      • Icon 518 for e-mail client module 240, labeled “Mail,” which optionally includes an indicator 510 of the number of unread e-mails;
      • Icon 520 for browser module 247, labeled “Browser,” and
      • Icon 522 for video and music player module 252, also referred to as iPod (trademark of Apple Inc.) module 252, labeled “iPod;” and
    • Icons for other applications, such as:
      • Icon 524 for IM module 241, labeled “Messages;”
      • Icon 526 for calendar module 248, labeled “Calendar;”
      • Icon 528 for image management module 244, labeled “Photos;”
      • Icon 530 for camera module 243, labeled “Camera;”
      • Icon 532 for online video module 255, labeled “Online Video;”
      • Icon 534 for stocks widget 249-2, labeled “Stocks;”
      • Icon 536 for map module 254, labeled “Maps;”
      • Icon 538 for weather widget 249-1, labeled “Weather;”
      • Icon 540 for alarm clock widget 249-4, labeled “Clock;”
      • Icon 542 for workout support module 242, labeled “Workout Support;”
      • Icon 544 for notes module 253, labeled “Notes;” and
      • Icon 546 for a settings application or module, labeled “Settings,” which provides access to settings for device 200 and its various applications 236.


It should be noted that the icon labels illustrated in FIG. 5A are merely exemplary. For example, icon 522 for video and music player module 252 is optionally labeled “Music” or “Music Player.” Other labels are, optionally, used for various application icons. In some embodiments, a label for a respective application icon includes a name of an application corresponding to the respective application icon. In some embodiments, a label for a particular application icon is distinct from a name of an application corresponding to the particular application icon.



FIG. 5B illustrates an exemplary user interface on a device (e.g., device 400, FIG. 4) with a touch-sensitive surface 551 (e.g., a tablet or touchpad 455, FIG. 4) that is separate from the display 550 (e.g., touch screen display 212). Device 400 also, optionally, includes one or more contact intensity sensors (e.g., one or more of sensors 457) for detecting intensity of contacts on touch-sensitive surface 551 and/or one or more tactile output generators 459 for generating tactile outputs for a user of device 400.


Although some of the examples which follow will be given with reference to inputs on touch screen display 212 (where the touch-sensitive surface and the display are combined), in some embodiments, the device detects inputs on a touch-sensitive surface that is separate from the display, as shown in FIG. 5B. In some embodiments, the touch-sensitive surface (e.g., 551 in FIG. 5B) has a primary axis (e.g., 552 in FIG. 5B) that corresponds to a primary axis (e.g., 553 in FIG. 5B) on the display (e.g., 550). In accordance with these embodiments, the device detects contacts (e.g., 560 and 562 in FIG. 5B) with the touch-sensitive surface 551 at locations that correspond to respective locations on the display (e.g., in FIG. 5B, 560 corresponds to 568 and 562 corresponds to 570). In this way, user inputs (e.g., contacts 560 and 562, and movements thereof) detected by the device on the touch-sensitive surface (e.g., 551 in FIG. 5B) are used by the device to manipulate the user interface on the display (e.g., 550 in FIG. 5B) of the multifunction device when the touch-sensitive surface is separate from the display. It should be understood that similar methods are, optionally, used for other user interfaces described herein.


Additionally, while the following examples are given primarily with reference to finger inputs (e.g., finger contacts, finger tap gestures, finger swipe gestures), it should be understood that, in some embodiments, one or more of the finger inputs are replaced with input from another input device (e.g., a mouse-based input or stylus input). For example, a swipe gesture is, optionally, replaced with a mouse click (e.g., instead of a contact) followed by movement of the cursor along the path of the swipe (e.g., instead of movement of the contact). As another example, a tap gesture is, optionally, replaced with a mouse click while the cursor is located over the location of the tap gesture (e.g., instead of detection of the contact followed by ceasing to detect the contact). Similarly, when multiple user inputs are simultaneously detected, it should be understood that multiple computer mice are, optionally, used simultaneously, or a mouse and finger contacts are, optionally, used simultaneously.



FIG. 6A illustrates exemplary personal electronic device 600. Device 600 includes body 602. In some embodiments, device 600 includes some or all of the features described with respect to devices 200 and 400 (e.g., FIGS. 2A-4). In some embodiments, device 600 has touch-sensitive display screen 604, hereafter touch screen 604. Alternatively, or in addition to touch screen 604, device 600 has a display and a touch-sensitive surface. As with devices 200 and 400, in some embodiments, touch screen 604 (or the touch-sensitive surface) has one or more intensity sensors for detecting intensity of contacts (e.g., touches) being applied. The one or more intensity sensors of touch screen 604 (or the touch-sensitive surface) provide output data that represents the intensity of touches. The user interface of device 600 responds to touches based on their intensity, meaning that touches of different intensities can invoke different user interface operations on device 600.


Techniques for detecting and processing touch intensity are found, for example, in related applications: International Patent Application Serial No. PCT/US2013/040061, titled “Device, Method, and Graphical User Interface for Displaying User Interface Objects Corresponding to an Application,” filed May 8, 2013, and International Patent Application Serial No. PCT/US2013/069483, titled “Device, Method, and Graphical User Interface for Transitioning Between Touch Input to Display Output Relationships,” filed Nov. 11, 2013, each of which is hereby incorporated by reference in their entirety.


In some embodiments, device 600 has one or more input mechanisms 606 and 608. Input mechanisms 606 and 608, if included, are physical. Examples of physical input mechanisms include push buttons and rotatable mechanisms. In some embodiments, device 600 has one or more attachment mechanisms. Such attachment mechanisms, if included, can permit attachment of device 600 with, for example, hats, eyewear, earrings, necklaces, shirts, jackets, bracelets, watch straps, chains, trousers, belts, shoes, purses, backpacks, and so forth. These attachment mechanisms permit device 600 to be worn by a user.



FIG. 6B depicts exemplary personal electronic device 600. In some embodiments, device 600 includes some or all of the components described with respect to FIGS. 2A, 2B, and 4. Device 600 has bus 612 that operatively couples I/O section 614 with one or more computer processors 616 and memory 618. I/O section 614 is connected to display 604, which can have touch-sensitive component 622 and, optionally, touch-intensity sensitive component 624. In addition, I/O section 614 is connected with communication unit 630 for receiving application and operating system data, using Wi-Fi, Bluetooth, near field communication (NFC), cellular, and/or other wireless communication techniques. Device 600 includes input mechanisms 606 and/or 608. Input mechanism 606 is a rotatable input device or a depressible and rotatable input device, for example. Input mechanism 608 is a button, in some examples.


Input mechanism 608 is a microphone, in some examples. Personal electronic device 600 includes, for example, various sensors, such as GPS sensor 632, accelerometer 634, directional sensor 640 (e.g., compass), gyroscope 636, motion sensor 638, and/or a combination thereof, all of which are operatively connected to I/O section 614.


Memory 618 of personal electronic device 600 is a non-transitory computer-readable storage medium, for storing computer-executable instructions, which, when executed by one or more computer processors 616, for example, cause the computer processors to perform the techniques and processes described below. The computer-executable instructions, for example, are also stored and/or transported within any non-transitory computer-readable storage medium for use by or in connection with an instruction execution system, apparatus, or device, such as a computer-based system, processor-containing system, or other system that can fetch the instructions from the instruction execution system, apparatus, or device and execute the instructions. Personal electronic device 600 is not limited to the components and configuration of FIG. 6B, but can include other or additional components in multiple configurations.


As used here, the term “affordance” refers to a user-interactive graphical user interface object that is, for example, displayed on the display screen of devices 200, 400, 600, and/or 800 (FIGS. 2A, 4, 6A-B, and/or 8A-E). For example, an image (e.g., icon), a button, and text (e.g., hyperlink) each constitutes an affordance.


As used herein, the term “focus selector” refers to an input element that indicates a current part of a user interface with which a user is interacting. In some implementations that include a cursor or other location marker, the cursor acts as a “focus selector” so that when an input (e.g., a press input) is detected on a touch-sensitive surface (e.g., touchpad 455 in FIG. 4 or touch-sensitive surface 551 in FIG. 5B) while the cursor is over a particular user interface element (e.g., a button, window, slider or other user interface element), the particular user interface element is adjusted in accordance with the detected input. In some implementations that include a touch screen display (e.g., touch-sensitive display system 212 in FIG. 2A or touch screen 212 in FIG. 5A) that enables direct interaction with user interface elements on the touch screen display, a detected contact on the touch screen acts as a “focus selector” so that when an input (e.g., a press input by the contact) is detected on the touch screen display at a location of a particular user interface element (e.g., a button, window, slider, or other user interface element), the particular user interface element is adjusted in accordance with the detected input. In some implementations, focus is moved from one region of a user interface to another region of the user interface without corresponding movement of a cursor or movement of a contact on a touch screen display (e.g., by using a tab key or arrow keys to move focus from one button to another button); in these implementations, the focus selector moves in accordance with movement of focus between different regions of the user interface. Without regard to the specific form taken by the focus selector, the focus selector is generally the user interface element (or contact on a touch screen display) that is controlled by the user so as to communicate the user's intended interaction with the user interface (e.g., by indicating, to the device, the element of the user interface with which the user is intending to interact). For example, the location of a focus selector (e.g., a cursor, a contact, or a selection box) over a respective button while a press input is detected on the touch-sensitive surface (e.g., a touchpad or touch screen) will indicate that the user is intending to activate the respective button (as opposed to other user interface elements shown on a display of the device).


As used in the specification and claims, the term “characteristic intensity” of a contact refers to a characteristic of the contact based on one or more intensities of the contact. In some embodiments, the characteristic intensity is based on multiple intensity samples. The characteristic intensity is, optionally, based on a predefined number of intensity samples, or a set of intensity samples collected during a predetermined time period (e.g., 0.05, 0.1, 0.2, 0.5, 1, 2, 5, 10 seconds) relative to a predefined event (e.g., after detecting the contact, prior to detecting liftoff of the contact, before or after detecting a start of movement of the contact, prior to detecting an end of the contact, before or after detecting an increase in intensity of the contact, and/or before or after detecting a decrease in intensity of the contact). A characteristic intensity of a contact is, optionally based on one or more of: a maximum value of the intensities of the contact, a mean value of the intensities of the contact, an average value of the intensities of the contact, a top 10 percentile value of the intensities of the contact, a value at the half maximum of the intensities of the contact, a value at the 90 percent maximum of the intensities of the contact, or the like. In some embodiments, the duration of the contact is used in determining the characteristic intensity (e.g., when the characteristic intensity is an average of the intensity of the contact over time). In some embodiments, the characteristic intensity is compared to a set of one or more intensity thresholds to determine whether an operation has been performed by a user. For example, the set of one or more intensity thresholds includes a first intensity threshold and a second intensity threshold. In this example, a contact with a characteristic intensity that does not exceed the first threshold results in a first operation, a contact with a characteristic intensity that exceeds the first intensity threshold and does not exceed the second intensity threshold results in a second operation, and a contact with a characteristic intensity that exceeds the second threshold results in a third operation. In some embodiments, a comparison between the characteristic intensity and one or more thresholds is used to determine whether or not to perform one or more operations (e.g., whether to perform a respective operation or forgo performing the respective operation) rather than being used to determine whether to perform a first operation or a second operation.


In some embodiments, a portion of a gesture is identified for purposes of determining a characteristic intensity. For example, a touch-sensitive surface receives a continuous swipe contact transitioning from a start location and reaching an end location, at which point the intensity of the contact increases. In this example, the characteristic intensity of the contact at the end location is based on only a portion of the continuous swipe contact, and not the entire swipe contact (e.g., only the portion of the swipe contact at the end location). In some embodiments, a smoothing algorithm is applied to the intensities of the swipe contact prior to determining the characteristic intensity of the contact. For example, the smoothing algorithm optionally includes one or more of: an unweighted sliding-average smoothing algorithm, a triangular smoothing algorithm, a median filter smoothing algorithm, and/or an exponential smoothing algorithm. In some circumstances, these smoothing algorithms eliminate narrow spikes or dips in the intensities of the swipe contact for purposes of determining a characteristic intensity.


The intensity of a contact on the touch-sensitive surface is characterized relative to one or more intensity thresholds, such as a contact-detection intensity threshold, a light press intensity threshold, a deep press intensity threshold, and/or one or more other intensity thresholds. In some embodiments, the light press intensity threshold corresponds to an intensity at which the device will perform operations typically associated with clicking a button of a physical mouse or a trackpad. In some embodiments, the deep press intensity threshold corresponds to an intensity at which the device will perform operations that are different from operations typically associated with clicking a button of a physical mouse or a trackpad. In some embodiments, when a contact is detected with a characteristic intensity below the light press intensity threshold (e.g., and above a nominal contact-detection intensity threshold below which the contact is no longer detected), the device will move a focus selector in accordance with movement of the contact on the touch-sensitive surface without performing an operation associated with the light press intensity threshold or the deep press intensity threshold. Generally, unless otherwise stated, these intensity thresholds are consistent between different sets of user interface figures.


An increase of characteristic intensity of the contact from an intensity below the light press intensity threshold to an intensity between the light press intensity threshold and the deep press intensity threshold is sometimes referred to as a “light press” input. An increase of characteristic intensity of the contact from an intensity below the deep press intensity threshold to an intensity above the deep press intensity threshold is sometimes referred to as a “deep press” input. An increase of characteristic intensity of the contact from an intensity below the contact-detection intensity threshold to an intensity between the contact-detection intensity threshold and the light press intensity threshold is sometimes referred to as detecting the contact on the touch-surface. A decrease of characteristic intensity of the contact from an intensity above the contact-detection intensity threshold to an intensity below the contact-detection intensity threshold is sometimes referred to as detecting liftoff of the contact from the touch-surface. In some embodiments, the contact-detection intensity threshold is zero. In some embodiments, the contact-detection intensity threshold is greater than zero.


In some embodiments described herein, one or more operations are performed in response to detecting a gesture that includes a respective press input or in response to detecting the respective press input performed with a respective contact (or a plurality of contacts), where the respective press input is detected based at least in part on detecting an increase in intensity of the contact (or plurality of contacts) above a press-input intensity threshold. In some embodiments, the respective operation is performed in response to detecting the increase in intensity of the respective contact above the press-input intensity threshold (e.g., a “down stroke” of the respective press input). In some embodiments, the press input includes an increase in intensity of the respective contact above the press-input intensity threshold and a subsequent decrease in intensity of the contact below the press-input intensity threshold, and the respective operation is performed in response to detecting the subsequent decrease in intensity of the respective contact below the press-input threshold (e.g., an “up stroke” of the respective press input).


In some embodiments, the device employs intensity hysteresis to avoid accidental inputs sometimes termed “jitter,” where the device defines or selects a hysteresis intensity threshold with a predefined relationship to the press-input intensity threshold (e.g., the hysteresis intensity threshold is X intensity units lower than the press-input intensity threshold or the hysteresis intensity threshold is 75%, 90%, or some reasonable proportion of the press-input intensity threshold). Thus, in some embodiments, the press input includes an increase in intensity of the respective contact above the press-input intensity threshold and a subsequent decrease in intensity of the contact below the hysteresis intensity threshold that corresponds to the press-input intensity threshold, and the respective operation is performed in response to detecting the subsequent decrease in intensity of the respective contact below the hysteresis intensity threshold (e.g., an “up stroke” of the respective press input). Similarly, in some embodiments, the press input is detected only when the device detects an increase in intensity of the contact from an intensity at or below the hysteresis intensity threshold to an intensity at or above the press-input intensity threshold and, optionally, a subsequent decrease in intensity of the contact to an intensity at or below the hysteresis intensity, and the respective operation is performed in response to detecting the press input (e.g., the increase in intensity of the contact or the decrease in intensity of the contact, depending on the circumstances).


For ease of explanation, the descriptions of operations performed in response to a press input associated with a press-input intensity threshold or in response to a gesture including the press input are, optionally, triggered in response to detecting either: an increase in intensity of a contact above the press-input intensity threshold, an increase in intensity of a contact from an intensity below the hysteresis intensity threshold to an intensity above the press-input intensity threshold, a decrease in intensity of the contact below the press-input intensity threshold, and/or a decrease in intensity of the contact below the hysteresis intensity threshold corresponding to the press-input intensity threshold. Additionally, in examples where an operation is described as being performed in response to detecting a decrease in intensity of a contact below the press-input intensity threshold, the operation is, optionally, performed in response to detecting a decrease in intensity of the contact below a hysteresis intensity threshold corresponding to, and lower than, the press-input intensity threshold.


3. Digital Assistant System



FIG. 7A illustrates a block diagram of digital assistant system 700 in accordance with various examples. In some examples, digital assistant system 700 is implemented on a standalone computer system. In some examples, digital assistant system 700 is distributed across multiple computers. In some examples, some of the modules and functions of the digital assistant are divided into a server portion and a client portion, where the client portion resides on one or more user devices (e.g., devices 104, 122, 200, 400, 600, or 800) and communicates with the server portion (e.g., server system 108) through one or more networks, e.g., as shown in FIG. 1. In some examples, digital assistant system 700 is an implementation of server system 108 (and/or DA server 106) shown in FIG. 1. It should be noted that digital assistant system 700 is only one example of a digital assistant system, and that digital assistant system 700 can have more or fewer components than shown, can combine two or more components, or can have a different configuration or arrangement of the components. The various components shown in FIG. 7A are implemented in hardware, software instructions for execution by one or more processors, firmware, including one or more signal processing and/or application specific integrated circuits, or a combination thereof.


Digital assistant system 700 includes memory 702, one or more processors 704, input/output (I/O) interface 706, and network communications interface 708. These components can communicate with one another over one or more communication buses or signal lines 710.


In some examples, memory 702 includes a non-transitory computer-readable medium, such as high-speed random access memory and/or a non-volatile computer-readable storage medium (e.g., one or more magnetic disk storage devices, flash memory devices, or other non-volatile solid-state memory devices).


In some examples, I/O interface 706 couples input/output devices 716 of digital assistant system 700, such as displays, keyboards, touch screens, and microphones, to user interface module 722. I/O interface 706, in conjunction with user interface module 722, receives user inputs (e.g., voice input, keyboard inputs, touch inputs, etc.) and processes them accordingly. In some examples, e.g., when the digital assistant is implemented on a standalone user device, digital assistant system 700 includes any of the components and I/O communication interfaces described with respect to devices 200, 400, 600, or 800 in FIGS. 2A, 4, 6A-B, 8A-E respectively. In some examples, digital assistant system 700 represents the server portion of a digital assistant implementation, and can interact with the user through a client-side portion residing on a user device (e.g., devices 104, 200, 400, 600, or 800).


In some examples, the network communications interface 708 includes wired communication port(s) 712 and/or wireless transmission and reception circuitry 714. The wired communication port(s) receives and send communication signals via one or more wired interfaces, e.g., Ethernet, Universal Serial Bus (USB), FIREWIRE, etc. The wireless circuitry 714 receives and sends RF signals and/or optical signals from/to communications networks and other communications devices. The wireless communications use any of a plurality of communications standards, protocols, and technologies, such as GSM, EDGE, CDMA, TDMA, Bluetooth, Wi-Fi, VoIP, Wi-MAX, or any other suitable communication protocol. Network communications interface 708 enables communication between digital assistant system 700 with networks, such as the Internet, an intranet, and/or a wireless network, such as a cellular telephone network, a wireless local area network (LAN), and/or a metropolitan area network (MAN), and other devices.


In some examples, memory 702, or the computer-readable storage media of memory 702, stores programs, modules, instructions, and data structures including all or a subset of: operating system 718, communications module 720, user interface module 722, one or more applications 724, and digital assistant module 726. In particular, memory 702, or the computer-readable storage media of memory 702, stores instructions for performing the processes described below. One or more processors 704 execute these programs, modules, and instructions, and reads/writes from/to the data structures.


Operating system 718 (e.g., Darwin, RTXC, LINUX, UNIX, iOS, OS X, WINDOWS, or an embedded operating system such as VxWorks) includes various software components and/or drivers for controlling and managing general system tasks (e.g., memory management, storage device control, power management, etc.) and facilitates communications between various hardware, firmware, and software components.


Communications module 720 facilitates communications between digital assistant system 700 with other devices over network communications interface 708. For example, communications module 720 communicates with RF circuitry 208 of electronic devices such as devices 200, 400, and 600 shown in FIGS. 2A, 4, 6A-B, respectively. Communications module 720 also includes various components for handling data received by wireless circuitry 714 and/or wired communications port 712.


User interface module 722 receives commands and/or inputs from a user via I/O interface 706 (e.g., from a keyboard, touch screen, pointing device, controller, and/or microphone), and generate user interface objects on a display. User interface module 722 also prepares and delivers outputs (e.g., speech, sound, animation, text, icons, vibrations, haptic feedback, light, etc.) to the user via the I/O interface 706 (e.g., through displays, audio channels, speakers, touch-pads, etc.).


Applications 724 include programs and/or modules that are configured to be executed by one or more processors 704. For example, if the digital assistant system is implemented on a standalone user device, applications 724 include user applications, such as games, a calendar application, a navigation application, or an email application. If digital assistant system 700 is implemented on a server, applications 724 include resource management applications, diagnostic applications, or scheduling applications, for example.


Memory 702 also stores digital assistant module 726 (or the server portion of a digital assistant). In some examples, digital assistant module 726 includes the following sub-modules, or a subset or superset thereof: input/output processing module 728, speech-to-text (STT) processing module 730, natural language processing module 732, dialogue flow processing module 734, task flow processing module 736, service processing module 738, and speech synthesis processing module 740. Each of these modules has access to one or more of the following systems or data and models of the digital assistant module 726, or a subset or superset thereof: ontology 760, vocabulary index 744, user data 748, task flow models 754, service models 756, and ASR systems 758.


In some examples, using the processing modules, data, and models implemented in digital assistant module 726, the digital assistant can perform at least some of the following: converting speech input into text; identifying a user's intent expressed in a natural language input received from the user; actively eliciting and obtaining information needed to fully infer the user's intent (e.g., by disambiguating words, games, intentions, etc.); determining the task flow for fulfilling the inferred intent; and executing the task flow to fulfill the inferred intent.


In some examples, as shown in FIG. 7B, I/O processing module 728 interacts with the user through I/O devices 716 in FIG. 7A or with a user device (e.g., devices 104, 200, 400, or 600) through network communications interface 708 in FIG. 7A to obtain user input (e.g., a speech input) and to provide responses (e.g., as speech outputs) to the user input. I/O processing module 728 optionally obtains contextual information associated with the user input from the user device, along with or shortly after the receipt of the user input. The contextual information includes user-specific data, vocabulary, and/or preferences relevant to the user input. In some examples, the contextual information also includes software and hardware states of the user device at the time the user request is received, and/or information related to the surrounding environment of the user at the time that the user request was received. In some examples, I/O processing module 728 also sends follow-up questions to, and receive answers from, the user regarding the user request. When a user request is received by I/O processing module 728 and the user request includes speech input, I/O processing module 728 forwards the speech input to STT processing module 730 (or speech recognizer) for speech-to-text conversions.


STT processing module 730 includes one or more ASR systems 758. The one or more ASR systems 758 can process the speech input that is received through I/O processing module 728 to produce a recognition result. Each ASR system 758 includes a front-end speech pre-processor. The front-end speech pre-processor extracts representative features from the speech input. For example, the front-end speech pre-processor performs a Fourier transform on the speech input to extract spectral features that characterize the speech input as a sequence of representative multi-dimensional vectors. Further, each ASR system 758 includes one or more speech recognition models (e.g., acoustic models and/or language models) and implements one or more speech recognition engines. Examples of speech recognition models include Hidden Markov Models, Gaussian-Mixture Models, Deep Neural Network Models, n-gram language models, and other statistical models. Examples of speech recognition engines include the dynamic time warping based engines and weighted finite-state transducers (WFST) based engines. The one or more speech recognition models and the one or more speech recognition engines are used to process the extracted representative features of the front-end speech pre-processor to produce intermediate recognitions results (e.g., phonemes, phonemic strings, and sub-words), and ultimately, text recognition results (e.g., words, word strings, or sequence of tokens). In some examples, the speech input is processed at least partially by a third-party service or on the user's device (e.g., device 104, 200, 400, or 600) to produce the recognition result. Once STT processing module 730 produces recognition results containing a text string (e.g., words, or sequence of words, or sequence of tokens), the recognition result is passed to natural language processing module 732 for intent deduction. In some examples, STT processing module 730 produces multiple candidate text representations of the speech input. Each candidate text representation is a sequence of words or tokens corresponding to the speech input. In some examples, each candidate text representation is associated with a speech recognition confidence score. Based on the speech recognition confidence scores, STT processing module 730 ranks the candidate text representations and provides the n-best (e.g., n highest ranked) candidate text representation(s) to natural language processing module 732 for intent deduction, where n is a predetermined integer greater than zero. For example, in one example, only the highest ranked (n=1) candidate text representation is passed to natural language processing module 732 for intent deduction. In another example, the five highest ranked (n=5) candidate text representations are passed to natural language processing module 732 for intent deduction.


More details on the speech-to-text processing are described in U.S. Utility application Ser. No. 13/236,942 for “Consolidating Speech Recognition Results,” filed on Sep. 20, 2011, the entire disclosure of which is incorporated herein by reference.


In some examples, STT processing module 730 includes and/or accesses a vocabulary of recognizable words via phonetic alphabet conversion module 731. Each vocabulary word is associated with one or more candidate pronunciations of the word represented in a speech recognition phonetic alphabet. In particular, the vocabulary of recognizable words includes a word that is associated with a plurality of candidate pronunciations. For example, the vocabulary includes the word “tomato” that is associated with the candidate pronunciations of custom character and custom character. Further, vocabulary words are associated with custom candidate pronunciations that are based on previous speech inputs from the user. Such custom candidate pronunciations are stored in STT processing module 730 and are associated with a particular user via the user's profile on the device. In some examples, the candidate pronunciations for words are determined based on the spelling of the word and one or more linguistic and/or phonetic rules. In some examples, the candidate pronunciations are manually generated, e.g., based on known canonical pronunciations.


In some examples, the candidate pronunciations are ranked based on the commonness of the candidate pronunciation. For example, the candidate pronunciation custom character is ranked higher than custom character, because the former is a more commonly used pronunciation (e.g., among all users, for users in a particular geographical region, or for any other appropriate subset of users). In some examples, candidate pronunciations are ranked based on whether the candidate pronunciation is a custom candidate pronunciation associated with the user. For example, custom candidate pronunciations are ranked higher than canonical candidate pronunciations. This can be useful for recognizing proper nouns having a unique pronunciation that deviates from canonical pronunciation. In some examples, candidate pronunciations are associated with one or more speech characteristics, such as geographic origin, nationality, or ethnicity. For example, the candidate pronunciation custom character is associated with the United States, whereas the candidate pronunciation custom character is associated with Great Britain. Further, the rank of the candidate pronunciation is based on one or more characteristics (e.g., geographic origin, nationality, ethnicity, etc.) of the user stored in the user's profile on the device. For example, it can be determined from the user's profile that the user is associated with the United States. Based on the user being associated with the United States, the candidate pronunciation custom character (associated with the United States) is ranked higher than the candidate pronunciation custom character (associated with Great Britain). In some examples, one of the ranked candidate pronunciations is selected as a predicted pronunciation (e.g., the most likely pronunciation).


When a speech input is received, STT processing module 730 is used to determine the phonemes corresponding to the speech input (e.g., using an acoustic model), and then attempt to determine words that match the phonemes (e.g., using a language model). For example, if STT processing module 730 first identifies the sequence of phonemes custom character corresponding to a portion of the speech input, it can then determine, based on vocabulary index 744, that this sequence corresponds to the word “tomato.”


In some examples, STT processing module 730 uses approximate matching techniques to determine words in an utterance. Thus, for example, the STT processing module 730 determines that the sequence of phonemes custom character corresponds to the word “tomato,” even if that particular sequence of phonemes is not one of the candidate sequence of phonemes for that word.


Natural language processing module 732 (“natural language processor”) of the digital assistant takes the n-best candidate text representation(s) (“word sequence(s)” or “token sequence(s)”) generated by STT processing module 730, and attempts to associate each of the candidate text representations with one or more “actionable intents” recognized by the digital assistant. An “actionable intent” (or “user intent”) represents a task that can be performed by the digital assistant, and can have an associated task flow implemented in task flow models 754. The associated task flow is a series of programmed actions and steps that the digital assistant takes in order to perform the task. The scope of a digital assistant's capabilities is dependent on the number and variety of task flows that have been implemented and stored in task flow models 754, or in other words, on the number and variety of “actionable intents” that the digital assistant recognizes. The effectiveness of the digital assistant, however, also dependents on the assistant's ability to infer the correct “actionable intent(s)” from the user request expressed in natural language.


In some examples, in addition to the sequence of words or tokens obtained from STT processing module 730, natural language processing module 732 also receives contextual information associated with the user request, e.g., from I/O processing module 728. The natural language processing module 732 optionally uses the contextual information to clarify, supplement, and/or further define the information contained in the candidate text representations received from STT processing module 730. The contextual information includes, for example, user preferences, hardware, and/or software states of the user device, sensor information collected before, during, or shortly after the user request, prior interactions (e.g., dialogue) between the digital assistant and the user, and the like. As described herein, contextual information is, in some examples, dynamic, and changes with time, location, content of the dialogue, and other factors.


In some examples, the natural language processing is based on, e.g., ontology 760. Ontology 760 is a hierarchical structure containing many nodes, each node representing either an “actionable intent” or a “property” relevant to one or more of the “actionable intents” or other “properties.” As noted above, an “actionable intent” represents a task that the digital assistant is capable of performing, i.e., it is “actionable” or can be acted on. A “property” represents a parameter associated with an actionable intent or a sub-aspect of another property. A linkage between an actionable intent node and a property node in ontology 760 defines how a parameter represented by the property node pertains to the task represented by the actionable intent node.


In some examples, ontology 760 is made up of actionable intent nodes and property nodes. Within ontology 760, each actionable intent node is linked to one or more property nodes either directly or through one or more intermediate property nodes. Similarly, each property node is linked to one or more actionable intent nodes either directly or through one or more intermediate property nodes. For example, as shown in FIG. 7C, ontology 760 includes a “restaurant reservation” node (i.e., an actionable intent node). Property nodes “restaurant,” “date/time” (for the reservation), and “party size” are each directly linked to the actionable intent node (i.e., the “restaurant reservation” node).


In addition, property nodes “cuisine,” “price range,” “phone number,” and “location” are sub-nodes of the property node “restaurant,” and are each linked to the “restaurant reservation” node (i.e., the actionable intent node) through the intermediate property node “restaurant.” For another example, as shown in FIG. 7C, ontology 760 also includes a “set reminder” node (i.e., another actionable intent node). Property nodes “date/time” (for setting the reminder) and “subject” (for the reminder) are each linked to the “set reminder” node. Since the property “date/time” is relevant to both the task of making a restaurant reservation and the task of setting a reminder, the property node “date/time” is linked to both the “restaurant reservation” node and the “set reminder” node in ontology 760.


An actionable intent node, along with its linked property nodes, is described as a “domain.” In the present discussion, each domain is associated with a respective actionable intent, and refers to the group of nodes (and the relationships there between) associated with the particular actionable intent. For example, ontology 760 shown in FIG. 7C includes an example of restaurant reservation domain 762 and an example of reminder domain 764 within ontology 760. The restaurant reservation domain includes the actionable intent node “restaurant reservation,” property nodes “restaurant,” “date/time,” and “party size,” and sub-property nodes “cuisine,” “price range,” “phone number,” and “location.” Reminder domain 764 includes the actionable intent node “set reminder,” and property nodes “subject” and “date/time.” In some examples, ontology 760 is made up of many domains. Each domain shares one or more property nodes with one or more other domains. For example, the “date/time” property node is associated with many different domains (e.g., a scheduling domain, a travel reservation domain, a movie ticket domain, etc.), in addition to restaurant reservation domain 762 and reminder domain 764.


While FIG. 7C illustrates two example domains within ontology 760, other domains include, for example, “find a movie,” “initiate a phone call,” “find directions,” “schedule a meeting,” “send a message,” and “provide an answer to a question,” “read a list,” “providing navigation instructions,” “provide instructions for a task” and so on. A “send a message” domain is associated with a “send a message” actionable intent node, and further includes property nodes such as “recipient(s),” “message type,” and “message body.” The property node “recipient” is further defined, for example, by the sub-property nodes such as “recipient name” and “message address.”


In some examples, ontology 760 includes all the domains (and hence actionable intents) that the digital assistant is capable of understanding and acting upon. In some examples, ontology 760 is modified, such as by adding or removing entire domains or nodes, or by modifying relationships between the nodes within the ontology 760.


In some examples, nodes associated with multiple related actionable intents are clustered under a “super domain” in ontology 760. For example, a “travel” super-domain includes a cluster of property nodes and actionable intent nodes related to travel. The actionable intent nodes related to travel includes “airline reservation,” “hotel reservation,” “car rental,” “get directions,” “find points of interest,” and so on. The actionable intent nodes under the same super domain (e.g., the “travel” super domain) have many property nodes in common. For example, the actionable intent nodes for “airline reservation,” “hotel reservation,” “car rental,” “get directions,” and “find points of interest” share one or more of the property nodes “start location,” “destination,” “departure date/time,” “arrival date/time,” and “party size.”


In some examples, each node in ontology 760 is associated with a set of words and/or phrases that are relevant to the property or actionable intent represented by the node. The respective set of words and/or phrases associated with each node are the so-called “vocabulary” associated with the node. The respective set of words and/or phrases associated with each node are stored in vocabulary index 744 in association with the property or actionable intent represented by the node. For example, returning to FIG. 7B, the vocabulary associated with the node for the property of “restaurant” includes words such as “food,” “drinks,” “cuisine,” “hungry,” “eat,” “pizza,” “fast food,” “meal,” and so on. For another example, the vocabulary associated with the node for the actionable intent of “initiate a phone call” includes words and phrases such as “call,” “phone,” “dial,” “ring,” “call this number,” “make a call to,” and so on. The vocabulary index 744 optionally includes words and phrases in different languages.


Natural language processing module 732 receives the candidate text representations (e.g., text string(s) or token sequence(s)) from STT processing module 730, and for each candidate representation, determines what nodes are implicated by the words in the candidate text representation. In some examples, if a word or phrase in the candidate text representation is found to be associated with one or more nodes in ontology 760 (via vocabulary index 744), the word or phrase “triggers” or “activates” those nodes. Based on the quantity and/or relative importance of the activated nodes, natural language processing module 732 selects one of the actionable intents as the task that the user intended the digital assistant to perform. In some examples, the domain that has the most “triggered” nodes is selected. In some examples, the domain having the highest confidence value (e.g., based on the relative importance of its various triggered nodes) is selected. In some examples, the domain is selected based on a combination of the number and the importance of the triggered nodes. In some examples, additional factors are considered in selecting the node as well, such as whether the digital assistant has previously correctly interpreted a similar request from a user.


User data 748 includes user-specific information, such as user-specific vocabulary, user preferences, user address, user's default and secondary languages, user's contact list, and other short-term or long-term information for each user. In some examples, natural language processing module 732 uses the user-specific information to supplement the information contained in the user input to further define the user intent. For example, for a user request “invite my friends to my birthday party,” natural language processing module 732 is able to access user data 748 to determine who the “friends” are and when and where the “birthday party” would be held, rather than requiring the user to provide such information explicitly in his/her request.


It should be recognized that in some examples, natural language processing module 732 is implemented using one or more machine learning mechanisms (e.g., neural networks). In particular, the one or more machine learning mechanisms are configured to receive a candidate text representation and contextual information associated with the candidate text representation. Based on the candidate text representation and the associated contextual information, the one or more machine learning mechanisms are configured to determine intent confidence scores over a set of candidate actionable intents. Natural language processing module 732 can select one or more candidate actionable intents from the set of candidate actionable intents based on the determined intent confidence scores. In some examples, an ontology (e.g., ontology 760) is also used to select the one or more candidate actionable intents from the set of candidate actionable intents.


Other details of searching an ontology based on a token string are described in U.S. Utility application Ser. No. 12/341,743 for “Method and Apparatus for Searching Using An Active Ontology,” filed Dec. 22, 2008, the entire disclosure of which is incorporated herein by reference.


In some examples, once natural language processing module 732 identifies an actionable intent (or domain) based on the user request, natural language processing module 732 generates a structured query to represent the identified actionable intent. In some examples, the structured query includes parameters for one or more nodes within the domain for the actionable intent, and at least some of the parameters are populated with the specific information and requirements specified in the user request. For example, the user says “Make me a dinner reservation at a sushi place at 7.” In this case, natural language processing module 732 is able to correctly identify the actionable intent to be “restaurant reservation” based on the user input. According to the ontology, a structured query for a “restaurant reservation” domain includes parameters such as {Cuisine}, {Time}, {Date}, {Party Size}, and the like. In some examples, based on the speech input and the text derived from the speech input using STT processing module 730, natural language processing module 732 generates a partial structured query for the restaurant reservation domain, where the partial structured query includes the parameters {Cuisine=“Sushi”} and {Time=“7 pm”}. However, in this example, the user's utterance contains insufficient information to complete the structured query associated with the domain. Therefore, other necessary parameters such as {Party Size} and {Date} are not specified in the structured query based on the information currently available. In some examples, natural language processing module 732 populates some parameters of the structured query with received contextual information. For example, in some examples, if the user requested a sushi restaurant “near me,” natural language processing module 732 populates a {location} parameter in the structured query with GPS coordinates from the user device.


In some examples, natural language processing module 732 identifies multiple candidate actionable intents for each candidate text representation received from STT processing module 730. Further, in some examples, a respective structured query (partial or complete) is generated for each identified candidate actionable intent. Natural language processing module 732 determines an intent confidence score for each candidate actionable intent and ranks the candidate actionable intents based on the intent confidence scores. In some examples, natural language processing module 732 passes the generated structured query (or queries), including any completed parameters, to task flow processing module 736 (“task flow processor”). In some examples, the structured query (or queries) for the m-best (e.g., m highest ranked) candidate actionable intents are provided to task flow processing module 736, where m is a predetermined integer greater than zero. In some examples, the structured query (or queries) for the m-best candidate actionable intents are provided to task flow processing module 736 with the corresponding candidate text representation(s).


Other details of inferring a user intent based on multiple candidate actionable intents determined from multiple candidate text representations of a speech input are described in U.S. Utility application Ser. No. 14/298,725 for “System and Method for Inferring User Intent From Speech Inputs,” filed Jun. 6, 2014, the entire disclosure of which is incorporated herein by reference.


Task flow processing module 736 is configured to receive the structured query (or queries) from natural language processing module 732, complete the structured query, if necessary, and perform the actions required to “complete” the user's ultimate request. In some examples, the various procedures necessary to complete these tasks are provided in task flow models 754. In some examples, task flow models 754 include procedures for obtaining additional information from the user and task flows for performing actions associated with the actionable intent.


As described above, in order to complete a structured query, task flow processing module 736 needs to initiate additional dialogue with the user in order to obtain additional information, and/or disambiguate potentially ambiguous utterances. When such interactions are necessary, task flow processing module 736 invokes dialogue flow processing module 734 to engage in a dialogue with the user. In some examples, dialogue flow processing module 734 determines how (and/or when) to ask the user for the additional information and receives and processes the user responses. The questions are provided to and answers are received from the users through/O processing module 728. In some examples, dialogue flow processing module 734 presents dialogue output to the user via audio and/or visual output, and receives input from the user via spoken or physical (e.g., clicking) responses. Continuing with the example above, when task flow processing module 736 invokes dialogue flow processing module 734 to determine the “party size” and “date” information for the structured query associated with the domain “restaurant reservation,” dialogue flow processing module 734 generates questions such as “For how many people?” and “On which day?” to pass to the user. Once answers are received from the user, dialogue flow processing module 734 then populates the structured query with the missing information, or pass the information to task flow processing module 736 to complete the missing information from the structured query.


Once task flow processing module 736 has completed the structured query for an actionable intent, task flow processing module 736 proceeds to perform the ultimate task associated with the actionable intent. Accordingly, task flow processing module 736 executes the steps and instructions in the task flow model according to the specific parameters contained in the structured query. For example, the task flow model for the actionable intent of “restaurant reservation” includes steps and instructions for contacting a restaurant and actually requesting a reservation for a particular party size at a particular time. For example, using a structured query such as: {restaurant reservation, restaurant=ABC Café, date=3/12/2012, time=7 pm, party size=5}, task flow processing module 736 performs the steps of: (1) logging onto a server of the ABC Café or a restaurant reservation system such as OPENTABLE®, (2) entering the date, time, and party size information in a form on the website, (3) submitting the form, and (4) making a calendar entry for the reservation in the user's calendar.


In some examples, task flow processing module 736 employs the assistance of service processing module 738 (“service processing module”) to complete a task requested in the user input or to provide an informational answer requested in the user input. For example, service processing module 738 acts on behalf of task flow processing module 736 to make a phone call, set a calendar entry, invoke a map search, invoke or interact with other user applications installed on the user device, and invoke or interact with third-party services (e.g., a restaurant reservation portal, a social networking website, a banking portal, etc.). In some examples, the protocols and application programming interfaces (API) required by each service are specified by a respective service model among service models 756. Service processing module 738 accesses the appropriate service model for a service and generates requests for the service in accordance with the protocols and APIs required by the service according to the service model.


For example, if a restaurant has enabled an online reservation service, the restaurant submits a service model specifying the necessary parameters for making a reservation and the APIs for communicating the values of the necessary parameter to the online reservation service. When requested by task flow processing module 736, service processing module 738 establishes a network connection with the online reservation service using the web address stored in the service model, and sends the necessary parameters of the reservation (e.g., time, date, party size) to the online reservation interface in a format according to the API of the online reservation service.


In some examples, natural language processing module 732, dialogue flow processing module 734, and task flow processing module 736 are used collectively and iteratively to infer and define the user's intent, obtain information to further clarify and refine the user intent, and finally generate a response (i.e., an output to the user, or the completion of a task) to fulfill the user's intent. The generated response is a dialogue response to the speech input that at least partially fulfills the user's intent. Further, in some examples, the generated response is output as a speech output. In these examples, the generated response is sent to speech synthesis processing module 740 (e.g., speech synthesizer) where it can be processed to synthesize the dialogue response in speech form. In yet other examples, the generated response is data content relevant to satisfying a user request in the speech input.


In examples where task flow processing module 736 receives multiple structured queries from natural language processing module 732, task flow processing module 736 initially processes the first structured query of the received structured queries to attempt to complete the first structured query and/or execute one or more tasks or actions represented by the first structured query. In some examples, the first structured query corresponds to the highest ranked actionable intent. In other examples, the first structured query is selected from the received structured queries based on a combination of the corresponding speech recognition confidence scores and the corresponding intent confidence scores. In some examples, if task flow processing module 736 encounters an error during processing of the first structured query (e.g., due to an inability to determine a necessary parameter), the task flow processing module 736 can proceed to select and process a second structured query of the received structured queries that corresponds to a lower ranked actionable intent. The second structured query is selected, for example, based on the speech recognition confidence score of the corresponding candidate text representation, the intent confidence score of the corresponding candidate actionable intent, a missing necessary parameter in the first structured query, or any combination thereof.


Speech synthesis processing module 740 is configured to synthesize speech outputs for presentation to the user. Speech synthesis processing module 740 synthesizes speech outputs based on text provided by the digital assistant. For example, the generated dialogue response is in the form of a text string. Speech synthesis processing module 740 converts the text string to an audible speech output. Speech synthesis processing module 740 uses any appropriate speech synthesis technique in order to generate speech outputs from text, including, but not limited, to concatenative synthesis, unit selection synthesis, diphone synthesis, domain-specific synthesis, formant synthesis, articulatory synthesis, hidden Markov model (HMM) based synthesis, and sinewave synthesis. In some examples, speech synthesis processing module 740 is configured to synthesize individual words based on phonemic strings corresponding to the words. For example, a phonemic string is associated with a word in the generated dialogue response. The phonemic string is stored in metadata associated with the word. Speech synthesis processing module 740 is configured to directly process the phonemic string in the metadata to synthesize the word in speech form.


In some examples, instead of (or in addition to) using speech synthesis processing module 740, speech synthesis is performed on a remote device (e.g., the server system 108), and the synthesized speech is sent to the user device for output to the user. For example, this can occur in some implementations where outputs for a digital assistant are generated at a server system. And because server systems generally have more processing power or resources than a user device, it is possible to obtain higher quality speech outputs than would be practical with client-side synthesis.


Additional details on digital assistants can be found in the U.S. Utility application Ser. No. 12/987,982, entitled “Intelligent Automated Assistant,” filed Jan. 10, 2011, and U.S. Utility application Ser. No. 13/251,088, entitled “Generating and Processing Task Items That Represent Tasks to Perform,” filed Sep. 30, 2011, the entire disclosures of which are incorporated herein by reference.


4. Exemplary Techniques for Initiating and Deactivating a Virtual Assistant



FIGS. 8A-D illustrate exemplary techniques for initiating a virtual assistant at an electronic device based on audio input and input representing motion of the electronic device.



FIG. 8A illustrates electronic device 800 of user 802. In some examples, device 800 is one of devices 104, 106, 200, 400, or 600. In some examples, as illustrated, device 800 is a wearable electronic device such as a smart watch. In other examples, device 800 is a computer, a set top box, a speaker, a phone, or a combination of any of the aforementioned devices.


Electronic device 800 is in a dropped pose in FIG. 8A. As discussed below, in some examples, user 802 lifts device 800 from a dropped pose and provides audio input to initiate a virtual assistant session at device 800 and to cause the initiated virtual assistant session to respond to the audio input.


A dropped pose is a pose of a plurality of poses (e.g., dropped, raising, raised, and dropping) of an electronic device. FIG. 8B shows device 800 in a raising pose, FIGS. 8C-E show device 800 in a raised pose, and FIG. 8F shows device 800 in a dropping pose. However, it is to be understood that poses of device 800 shown in FIGS. 8A-F are merely exemplary. That is, dropped, raising, raised, and dropping poses of an electronic device may each be respectively different from the dropped, raising, raised, and dropping poses shown in FIGS. 8A-F. Similarly, the transitions of an electronic device between poses illustrated in FIGS. 8A-F are also merely exemplary. Exemplary techniques for determining a pose of an electronic device and determining transitions between poses are discussed with respect to FIG. 9 below.


In the present example, because electronic device 800 is on the wrist of user 802 and the wrist of user 802 is lowered as shown, electronic device 800 is in a dropped pose. But as discussed, in some examples, a dropped pose of an electronic device is different from the illustrated dropped pose. For example, if user 802 is wearing device 800 on his wrist and user 802 is typing with his hands on a keyboard, device 800 is in a dropped pose. As another example, if user 802 is wearing device 800 on his wrist and user 802 is lying down with his wrist to the side (e.g., at hip level), device 800 is in a dropped pose. Accordingly, in some examples, device 800 is in a dropped pose if it is not being lifted towards or away from user 802's mouth and/or is positioned away from a user 802's mouth (e.g., positioned more than 0.5, 1, 1.5, or 2 feet away, positioned a length of user 802's arm away, etc.).


In some examples, as shown in FIG. 8A, device 800 has a display 804 (e.g., a touch screen). User 802 is unlikely to be looking at display 804 or providing spoken requests when device 800 is in a dropped pose. Accordingly, in some examples, because device 800 is in a dropped pose, display 804 is powered off (e.g., not displaying). In some examples, because display 804 is powered off, or one or more microphones of device 800 are in turn powered off (e.g., not sampling audio input). In this way, battery power is conserved by powering off device components unlikely to be used in the current device pose. However, in other examples, display 804 and/or one or more microphones of device 800 are powered on even when device 800 is in a dropped pose.


In FIG. 8B, user 802 lifts device 800 from a dropped pose to a raising pose (e.g., user 802 lifts his wrist towards his mouth). As discussed below, in some examples, such lifting causes display 804 and one or more microphones of device 800 to be powered on. Powering on one or more microphones thus enables sampling of audio input (e.g., audio input 806 “What's the weather like in Palo Alto?” discussed below with respect to FIG. 8C). As further discussed below, in some examples, a virtual assistant session is initiated based on provided device motion and audio input 806 and a response to audio input 806 is provided by the initiated virtual assistant session.


In some examples, while motion of a device is provided, the device detects input representing its motion, referred to herein as motion input. In some examples, the motion input is detected by one or more motion sensors of the device. The one or more motion sensors include any sensor(s) capable of detecting motion input, such as one or more accelerometers, one or more gyroscopes, one or more cameras, one or more proximity sensors, one or more ultrasonic sensors, one or more microwave motion sensors, and the like.


In some examples, detecting motion input of a device includes sampling the motion input using a first processor. In some examples, the first processor is a low-power processor of the device that is separate from a main processor of the device. Accordingly, in some examples, the first processor is able to continuously sample motion input (e.g., from one or more gyroscopes and/or accelerometers) without significantly compromising battery life. For example, the first processor continually samples motion input by writing the motion input into a memory buffer (e.g., a ring buffer).


In some examples, an electronic device samples audio input using one or more microphones of the electronic device. In some examples, the one or more microphones continuously sample audio input. In some examples, the one or more microphones sample audio input in accordance with being powered on according to the techniques described herein.


In some examples, audio input is sampled while detecting at least a portion of the motion input. For example, as shown in FIG. 8C, device 800 samples audio input 806 “What's the weather like in Palo Alto?” while detecting motion input (e.g., using one or more accelerometers and/or one or more gyroscopes). Although the present example shows user 802 providing audio input after lifting device 800 (e.g., FIG. 8C), in some examples, user 802 provides audio input 806 while lifting device 800 (e.g., FIG. 8B) or before lifting device 800 (e.g., FIG. 8A).


In some examples, sampling audio input at a device includes sampling the audio input using the first processor of the device (e.g., the same processor that samples motion input of the device). For example, the first processor is able to continuously sample audio input (e.g., from one or more microphones) by writing audio input into a memory buffer (e.g., a ring buffer).


In some examples, sampling audio input at a device includes sampling the audio input using a second processor. In some examples, the second processor is the main processor (e.g., an application processor) of the device.


In some examples, the second processor is activated based on at least a portion of the motion input. In some examples, the portion of the motion input represents a wrist raise and/or a wrist rotation gesture. For example, as user 802 lifts device 800 from a dropped pose to a raising pose, user 802 performs a wrist raise gesture. The first processor of device 800 detects the wrist raise gesture and activates the second processor which then samples audio input 806 “What's the weather like in Palo Alto?” Exemplary techniques for determining a wrist raise and/or wrist rotation gesture are described in U.S. patent application Ser. No. 14/796,675, titled “Raise Gesture Detection in a Device,” filed Jul. 10, 2015, the content of which is hereby incorporated by reference in its entirety.


In some examples, activating the second processor includes causing the second processor to exit a low-power mode. In some examples, the second processor is in a low-power mode if it is constrained in the number or type of operations it can perform while operating in the low-power mode. In some examples, the second processor is in a low-power mode if it is operating with some of the processor circuitry disabled. In some examples, the second processor is in a low-power mode if it is operating at a reduced clock speed, reduced voltage, or reduced current relative to values when the second processor is operating in a normal mode. In some examples, the second processor must exit the low-power mode to provide certain functionality, such as launching or executing applications, operating a virtual assistant, and/or sampling audio input.


In some examples, as shown in FIG. 8B, display 804 is powered on based on at least a portion of the motion input of device 800. In some examples, the portion of the motion input represents a wrist raise gesture and/or a wrist rotation gesture. For example, as user 802 lifts device 800 from a dropped to raising pose, user 802 performs a wrist raise and/or a wrist rotation gesture. Device 800 (e.g., the first processor) determines the wrist raise and/or wrist rotation gesture based on the motion input, and then causes display 804 to be powered on. For example, display 804 displays a user interface including a current time of 12:45.


In some examples, powering on display 804 causes one or more microphones of device 800 to be powered on. Accordingly, in some examples, audio input 806 is sampled in accordance with powering on display 804. For example, after user 802 initiates a wrist raise gesture, device 800 powers on display 804 and one or more microphones and samples audio input 806 “What's the weather like in Palo Alto?” using the one or more microphones. Although powering on display 804 (and thus powering on or more microphones) is described in some examples as being based on motion input, in other examples, powering on display 804 is based on input other than, or in addition to, motion input. For example, powering on display 804 is based on tactile input (e.g., a touch on display 804, a press of a button on device 800) or audio input (e.g., receiving an audio input of sufficient amplitude), in some examples.


As an example of the above described techniques, the first processor of device 800 continuously samples motion input and detects motion input representing a wrist raise and/or wrist rotation gesture of device 800. Responsive to detecting the motion input representing the wrist raise and/or wrist rotation gesture, display 804 and one or more microphones of device 800 are powered on and the first processor activates the second processor. The second processor samples audio input (e.g., “What's the weather like in Palo Alto?”) using the one or more microphones. In this way, display 804, the one or more microphones, and the second processor of device 800 are powered off (or in a low-power mode) when user 802 is unlikely to issue voice commands (e.g., when device 800 is in a dropped pose), thus conserving battery power.


In FIG. 8C, user 802 lifts device 800 into a raised pose, as shown. For example, user 802 lifts (e.g., lifts from a raising pose) device 800 near his mouth. In some examples, device 800 is relatively stable in a raised pose (e.g., because user 802 is no longer lifting device 800). As discussed, device 800 also samples audio input 806 “What's the weather like in Palo Alto?” provided by user 802 (e.g., provided by user 802 shortly after lifting device 800 into a raised pose). Device 800 determines whether to initiate a virtual assistant session based on audio input 806 and based on the motion input according to the exemplary techniques discussed below. If device 800 determines to initiate a virtual assistant session, a virtual assistant session is initiated (e.g., by displaying a virtual assistant user interface on display 804), as shown.


In some examples, sampled audio input does not include a spoken trigger. For example, audio input 806 “What's the weather like in Palo Alto?” does not include a spoken trigger for initiating a virtual assistant such as “Hey Siri.” Accordingly, in some examples, a user simply utters a request to a virtual assistant (e.g., while lifting a device, or shortly before or after lifting a device) to cause the virtual assistant to initiate and respond to the user request.


In some examples, determining whether to initiate a virtual assistant session includes determining whether one or more criteria for initiating a virtual assistant session are satisfied. In some examples, determining whether to initiate a virtual assistant session includes determining a probability of initiating a virtual assistant session. For example, if a criterion for initiating a virtual assistant session is satisfied, a probability of initiating a virtual assistant session is increased. If a criterion for initiating a virtual assistant is not satisfied, the probability of initiating a virtual assistant session is decreased. In some examples, a determination is made to initiate a virtual assistant session if the probability of initiating the virtual assistant session is greater than a predetermined threshold and/or if one or more criteria for initiating the virtual assistant session are satisfied.


In some examples, one or more of the above determinations are made by a motion model, by an audio model, and/or by a virtual assistant initiation model (e.g., a raise to speak model). For example, a motion model determines, based on motion input, a probability of initiating a virtual assistant session and makes a determination to initiate the virtual assistant session. An audio model determines, based on audio input, a probability of initiating a virtual assistant session and makes a determination to initiate the virtual assistant session. An exemplary motion model, an exemplary audio model, and exemplary virtual assistant initiation model are discussed with respect to FIG. 9 below.


In some examples, respective probabilities and respective determinations to initiate the virtual assistant session determined by the motion model and the audio model are separate from each other. Accordingly, in some examples, a virtual assistant session is initiated responsive to both the motion model and the audio model determining to initiate the virtual assistant session. In other examples, a virtual assistant session is initiated responsive to one of the motion model or the audio model determining to initiate the virtual assistant session. In this way, two separate determinations (e.g., one based on motion input and one based on audio input) are used to initiate a virtual assistant session, in some examples.


Exemplary criteria for initiating a virtual assistant session are discussed below.


An exemplary criterion includes whether an electronic device transitions between two or more poses. An exemplary transition is from a raising pose to a raised pose, as illustrated in FIGS. 8B and 8C. In some examples, if a transition from a raising pose to a raised pose is determined, a criterion is satisfied. In some examples, if a transition from a raising pose to a raise pose is not determined, a criterion is not satisfied. In this way, detecting a transition from a raising pose to a raised pose (e.g., an arm/wrist movement to bring the device close to a user's mouth) may be an important criterion in determining whether to initiate a virtual assistant session.


Another exemplary transition is from a raised to a dropping pose. An exemplary dropping pose of an electronic device is illustrated in FIG. 8E. In some examples, if a transition from a raised pose to a dropping pose is determined, a criterion is not satisfied. In this way, if the motion of device 800 includes the dropping of the user's wrist, for example, a virtual assistant is not initiated in some examples.


An exemplary criterion includes whether the respective times of transitions between poses are within a predetermined duration. For example, a first time of a transition from a raising pose to a raised pose is determined (e.g., when device 800 first enters a raised pose from a raising pose) and a second time of a transition from a raised pose to a dropping pose is determined (e.g., when device first enters a dropping pose from a raised pose). If the first time is within a predetermined duration (e.g., 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.5, 2 seconds) of the second time, a criterion is not satisfied. If the first time is not within the predetermined duration, a criterion is satisfied. In this way, if the duration between a raising to raised pose transition and a raised to dropped pose transition is relatively short, a virtual assistant session is not initiated. This, in some examples, prevents inadvertent virtual assistant initiation due to motions including raising to raised to dropping pose transitions (e.g., running, arm exercises, etc.). It will be appreciated that comparing the respective times of transitions between any poses in this manner is consistent with the teachings herein.


Exemplary criteria also include respective durations of poses. For example, a duration of a raised pose is determined and compared to a predetermined duration (e.g., 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.5, 2 seconds). In some examples, if the raised pose duration exceeds the predetermined duration, a criterion is satisfied. In some examples, if the raise posed duration does not exceed the predetermined duration, a criterion is not satisfied. In this way, the stability of the electronic device in a raised pose is considered when determining whether to initiate the virtual assistant session (e.g., when user 802 raises device 800 near his or her mouth and provides a request, the device is likely to remain in the raised pose for greater than some predetermined duration). Although the above discussion focuses on the duration of a raised pose, in some examples, the duration of any pose (e.g., dropped, raising, raised, dropping) is considered in a similar manner.


Exemplary criteria also include respective durations of transitions between poses. For example, a duration of a raising to raised pose transition is determined and compared to a predetermined duration (e.g., 1 second, 2 seconds, 5 seconds). If the duration of a raising to raised pose transition exceeds the predetermined duration, a criterion is not satisfied. If the duration of a raising to raised pose transition does not exceed the predetermined duration, a criterion is satisfied. Comparing the duration of a raising to raised pose transition to a predetermined duration in this manner can ensure that raising to raised pose transitions of an appropriate duration initiate the virtual assistant session. For example, if user 802 takes too long (e.g., 3, 4, 5, 6, 7, 8, 9, 10 seconds) to raise device 800 from the raising to raised pose, the user may be unlikely to be raising device 800 to issue a command, so the virtual assistant session is not initiated. Although the above discussion focuses on the duration of a raising to raised pose transition, in some examples, the duration of the transition between any two poses (e.g., dropped to raising, dropped to raised) is considered in an analogous manner.


An exemplary criterion also includes whether audio input includes human speech. For example, a determination is made as to whether the audio input includes human speech. If the audio input includes human speech, a criterion is satisfied. If the audio input does not include human speech, a criterion is not satisfied. In this way, inadvertent initiation of a virtual assistant session responsive to receiving audio input that does not include human speech (e.g., background noise) may be avoided. For example, if user 802 is in a noisy environment and lifts device 800 from a raising to raised pose (e.g., to check the time, respond to a message, etc.) without issuing a spoken request to device 800, a virtual assistant may not inadvertently initiate.


In some examples, determining whether audio input includes human speech includes performing frequency domain analysis of the audio input. For example, a spectrogram of the audio input is generated (e.g., using a Fourier Transform) and the spectral components of the audio input are analyzed to determine whether at least a portion of the audio input corresponds to human speech. It will be appreciated that, in some examples, any suitable technique for determining whether an audio input includes human speech is employed consistent with the teachings herein.


An exemplary criterion includes whether audio input includes human speech spoken by an authorized user of a device. In some examples, the authorized user is a user that is closely associated with the device sampling the audio input (e.g., the owner or predominant user of the device). In some examples, the authorized user is one of a limited set of enrolled users sharing the user device. A determination whether audio input includes human speech spoken by an authorized user is made. If the audio input includes human speech spoken by an authorized user of the device, a criterion is satisfied. If the audio input does not include human speech spoken by an authorized user of the device, a criterion is not satisfied. In this way, inadvertent activation of a virtual assistant session responsive to receiving audio input that does not include speech of an authorized user may be prevented. For example, if authorized user 802 is in an environment including background speech (e.g., babble noise) and lifts device 800 from a raising to raised pose (e.g., to check the time, respond to a message, etc.) without issuing a spoken request to device 800, a virtual assistant may not inadvertently initiate.


In some examples, determining whether audio input includes human speech spoken by an authorized user includes performing speech authentication. For example, the features of the audio input are compared to those of one or more speech models (e.g., Gaussian Mixture models, Hidden Markov models, neural networks, and the like). In some examples, the one or more speech models include a predetermined universal background model and a predetermined speech model of an authorized user. In some examples, the predetermined speech model of the authorized user is based on speech of the authorized user (e.g., speech of the authorized user received before sampling the audio input). It will be appreciated that, in some examples, any suitable technique for determining whether an audio input includes human speech spoken by an authorized user is employed consistent with the teachings herein.


An exemplary criterion includes a direction associated with audio input. For example, a direction associated with the audio input is determined. If the audio input has a direction towards the device (e.g., towards one or more microphones or towards a screen of the device), a criterion is satisfied. If the audio input has a direction away from the device (e.g., away from one or more microphones or away from a screen of the device), a criterion is not satisfied. In this way, inadvertent virtual assistant activation responsive to receiving audio input not directed towards the device (e.g., from originating another person standing next to user 802) may be prevented. It will be appreciated that, in some examples, any suitable technique for sound localization (e.g., beamforming) are employed consistent with the teachings herein.


An exemplary criterion includes a proximity of audio input from an electronic device. For example, a proximity of the audio input from an electronic device is determined and compared to a threshold proximity (e.g., 2 cm, 5 cm, 10 cm, 15 cm, or 20 cm). If the determined proximity is less than or equal to the threshold proximity, a criterion is satisfied. If the determined proximity is greater than the threshold proximity, a criterion is not satisfied. In this way, audio input originating from a source close to the device is considered as an indication to initiate the virtual assistant session. Audio input originating from a source not close to the device (e.g., from another person not within the threshold proximity of device 800) may not inadvertently initiate a virtual assistant session.


In some examples, determining proximity of the audio input from an electronic device is based on the amplitude of the audio input. In some examples, the amplitude of the audio input within a particular spectral range (e.g., a frequency range characteristic of human speech) is analyzed in determining the proximity of the audio input. In some examples, determining proximity of the audio input is, alternatively or additionally, based on other acoustic features of the audio input. For example, audio inputs originating from further sources often include a greater degree of echoing than audio inputs originating from closer sources. Accordingly, in some examples, audio inputs are analyzed to determine a degree of echoing to determine the proximity of the audio input.


An exemplary criterion includes a duration of audio input. For example, a duration of audio input is determined and compared to a predetermined duration (e.g., 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.5, 2 seconds). In some examples, the duration of audio input is the duration during which the audio input is within a predetermined amplitude and/or frequency range (e.g., an amplitude and/or frequency range typical of human speech and sounds). If a duration of audio input is greater than the predetermined duration, a criterion is satisfied. If a duration of audio input is less than the predetermined duration, a criterion is not satisfied. In this way, too short of an audio input (e.g., that is unlikely to be a spoken request) does not initiate the virtual assistant session in some examples. For example, if user 802 lifts device 800 from a raising to raised pose to cover his or her mouth while coughing or sneezing (e.g., a short audio input), the cough or sneeze does not inadvertently initiate a virtual assistant.


An exemplary criterion is based on the respective times associated with sampling audio input and a transition between poses. For example, an exemplary criterion includes whether the respective times associated with sampling audio input and a transition between poses are within a predetermined duration. For example, the audio input is sampled at a first time (e.g., the time device 800 samples the input 806 “What's the weather like in Palo Alto?”) and the transition of the device from a raising to raised pose has a second time (e.g., the time user 802 lifts device 800 into the pose shown in FIG. 8C). If the first time is within a predetermined duration (e.g., 0.5 seconds, 1 second, 1.5 seconds, 2 seconds, 5 seconds) of the second time, a criterion is satisfied. If the first time is not within a predetermined duration of the second time, a criterion is not satisfied. In this way, audio input sampled within an appropriate duration of detecting a raising to raised transition is considered as an indication to initiate a virtual assistant. In some examples, this prevents inadvertent virtual assistant activation based on motion and audio input not respectively provided at approximately a same time. For example, if user 802 lifts device 800 from the raising to raised pose and then provides audio input long after such lifting, the audio input is unlikely to be directed to device 800.


An exemplary criterion includes whether respective times of separate determinations to initiate the virtual assistant session are within a predetermined duration. For example, separate first and second determinations to initiate the virtual assistant session are respectively made at first and second times (e.g., respective times at which one or more criteria for initiating a virtual assistant session are satisfied). In some examples, a motion model makes the first determination and the audio model makes the second determination (recall that motion and audio models make respective determinations to initiate the virtual assistant session, in some examples). If the first time is within a predetermined duration (e.g., 0.5 seconds, 1 second, 1.5 seconds, 2 seconds, 5 seconds) of the second time, a criterion is satisfied. If the first time is not within the predetermined duration of the second time, a criterion is not satisfied.


Accordingly, in some examples, initiating a virtual assistant session is based on detecting synchronous or approximately synchronous motion and audio input appropriate for initiating the virtual assistant session. Thus, inadvertent initiation based on motion input alone and/or audio input alone may be prevented, despite that the motion input and/or audio input may each be appropriate for (e.g., respectively satisfy one or more criteria for) initiating the virtual assistant. Providing virtual assistant activation in this manner thus provides an efficient and intuitive way of initiating a virtual assistant session while reducing the chance of false initiation. For example, as shown in FIGS. 8A-C, to initiate the virtual assistant session on device 800, user 802 lifts device 800 through the illustrated poses and provides audio input 806 “What's the weather like in Palo Alto?” shortly after lifting device 800 (or while or shortly before lifting device 800).


In some examples, determining whether to initiate a virtual assistant session is based on input other than, or in addition to, the above described motion and audio input. For example, it is determined whether these other inputs satisfy one or more criteria for initiating a virtual assistant session. Analogous to the techniques discussed above, in some examples, a probability for initiating a virtual assistant session is determined based on whether the one or more criteria are satisfied. In some examples, a determination to initiate a virtual assistant session is made if the probability exceeds a threshold. In some examples, a model for initiating a virtual assistant session (e.g., a raise to speak model) makes one or more of these determinations. An exemplary model for initiating a virtual assistant session is discussed below with respect to FIG. 9.


In some examples, an electronic device includes one or more light sensors (e.g., an ambient light sensor, a camera, and the like) on a front and/or on a back surface of the device. An amount of light detected by the light sensor is compared to a threshold. If the amount of light is greater than a threshold, a criterion for initiating the virtual assistant is not satisfied. If the amount of light is less than a threshold, a criterion for initiating the virtual assistant is satisfied. For example, when user 802 lifts device 800 to a raised pose to speak to it, a front surface (e.g., the surface of display 804) of device 800 is closer to the user's lips. Accordingly, a front facing light sensor of device 800 detects a lesser amount of light (e.g., less than the predetermined threshold) compared to if device 800 were in a dropped pose (e.g., FIG. 8A). In this way, a lesser amount of light (e.g., indicating that a device is closer to a user's face) is considered as an indication to initiate a virtual assistant session.


In some examples, an electronic device includes one or more color sensors (e.g., a camera, any suitable RGB color sensor) on a front and/or on a back surface of the device. Color(s) detected by the one or more color sensors are compared to predetermined color(s) (e.g., colors of human skin, human lips, and the like). If the detected colors match the predetermined colors (e.g., within a predetermined wavelength), a criterion for initiating a virtual assistant is satisfied. If the detected colors do not match the predetermined colors, a criterion for initiating a virtual assistant session is not satisfied. For example, when user 802 lifts device 800 to a raised pose to speak to it, a front surface of device 800 is close to the user's lips. Accordingly, a front facing color sensor of device 800 detects color(s) that match the predetermined color(s). In this way, detection of colors indicative of human skin and/or lips is considered as an indication to initiate a virtual assistant session.


In some examples, an electronic device includes one or more cameras on a front and/or on a back surface of the device. Facial characteristics (e.g., chin shape, mouth shape, face shape, etc.) detected by the one or more cameras are compared to predetermined facial characteristics (e.g., human facial characteristics, the facial characteristics of an authorized user). If the detected facial characteristics match the predetermined facial characteristics, a criterion for initiating a virtual assistant is satisfied. If the detected facial characteristics do not match the predetermined facial characteristics, a criterion for initiating the virtual assistant is not satisfied. For example, when user 802 lifts device 800 to a raised pose to speak to it, a front surface of device 800 points towards the user's face. Accordingly, a front facing camera of device 800 detects facial characteristics that match predetermined facial characteristics.


In some examples, one or more microphones of an electronic device emit signals (e.g., ultrasonic signals) and the one or more microphones detect signals reflected based on the emitted signals. In some examples, the detected signals are used to determine whether one or more criteria for initiating a virtual assistant are satisfied. For example, if the detected signals indicate an object (e.g., a human face, human lips) within a threshold proximity (e.g., 2 cm, 5 cm, 10 cm, 20 cm) of the device, a criterion is satisfied. If the detected signals indicate an object not within the threshold proximity of the device, a criterion is not satisfied. In this way, detection of proximal objects is considered as an indication to initiate a virtual assistant session.


In some examples, an electronic device includes one or more proximity sensors on a front and/or on a back surface of the device. The one or more proximity sensors include any suitable proximity sensor (e.g., capacitive, photoelectric, inductive, time-of-flight, etc.), for instance. Inputs detected by the one or more proximity sensors are analyzed to determine whether they represent an indication to initiate a virtual assistant session. For example, if input from one or more proximity sensors indicates that the device is approaching an object (e.g., a user's face/mouth), a criterion is satisfied. If input from one or more proximity sensors indicates that the device is moving away from an object, a criterion is not satisfied. As another example, if input from one or more proximity sensors indicates that the device is within a threshold proximity (e.g., 2 cm, 5 cm, 10 cm, 20 cm) of an object, a criterion is satisfied.


In some examples, virtual assistant interaction context (e.g., the context of a user (e.g., sleeping, in a car, etc.) and information about a previous virtual assistant state) is considered in determining whether to initiate a virtual assistant. Virtual assistant interaction context provides additional device and/or user information which may be helpful in determining whether to initiate a virtual assistant session. As an example, if a user is sleeping (e.g., as determined by time of day, motion inputs, user indication, etc.), a virtual assistant session is less readily initiated compared to if the user were awake.


Exemplary virtual assistant interaction contexts are discussed below. In some examples, based on virtual assistant interaction context, a probability of initiating a virtual assistant session is determined. In some examples, any of these determinations are made by a model for initiating a virtual assistant (e.g., a raise to speak model).


An exemplary virtual assistant interaction context includes a time at which the virtual assistant session was previously initiated. In some examples, if the time at which the virtual assistant session was previously initiated is within a threshold duration (e.g., 30 seconds, 1 minute, 5 minutes, etc.) of a current time, a probability of initiating the virtual assistant session is increased. In some examples, if the time at which the virtual assistant session was previously initiated is within the threshold duration of a current time, a probability of initiating the virtual assistant session is decreased.


An exemplary virtual assistant interaction context includes whether previous sensor inputs (e.g., any of the sensor inputs discussed above) represent a near-miss of initiating a virtual assistant session or represent a near-initiation of a virtual assistant session. For example, based on one or more previous sensor inputs, a probability of initiating the virtual assistant session is determined. If the probability exceeds a threshold probability for initiating the virtual assistant session by less than a first amount (e.g., a small amount), the one or more previous sensor inputs represent a near-miss. If the probability is less than the threshold probability for initiating the virtual assistant session by at most a second amount (e.g., a small amount), the one or more previous sensor inputs represent a near-initiation.


An exemplary virtual assistant interaction context includes a time associated with a near-miss of initiating the virtual assistant session. In some examples, a time associated with a near-miss of initiating the virtual assistant session is compared to a current time (e.g., a time at which current input is sampled). The time associated with the near-miss is the time at which the one or more previous sensor inputs (representing the near-miss) were sampled or the time at which the probability associated with the one or more previous sensor inputs was determined, for instance. In some examples, if the time associated with a near-miss of initiating the virtual assistant session is within a predetermined duration (e.g., 5 seconds, 15 seconds, 30 seconds, 1 minute, 5 minutes, etc.) of a current time, a probability for initiating a virtual assistant session is increased. In this way, recent previous input(s) that nearly missed initiating a virtual assistant session indicate that the virtual assistant session should be more readily initiated based on current input, in some examples. In other examples, if the time associated with a near miss of initiating the virtual assistant session is within the predetermined duration of a current time, a probability for initiating a virtual assistant session is decreased. It will be appreciated that comparing the time associated with a near-initiation of the virtual assistant session to a current time in an analogous manner (e.g., to increase or decrease a probability of initiating a virtual assistant) is consistent with the teachings herein.


An exemplary virtual assistant interaction context includes a domain associated with a previous input (e.g., text or spoken input) provided to the virtual assistant. For example, it is determined whether a domain associated with the previous input is a predetermined type of domain. If the domain is the predetermined type of domain, a probability of initiating a virtual assistant session is increased. If the domain is not a predetermined type of domain, a probability of initiating the virtual assistant session is decreased (or unchanged).


In some examples, the predetermined type of domain is a domain that is configured to enable multi-turn virtual assistant interaction. A multi-turn virtual assistant interaction includes a virtual assistant interaction where input is provided to the virtual assistant and the virtual assistant responds to the input by eliciting further input, for instance. For example, the “send a message” domain is configured to enable responding “send a message to who?” (e.g., eliciting further user input) responsive to the provided input “send a message.” Accordingly, if a domain associated with a previous input is configured to enable multi-turn interaction, it may be likely that the user intends to initiate a virtual assistant session to provide further input. Thus, in some examples, if a domain associated with a previous input is configured to enable multi-turn interaction, a probability of initiating a virtual assistant session is increased.


An exemplary virtual assistant interaction context includes a previous state of the virtual assistant. A state of a virtual assistant represents whether the virtual assistant is awaiting further input, for instance. For example, if the virtual assistant was previously awaiting a response to the output “send a message to who?” the previous state is a first state. For example, if the virtual assistant was not previously awaiting a response (e.g., the virtual assistant provided an output such as “It's sunny today”), the previous state is a second state. In some examples, a previous state of the virtual assistant is determined. In some examples, if the previous state is the first state, a probability for initiating the virtual assistant is increased. In some examples, if the previous state is the second state, a probability for initiating the virtual assistant is decreased. In this way, if a previous virtual assistant state indicates that the virtual assistant is awaiting a response, a virtual assistant is more readily initiated, in some examples.


Exemplary virtual assistant interaction context includes contextual information (e.g., any of the contextual information discussed above). In some examples, an activity context of the device and/or user (e.g., whether the user is running, in a car, sleeping, at home, at work, traveling, in a movie theatre, in a meeting, etc.) is determined from the contextual information. Certain activity contexts may indicate that a user is more or less likely to initiate a virtual assistant. Accordingly, in some examples, based on the determined activity context, a probability of initiating a virtual assistant is increased or decreased. For example, if a user is determined to be in a meeting (e.g., based on a current time being within a meeting timeframe in a user's schedule), a probability of initiating a virtual assistant is decreased (e.g., because the user may not wish to be interrupted by an initiated virtual assistant during the meeting).


In some examples, in accordance with a determination to initiate a virtual assistant session, a virtual assistant session is initiated. For example, as shown in FIG. 8C, initiating a virtual assistant session includes displaying a user interface associated with the virtual assistant session (e.g., on display 804). However, in some examples, initiating a virtual assistant session does not include displaying a virtual assistant user interface. For example, a virtual assistant session is initiated while display 804 is powered off, in some examples. Additional exemplary description of initiating a virtual assistant is provided in U.S. patent application Ser. No. 14/841,449, entitled “Virtual Assistant Activation,” filed on Aug. 31, 2015, the content of which is hereby incorporated by reference in its entirety.


In some examples, initiating a virtual assistant session includes providing audio output (e.g., device 800 provides an audio output to indicate that the virtual assistant is listening). In some examples, initiating a virtual assistant session includes providing haptic output (e.g., a buzz or a vibration). In some examples, initiating a virtual assistant session includes powering on processor circuitry (e.g., circuitry of a main processor) configured to operate a virtual assistant. In some examples, initiating a virtual assistant includes initiating one or more programs or modules (e.g., digital assistant module 726).


In some examples, in accordance with a determination not to initiate a virtual assistant session, a virtual assistant session is not initiated. For example, none of the above processes included in initiating a virtual assistant session is performed and a display screen is powered off and/or a user interface that is not a virtual assistant user interface (e.g., a user interface displaying a current time) is displayed (or remains displayed).



FIG. 8D shows an initiated virtual assistant on device 800 providing a response to audio input 806. In particular, after user 802 has provided (and device 800 has sampled) audio input 806 “What's the weather like in Palo Alto?”, the initiated virtual assistant session provides the response “It's 70 degrees and sunny.”


Accordingly, in some examples, in accordance with a determination to initiate a virtual assistant session, a user intent is determined based on audio input, a task is performed based on the user intent, and an output associated with the task is provided. For example, as shown in FIG. 8D, a user intent for audio input 806 “What's the weather like in Palo Alto?” is determined, a task (e.g., retrieving weather information) is performed, and an output associated with the task is provided. For example, device 800 displays the response “It's 70 degrees and sunny” on display 804. Optionally, device 800 provides audio output 808 “It's 70 degrees and sunny.” Exemplary techniques for determining user intents and performing tasks based on the determined used intent are discussed with respect to FIGS. 7A-C above.


In some examples, in accordance with initiating a virtual assistant session at a device, the motion input and the audio input from are provided to train a model for initiating a virtual assistant (e.g., a raise to speak model). In some examples, additional input (e.g., input other than motion input and audio input) and/or virtual assistant interaction context are provided to train the model (e.g., if it was determined to initiate the virtual assistant session based on the additional input and/or context). For example, the model is implemented on the device and/or on another electronic device (e.g., server system 108) and the model is trained using the motion input, the audio input, the additional input, and/or the virtual assistant interaction context as training data. Accordingly, inputs and/or virtual assistant interaction context that successfully initiated a virtual assistant session are used to train the model, increasing the likelihood of successful initiation and decreasing the likelihood of inadvertent initiation. Exemplary techniques for training a model for initiating a virtual assistant are discussed with respect to FIG. 9 below.


In some examples, in accordance with not initiating a virtual assistant session at a device, the inputs and/or the virtual assistant interaction context are not provided to train a model for initiating a virtual assistant. For example, the inputs and/or the virtual assistant interaction context are discarded.


In some examples, providing the inputs and/or the virtual assistant interaction context to train a model for initiating a virtual assistant is performed in accordance with providing an output associated with the task. For example, after device 800 provides the audio output 808 “It's 70 degrees and sunny,” the motion input and audio input 806 are provided to train a model. Providing motion input and audio input in this manner can further ensure that appropriate inputs are used to train the model. For example, if user 802 inadvertently initiates the virtual assistant session, he may deactivate the virtual assistant session before device 800 provides output 808. Accordingly, if output 808 is provided, it is likely that the user intended to initiate the virtual assistant session. Thus, correct inputs for initiating a virtual assistant session are provided to train the model.


In some examples, providing the inputs and/or the virtual assistant interaction context to train a model for initiating a virtual assistant is performed in accordance with determining that the virtual assistant session is initiated for greater than a predetermined duration (e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 seconds) (e.g., a virtual assistant user interface is displayed for greater than the predetermined duration). Providing inputs and/or context in this manner can further ensure that appropriate inputs and/or context are used to train the model. For example, if user 802 inadvertently initiates a virtual assistant session, he may deactivate the virtual assistant session before the predetermined duration elapses. Accordingly, if the predetermined duration elapses, it is likely that user 802 intended to initiate the virtual assistant session. Thus, correct inputs and/or context for initiating a virtual assistant session are provided to train the model. Exemplary techniques for deactivating a virtual assistant session are described with respect to FIGS. 8D and 8E below.


In some examples, the inputs and/or the virtual assistant interaction context that inadvertently initiate a virtual assistant session (e.g., incorrect inputs and/or context) are provided to train a model for initiating a virtual assistant. For example, incorrect inputs and/or context train the model to not inadvertently initiate the virtual assistant session based on future incorrect inputs and/or context. Accordingly in some examples, providing the inputs and/or the virtual assistant interaction context to train a model for initiating a virtual assistant session is performed in accordance with a determination that the inputs and/or context are incorrect for initiating a virtual assistant session.


In some examples, determining whether one or more inputs and/or context are incorrect for initiating a virtual assistant session includes determining whether to deactivate the virtual assistant session based on the one or more inputs and/or context. For example, if it is determined based on the motion and/or audio input to deactivate a virtual assistant session according to the techniques discussed below, a determination is made that the motion input and/or audio input are incorrect for initiating a virtual assistant session.


In some examples, determining whether one or more inputs and/or context are incorrect for initiating a virtual assistant session includes determining (e.g., by digital assistant module 726) whether user feedback indicates dissatisfaction with the initiation of the virtual assistant. In some examples, user feedback indicating dissatisfaction with the virtual assistant session includes verbal and/or textual user input provided to the initiated virtual assistant (e.g., user input such as “Not now,” “Why are you here?,” “Go away,” and the like). In some examples, user feedback indicating dissatisfaction with the initiation of the virtual assistant includes user input deactivating the virtual assistant session provided after the virtual assistant session is initiated (e.g., provided shortly (e.g., 0.5, 1, 2, 3, 4, 5 seconds) after). User input deactivating the virtual assistant session includes a button press, a spoken input, and/or motion input, in some examples.



FIG. 8E illustrates exemplary techniques for deactivating a virtual assistant session. In particular, user 802 has lifted device 800 from a raising to a raised pose and provides the audio input “Tina's vacation is this Sunday and she's going to Hawaii with her husband to see volcanoes and dolphins at the beach . . . .” In this example, the audio input is not directed to device 800, but rather directed to another person user 802 is conversing with (e.g., a person standing to the left of user 802 whom user 802 is looking at). But based on the motion input and the audio input, a virtual assistant session is inadvertently initiated. For example, a virtual assistant user interface is displayed on display 804. In the present example, the virtual assistant session is deactivated after it is initiated (e.g., display 804 ceases to display a virtual assistant user interface) according to the techniques discussed below.


In some examples, deactivating a virtual assistant session includes ceasing display of a user interface associated with the virtual assistant session. In some examples, deactivating a virtual assistant session incudes forgoing responding to audio input. In some examples, deactivating a virtual assistant session includes powering off a display. In some examples, deactivating a virtual assistant session includes providing audio and/or haptic output. In some examples, deactivating a virtual assistant session includes powering off processor circuitry (e.g., circuitry of a main processor) configured to operate a virtual assistant. In some examples, deactivating a virtual assistant includes deactivating one or more programs or modules (e.g., digital assistant module 726).


In some examples, deactivating a virtual assistant session and/or determining whether to deactivate a virtual assistant session is performed before displaying a user interface associated with the virtual assistant session. In other examples, deactivating a virtual assistant session and/or determining whether to deactivate a virtual assistant session is performed after displaying a user interface associated with the virtual assistant session.


In some examples, determining whether to deactivate a virtual assistant session includes determining whether one or more criteria for deactivating a virtual assistant session are satisfied. In some examples, determining whether to deactivate a virtual assistant session includes determining a probability of deactivating a virtual assistant session. For example, if a criterion for deactivating a virtual assistant session is satisfied, a probability of deactivating a virtual assistant session is increased. If a criterion for deactivating a virtual assistant is not satisfied, the probability of deactivating a virtual assistant session is decreased. In some examples, a determination is made to deactivate a virtual assistant session if the probability of deactivating the virtual assistant session is greater than a predetermined threshold and/or if one or more criteria for deactivating the virtual assistant session are satisfied. In some examples, any one of the above determinations is made by one or more models for deactivating a virtual assistant session (e.g., an audio model, a motion model, a raise to speak model).


Additionally, in some examples, any of the techniques for deactivating a virtual assistant session discussed below are applied in an analogous manner in determining whether to initiate a virtual assistant session. For example, if one or more of the below described criteria for deactivating a virtual assistant session are satisfied (e.g., as determined by a motion model, an audio model, and/or a raise to speak model), a virtual assistant is not initiated and/or a probability of initiating a virtual assistant session is decreased. Similarly, in some examples, any of the techniques discussed above for determining not to initiate a virtual assistant session are applied in an analogous manner in determining whether to deactivate a virtual assistant session. For example, if one or more of the above described criteria for initiating a virtual assistant session are not satisfied, a virtual assistant session is deactivated and/or a probability of deactivating a virtual assistant session is increased.


Exemplary criteria for deactivating a virtual assistant session are now discussed.


An exemplary criterion includes whether the content of audio input indicates that the audio input is directed to a device. Audio inputs unlikely directed to the device should deactivate the virtual assistant session, in some examples. Exemplary audio content analyzed (e.g., by device 800 and/or by server system 108) to determine whether audio input is directed to a device includes linguistic content (e.g., sentence structure, sentence length, whether word(s) and/or keyword(s) are included, sentence type (e.g., question or statement), and the like) and whether the device can perform a task specified in the audio input. For example, based on its linguistic content, the audio input “Tina's vacation is this Saturday and she's going to Hawaii with her husband to see volcanoes and dolphins at the beach . . . ,” is determined not to be likely directed to the device. In accordance with a determination that the audio input is not likely directed to the device, a criterion for deactivating a virtual assistant session is satisfied. Accordingly, in some examples, the virtual assistant session is deactivated (e.g., server system 108 sends a control signal to device 800 instructing device 800 to deactivate a virtual assistant session).


In some examples, in accordance with a determination that the audio input is likely directed to the device, a criterion for deactivating a virtual assistant session is not satisfied. Accordingly, in some examples, a virtual assistant session is not deactivated (e.g., a virtual assistant user interface is displayed, the device samples audio input, and the like).


An exemplary criterion includes whether an intent can be determined (e.g., with sufficient confidence by device 800 and/or by sever system 108) for audio input. For instance, certain audio inputs (e.g., coughs, sneezes, long sentences, short expressions such as “uhm,” yay,” and the like) cannot have respective intents determined or respective confidence scores of the determined respective intents are low (e.g., less than a predetermined threshold). Accordingly, in some examples, these audio inputs should deactivate a virtual assistant session. Thus, in some examples, if an intent for an audio input cannot be determined, a criterion is satisfied. In some examples, if a confidence score of an intent for the audio input is low, a criterion is satisfied. In some examples, if an intent for an audio input is determined, a criterion is not satisfied. In some examples, if a confidence score of an intent for the audio input is high (e.g., greater than a predetermined threshold), a criterion is not satisfied.


An exemplary criterion includes a duration of the audio input. For example, short audio inputs (e.g., a cough, a sneeze, short expressions such as “uhm,” “yay,” and the like) are unlikely to be directed to a device, so such audio inputs should deactivate a virtual assistant session. Accordingly, in some examples, an audio input duration is compared to a predetermined duration (e.g., 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1 seconds). If the audio input duration is less than the predetermined duration, a criterion is satisfied. If the audio input duration is greater than the predetermined duration, a criterion is not satisfied.



FIG. 8F further illustrates exemplary techniques for deactivating a virtual assistant session. In particular, in FIG. 8F, user 802 has lifted device 800 from a raising to a raised pose and provides the audio input “There is an important meeting on Saturday.” In this example, the audio input is not directed to device 800, but rather directed to another person user 802 is conversing with. But based on the motion input and the audio input, a virtual assistant session is inadvertently initiated. User 802 notices this inadvertent initiation (e.g., sees a virtual assistant interface on display 804), and drops device 800 from a raised pose to a dropping pose as shown. For example, user 802 moves device from a raised pose to be away from his or her mouth/face. In accordance with such movement of device 800, the virtual assistant session is deactivated, as shown.


Accordingly, an exemplary criterion for deactivating a virtual assistant session includes whether motion input indicates a transition from a raised pose to a dropping pose. In some examples, if motion input indicates a transition from a raised pose to a dropping pose, a criterion is satisfied. If motion input includes does not indicate a transition from a raised pose to a dropping pose, a criterion is not satisfied. In this way, dropping a device from a raised pose to a dropping pose deactivates an initiated virtual assistant session, in some examples.


An exemplary criterion includes whether a time associated with dropping a device from a raised pose is prior to a time associated with end of speech in audio input. For example, a first time associated with the end of speech in the audio input “There is an important meeting on Saturday” is determined. A second time associated with the transition from a raised pose to a dropping pose is determined. The first time is compared to the second time. In some examples, if the second time is before the first time, a criterion is satisfied. In some examples, if the second time is after the first time, a criterion is not satisfied. In this way, if user 802 drops his wrist before he finishes speaking, the speech is not likely directed to device 800, so a virtual assistant session is deactivated. Exemplary techniques for determining the end of speech (e.g., endpointing) in audio input are described in U.S. patent application Ser. No. 14/846,667, entitled “Context-Based Endpoint Detection,” filed Sep. 4, 2015, and in U.S. patent application Ser. No. 14/701,147, entitled “Robust End-Pointing of Speech Signals Using Speaker Recognition,” filed Apr. 30, 2015, the contents of which are hereby incorporated by reference in their entireties.


In some examples, a transition from a dropped pose to a raising pose is used to determine an endpoint of speech in audio input. In particular, in some examples, the time associated with the device transition from a raised pose to a dropped pose is used to determine an endpoint of speech. In some examples, the endpointed speech input is then processed to determine a user intent and a task is performed based on the determined user intent according to the techniques discussed above with respect to FIGS. 7A-C. Accordingly, in some examples user 802 indicates that he has finished speaking by dropping device 800 as shown in FIG. 8F.


5. Exemplary Techniques for Transmitting a Communication


In some examples, audio input and motion input are used to invoke device functions other than initiating a virtual assistant. Such functions include, for example, answering a phone call and opening a communication channel in a communication session (e.g., a “walkie-talkie” session) with an external device. For example, if the device is engaged in a communication session with one or more other (e.g., external) devices, a user can raise the device near his or her mouth as described above and provide audio input. It is determined that the motion input and the audio input are appropriate for initiating communication with one or more other devices, and the audio input is provided (e.g., transmitted) to the one or more other devices. In this way, to communicate with other user(s)/device(s) engaged in a communication session with the user's device, the user simply raises the device near his or her mouth and provides audio input that is transmitted to the one or more other devices.


Because in some examples, a same or similar combination of motion input and audio input can invoke multiple device functions (e.g., initiating a virtual assistant, answering a phone call), it may be important to determine which device function to invoke. Otherwise, audio input and motion input a user intends to initiate a virtual assistant session may inadvertently cause another function to be performed (e.g., cause another user's device to output the audio), for instance. Accordingly, in some examples, a context of the device is used to determine which device function audio input and motion input should invoke. In this manner, if the determined context is appropriate for initiating a virtual assistant session, then the audio input and motion input are considered in determining whether to initiate a virtual assistant session. If the determined context is appropriate for answering a phone call, then the audio input and the motion input are considered in determining whether to answer the phone call, for instance.


Accordingly, in some examples, a context of the electronic device is determined. It is determined whether the context is a predetermined type of context representing communication with an external electronic device. In some examples, if the context is the predetermined type of context, then sampled audio input and detected motion input are not used to determine whether to initiate a virtual assistant session, but rather used to determine whether to perform another device function. In some examples, if the context is not the predetermined type of context, then sampled audio input and detected motion input are used to determine whether to initiate a virtual assistant session in accordance with the above described techniques.


The context of a device is the predetermined type of context representing communication with an external electronic device when one or more of the below conditions are satisfied, for instance.


An exemplary condition includes that the device is currently receiving a communication (e.g., a phone call, a text message, an email, a voice-mail, etc.) from an external electronic device. If the device is currently receiving the communication, a condition is satisfied. If the device is not currently receiving the communication, a condition is not satisfied. In this way, if a device is currently receiving a phone call and a user provides motion and audio input, the audio input and the motion input are considered in determining whether to answer the phone call. The audio input and the motion input are not considered in determining whether to initiate a virtual assistant session, for instance. If it is determined to answer the phone call, the audio input is transmitted to an external device (e.g., the device of the caller), for instance. In this manner, a user can simply raise his or her device and provide audio to both answer the phone call and to cause the audio to be transmitted to the caller's device.


An exemplary condition includes that the device has recently received a communication (e.g., a phone call, a text message, and email, a voice-mail, etc.) from an external electronic device. For example, when a device receives a communication, a condition is satisfied for a short duration (e.g., 1, 2, 3, 4, 5, 10, 15, 30 seconds) after the receipt of the communication. After the short duration expires, a condition is not satisfied. Accordingly, in some examples, if a user provides motion input and audio input shortly after receiving a message (e.g., a text or an email), the motion and audio input are considered in determining whether to respond to the message. The motion input and the audio input are not are considered in determining whether to initiate a virtual assistant session. In this way, if a user receives a message (e.g., text or email), the user can respond to the message by simply raising his or her device and providing audio input shortly after receiving the message. In some examples, the audio input is converted to text and the text is transmitted to the message sender's device.


An exemplary condition includes that the device is currently engaged in a communication session (e.g., a “walkie-talkie” session) with an external electronic device. If the device is currently engaged in the communication session, a condition is satisfied. If the device is not currently engaged in the communication session, a condition is not satisfied. Accordingly, if the device is currently engaged in a communication session (e.g., one or more programs configured to provide the communication session are executing) and the user provides motion input and audio input, the motion input and the audio input are considered in determining whether to transmit a communication. In this manner, a user can transmit audio to another device engaged in a communication session with the user's device simply by raising his or her device and speaking the audio.


In some examples, if the context is the predetermined type of context representing communication with an external electronic device, it is determined, based on sampled audio input and detected motion input, whether to transmit a communication associated with the audio input to the external electronic device. In some examples, determining whether to transmit the communication is performed analogously to the techniques discussed above for determining whether to initiate a virtual assistant session (e.g., based on audio input, motion input, and/or other input(s)). That is, if motion input, audio input, and/or other input(s) are appropriate for initiating a virtual assistant session, then the motion input, audio input, and/or other input(s) are similarly appropriate for causing transmission of the communication. In some examples, the audio input, motion input, and/or other input(s) are provided to a model (e.g., raise to speak model 924) and the model determines whether to transmit the communication.


In some examples, if the context is not the predetermined type of context representing communication with an external electronic device, it is determined, based on the audio input and the motion input, whether to initiate a virtual assistant session (e.g., according to the techniques discussed above).


In some examples, in accordance with a determination to transmit the communication associated with the audio input to the external electronic device, the communication associated with the audio input is transmitted to the external electronic device. In some examples, the communication associated with the audio input includes a signal representing the audio content of the audio input (e.g., if the user is answering a phone call or is engaged in a communication session). In some examples, the audio input is converted to text and the communication associated with the audio input includes a signal representing the text (e.g., if the user is responding to a text or email message).


In some examples, in accordance with a determination not to transmit the communication associated with the audio input to the external electronic device, transmitting the communication associated with the audio input to the external electronic device is forgone. For example, the sampled audio input and the detected motion input are discarded and/or no signal to be transmitted to the external electronic device is generated.


In some examples, after it is determined to transmit the communication associated with the audio input to the external electronic device, a user drops the device (e.g., from a raised pose, as shown in FIG. 8F). In some examples, dropping the device causes one or more functions to be performed depending on the condition of the device (e.g., the device is engaged in a communication session, the device is engaged in a phone call, the device was receiving a message, etc.). For example, dropping the device when the device is engaged in a phone call causes termination of the phone call, in some examples. Accordingly, to terminate a phone call (e.g., after answering the phone call), a user simply drops the device, in some examples.


As another example, dropping the device after the user has raised the device to respond to a message causes the message to be sent (e.g., transmitted). In this manner, to respond to a message, a user can raise the device and utter a response to the message. The user's response is converted to text, and dropping the device causes the message to be sent (e.g., to the sender of the message).


As yet another example, dropping the device when the device is engaged in a communication session (e.g., a walkie talkie session) with one or more external devices closes a communication channel with the one or more external devices (e.g., so sampled audio input at the device is not transmitted to the one or more external devices). In this manner, to send audio to another device engaged in a communication session with a user's device, the user raises his or her device and provides the audio. The user can then drop his or her device to stop transmitting audio to the another device.


In some examples, the audio input, the motion input, and/or the determined context are provided to train a model (e.g., raise to speak model 924). For example, audio input, motion input, and/or determined context that caused transmission of a communication are provided to train the model (e.g., to successfully cause transmission of communications based on future correct audio inputs, motion inputs, and/or context). As another example, audio input, motion input, and/or the determined context that did not cause transmission of a communication are provided to train the model (e.g., to prevent inadvertent transmission of communications based on future incorrect audio inputs, motion inputs, and/or context).


In some examples, the model (e.g., model 924) that determines whether to transmit a communication associated with the audio input to an external electronic device is the same model that determines whether to initiate a virtual assistant session. Accordingly, training such model allows the model to correctly determine whether to initiate a virtual assistant session or whether to perform another device function based on provided motion input, provided audio input, and context. As discussed, this may be desirable in examples where a same or similar combination of motion input and audio input can invoke multiple device functions.


In some examples, after it is determined to transmit the communication associated with audio input to an external electronic device, transmission of the communication is prevented. This allows users to prevent the inadvertent transmission of communications (e.g., if a device incorrectly determined to transmit a communication based on audio input and motion input). For, example, after it is determined to transmit the communication, a device outputs an indication (e.g., a visual indication, an audio indication, and/or a haptic indication) for a short duration (e.g., 1 second, 2 second, 3 seconds, etc.) indicating that the device will transmit the communication (e.g., after the short duration expires). During this short duration, if it is determined to prevent transmission of the communication, transmission of the communication is prevented (e.g., the communication is not transmitted and/or is discarded).


In some examples, determining whether to prevent transmission of the communication is performed analogously to the above described techniques for determining whether to deactivate a virtual assistant session. For example, a user drops the device (e.g., as shown in FIG. 8F) during the short duration to prevent transmission of the communication. In some examples, if transmission of the communication is prevented, the input(s) and context from which it was determined to transmit the communication are deemed incorrect input(s) and context. In some examples, the incorrect input(s) and/or context are provided to train a model (e.g., to prevent future incorrect determinations to transmit a communication).



FIG. 9 illustrates a block diagram of a system 900 configured to process audio input and motion input in accordance with some examples. In some examples, system 900 is implemented on a standalone computer system (e.g., any of devices 104, 106, 200, 400, 600, or 800). In some examples, system 900 is distributed across multiple devices. For example, some of the components and functions of system 900 are divided into a server portion and a client portion, where the client portion resides on one or more user devices (e.g., devices 104, 106, 200, 400, 600, or 800) and communicates with the server portion (e.g., server system 108) through one or more networks, e.g., as shown in FIG. 1.


The respective functions of each of the blocks of FIG. 9 discussed below are, optionally implemented by hardware, software, or a combination of hardware and software to carry out the principles of the examples described herein. Further, it should be noted that system 900 is only one example of a system for processing audio input and motion input and system 900 can have more or fewer components than shown, can combine two or more components, or can have a different configuration or arrangement of the components. Further, although the below discussion describes functions being performed at a single component of system 900, it is to be understood that such functions can be performed at other components of system 900 and that such functions can be performed at more than one component of system 900.


System 900 includes input unit 902 coupled to processing unit 916 and to model unit 922. Input unit includes various input devices, such as one or more microphones 904, one or more accelerometers 906, and optionally, one or more gyroscopes 908, one or more cameras 910, one or more color sensors 912, one or more light sensors 914, and/or one or more proximity sensors 932. Inputs respectively collected by the input devices of input unit 902 are provided to processing unit 916 and to model unit 922.


Processing unit 916 includes one or more processors (e.g., any of processor(s) 220, 616, and 704). For example, processing unit 916 includes main processor 918 and low-power processor 920. In some examples, main processor 918 is an application processor that executes, for example, the operating system and applications, including the digital assistant of the device. In some examples, low-power processor 920 consumes less power than main processor 918 while operating, executes different computer-executable instructions than main processor 918, and/or is physically smaller than main processor 918.


In some examples, low-power processor 920 samples input from input unit 902. In some examples, low-power processor 920 is limited in the types of input it samples from input unit 902. For example, low-power processor 920 only samples motion input from one or more accelerometers 906 and/or from one or more gyroscopes 908. In some examples, low-power processor 920 is not limited in the types of input it samples from input unit 902. In some examples, low-power processor 920 activates main processor 918 based on the input from input unit 902, according to the above described examples.


In some examples, main processor 918 samples input from input unit 902. For example, main processor 918 samples audio input from one or more microphones 904 and/or motion input from one or more accelerometers 906 and/or from one or more gyroscopes 908. In some examples, main processor 918 samples audio input in accordance with being activated by low-power processor 920, according to the above described examples.


Model unit 922 includes raise to speak model 924, model training unit 930, and context unit 934. Raise to speak model 924 optionally includes motion model 926 and audio model 928. One of skill in the art will appreciate that although the functions of model unit 922 are described separately from processing unit 916, in some examples, the functions of model unit 922 are implemented by processing unit 916. For example, the functions of raise to speak model 924 and/or model training unit 930 are implemented as computer-executable instructions executing on main processor 918 and/or on low-power processor 920.


Context unit 934 determines a context of an electronic device. For example, context unit 934 determines whether a context of an electronic device is a predetermined type of context representing communication with an external electronic device according to the techniques discussed above.


Raise to speak model 924 receives input from input unit 902. In some examples, based on the context determined by context unit 934, raise to speak model 924 determines either (1) whether to initiate a virtual assistant session or (2) whether to transmit a communication associated with audio input to an external electronic device.


If the context of the electronic device is not the predetermined type of context, raise to speak model 924 determines whether to initiate or deactivate a virtual assistant session according to the techniques discussed above (e.g., based on input from input unit 902). In some examples, raise to speak model 924 determines and/or receives virtual assistant interaction context (e.g., from digital assistant system 700) and determines whether to initiate or deactivate a virtual assistant session based on the virtual assistant interaction context according to any of the techniques discussed above. Raise to speak model 924 optionally determines whether to initiate or deactivate a virtual assistant session based on respective determinations by motion model 926 and audio model 928 to initiate or deactivate a virtual assistant session. In some examples, raise to speak model 924 initiates and/or deactivates a virtual assistant session.


If the context of the electronic device is the predetermined type of context, raise to speak model 924 determines whether to transmit a communication associated with audio input to an external electronic device according to the techniques discussed above (e.g., based on input from input unit 902). In some examples, raise to speak model 924 causes the communication associated with the audio input to be transmitted to the external electronic device (e.g., using RF circuitry 208). In some examples, in accordance with determining that a device is dropping (or has been dropped), raise to speak model 924 causes one or more device functions to be performed according to the above discussed techniques. In some examples, raise to speak model 924 prevents transmission of the communication according to the above described techniques.


In some examples, raise to speak model 924 includes a neural network (e.g., recurrent neural network (RNN), convolutional neural network (CNN), and the like). In some examples, raise to speak model 924 includes a decision tree (e.g., a gradient boosted decision tree) and/or is implemented using any suitable machine learning technique.


In some examples, motion model 926 receives motion input and determines whether to perform a device function (e.g., initiating a virtual assistant session, transmitting a communication associated with audio input) based on the motion input according to the examples discussed above. For example, motion model 926 determines, using motion input, poses of an electronic device (e.g., dropped, raising, raised, dropping) and/or respective pose probabilities. In some examples, motion model 926 further determines, based on motion input, transitions between poses, the respective probabilities of such transitions, respective durations of poses and pose transitions, and/or respective times associated with transitions between poses.


In some examples, determining any of the above pose characteristics includes analyzing accelerometer and/or gyroscope data (e.g., over time). For example, a dropped pose (e.g., FIG. 8A) is associated with accelerometer readings indicating little to no acceleration in one or more directions, for instance. A raising pose (e.g., FIG. 8B) is associated with accelerometer readings indicating acceleration in one direction, and rotational acceleration in another direction, for instance. A raised pose (e.g., FIG. 8C) is associated with accelerometer readings indicating little to no acceleration in all directions after detecting accelerometer readings consistent with a raising pose, for instance. A dropping pose (e.g., FIG. 8F) is associated with accelerometer readings indicating acceleration in one direction and rotational acceleration in another direction after detecting accelerometer readings consistent with a raised pose, for instance.


In some examples, motion model 926 includes a neural network (e.g., a recurrent neural network (RNN), a convolutional neural network (CNN), and the like). In some examples, the motion model includes decision tree (e.g., a gradient boosted decision tree) and/or is implemented using any suitable machine learning technique.


In some examples, motion model 926 is specific to a user (e.g., an authorized user) of an electronic device. For example, motion model 926 is optionally trained and/or optimized to accurately determine whether to perform a device function (e.g., initiating a virtual assistant session, transmitting a communication associated with audio input) based on motion input from a particular user. For example, if a user has long/short arms and/or has particular way of lifting a device to initiate a virtual assistant, motion model 926 accounts for these user specific characteristics in determining poses, pose transitions, pose durations, and the like. Accordingly, the present disclosure contemplates user enrollment to train and/or optimize motion model 926. For example, during enrollment, a user provides device motion(s) that he or she intends to cause performance of a function, and motion model 926 is trained based on the provided motion input.


In some examples, audio model 928 receives audio input (e.g., from one or more microphones 904) and determines whether to perform a device function (e.g., initiating a virtual assistant session, transmitting a communication associated with audio input) based on audio input according to the examples discussed above. For example, audio model 928 is configured to, inter alia, determine whether audio input includes human speech spoken by an authorized user and determine a proximity of audio input from a device according to the examples discussed above.


In some examples, audio model 928 includes neural network (e.g., a recurrent neural network (RNN), a convolutional neural network (CNN), and the like). In some examples, audio model 928 includes a decision tree (e.g., a gradient boosted decision tree) and/or is implemented using any suitable machine learning technique.


In some examples, audio model 928 is specific to a user (e.g., an authorized user) of an electronic device. For example, audio model 928 is optionally trained and/or optimized to accurately determine whether audio input should cause performance of a device function based on user specific audio characteristics. For example, if a user has a particular way (e.g., intonation, pitch, accent, speaking rate, etc.) of speaking to a device when he or she intends to initiate a virtual assistant session, audio model 928 accounts for these user specific characteristics in determining whether to initiate a virtual assistant session. Accordingly, the present disclosure contemplates user enrollment to train and/or optimize audio model 928. For example, during enrollment, a user provides audio input and audio model 928 is trained and/or optimized based on the audio input.


In some examples, enrollment based on audio input and motion input is performed concurrently, simultaneously, or in an otherwise overlapping manner. For example, a user concurrently provides audio and motion input that, in combination, the user would like to cause performance of a function. In some examples, raise to speak model 924 is trained using the motion and audio input (e.g., motion model 926 and audio model 928 are trained using the motion and audio input, respectively).


In some examples, training raise to speak model 924 (e.g., based on user specific preferences for performing a device function) includes adjusting one or more of the durations and/or one or more of the thresholds discussed above. For example, based on virtual assistant interaction context, device context, motion, audio, and/or other inputs, one or more of the durations and/or one or more of the thresholds discussed above are adjusted. In this manner, raise to speak model 924 is adapted (e.g., over time and/or during enrollment) to cause performance of device functions based on user specific preferences.


Model training unit 930 is configured to train raise to speak model 924 according to the above described examples. For example, model training unit receives input from input unit 902, and trains raise to speak model 924 using the received input as training data. For example, model training unit 930 is configured to train motion model 926 and/or audio model 928, e.g., based on respective motion and audio input as training data.


If raise to speak model 924 includes a neural network, training raise to speak model 924 includes determining a set of optimal weighting values for connections between nodes of the neural network, for instance. If raise to speak model 924 includes a gradient boosted tree model, training raise to speak model 924 includes minimizing a loss function, for instance. Training raise to speak model 924 in this way increases the chance that audio input, motion input, other input(s), device context and/or, virtual assistant interaction context cause the device to perform a correct function and decreases the chance of an incorrect function being performed. For example, in this manner, motion input and audio input intended to cause a transmission of a communication do not inadvertently initiate a virtual assistant session. As another example, in this manner, motion input and audio input intended to initiate a virtual assistant session correctly initiate a virtual assistant session and inappropriate motion and audio inputs do not inadvertently initiate the virtual assistant session.



FIGS. 10A-D illustrate process 1000 for operating a digital assistant according to various examples. Process 1000 is performed, for example, using one or more electronic devices (e.g., devices 104, 106, 200, 400, 600, or 800) implementing a digital assistant. In some examples, process 1000 is performed using a client-server system (e.g., system 100), and the blocks of process 1000 are divided up in any manner between the server (e.g., DA server 106) and a client device. In other examples, the blocks of process 1000 are divided up between the server and multiple client devices (e.g., a mobile phone and a smart watch). Thus, while portions of process 1000 are described herein as being performed by particular devices of a client-server system, it will be appreciated that process 1000 is not so limited. In other examples, process 1000 is performed using only a client device (e.g., user device 104) or only multiple client devices. In process 1000, some blocks are, optionally, combined, the order of some blocks is, optionally, changed, and some blocks are, optionally, omitted. In some examples, additional steps may be performed in combination with the process 1000.


As described below, process 1000 includes detecting input representing motion of an electronic device (e.g., a raising of the electronic device towards a user's mouth) and sampling, with a microphone of the electronic device, an audio input (e.g., a spoken user request such as “What's the weather like in Palo Alto?”). Process 1000 further includes determining, based on the audio input and the input representing motion of the electronic device, whether to initiate a virtual assistant session. In accordance with a determination to initiate the virtual assistant session, process 1000 includes initiating the virtual assistant session (e.g., a user interface associated with the virtual assistant session is displayed). In accordance with a determination not to initiate the virtual assistant session, process 1000 includes forgoing initiating the virtual assistant session.


Determining, based on audio input and input representing motion of the electronic device (e.g., “motion input”), whether to initiate a virtual assistant session provides a natural and efficient way of initiating and interacting with a virtual assistant. For example, to initiate a virtual assistant and to have a task performed by the virtual assistant based on a spoken request, a user simply raises a device near his or her mouth and utters the request at approximately the same time (e.g., without the request including a spoken trigger such as “Hey Siri”). Facilitating virtual assistant interaction in this manner enables efficient virtual assistant interaction (e.g., no spoken trigger is required before each interaction) and quick virtual assistant response to spoken requests. Additionally, using both audio input and motion input to initiate a virtual assistant session prevents inadvertent virtual assistant activation based on either audio input or motion input alone. This decreases the chance of inadvertently initiating a virtual assistant and saves battery power otherwise consumed due to operating a virtual assistant when not desired. In this manner, the user-device interface is made more efficient (e.g., by reducing the amount of audio input users provide, by decreasing virtual assistant response time, by preventing inadvertent virtual assistant activation), which additionally, reduces power usage and improves battery life of the device by enabling the user to use the device more quickly and efficiently.


At block 1002, at an electronic device with a microphone and a display (e.g., device 800), input representing motion of the electronic device is detected. In some examples, the electronic device is a computer, a speaker, a smart watch, a phone, or a combination thereof.


In some examples, the input representing motion of the electronic device is detected by one or more accelerometers (e.g., 906) of the electronic device. In some examples, the input representing motion of the electronic device is detected by one or more gyroscopes (e.g., 908) of the electronic device. In some examples, detecting the input representing motion of the electronic device includes sampling the input representing motion of the electronic device using a first processor (e.g., 920), as shown in optional block 1004.


In some examples, the motion of the electronic device includes a transition of the electronic device between two or more poses of a plurality of poses. In some examples, the plurality of poses includes a dropped pose (e.g., shown in FIG. 8A), a raising pose (e.g., shown in FIG. 8B), a raised pose (e.g., shown in FIGS. 8C-E), and a dropping pose (e.g., shown in FIG. 8F).


At optional block 1006, a display of the electronic device (e.g., 804) is powered on based on a first portion of the input representing motion of the electronic device. In some examples, the first portion of the input representing motion of the electronic device represents a wrist raise gesture and/or a wrist rotation gesture (e.g., shown in FIG. 8B).


At block 1008, an audio input (e.g., 806) is sampled with the microphone (e.g., 904) of the electronic device. In some examples, sampling the audio input is performed in accordance with powering on the display. In some examples, the audio input is sampled while detecting at least a second portion of the input representing motion of the electronic device (e.g., audio input 806 is sampled while detecting motion input in FIG. 8C). Sampling audio input while detecting motion input allows a user to provide (and a device to sample and/or detect) simultaneous (or approximately simultaneous) audio and motion input for initiating a virtual assistant session. As discussed, providing virtual assistant initiation in this manner provides a natural way and efficient way of initiating a virtual assistant session and decreases the chance of inadvertent virtual assistant initiation. Accordingly, the user-device interface is made more efficient (e.g., by enabling quick and easy virtual assistant initiation), which additionally, reduces power usage and improves battery life of the device by enabling the user to use the device more quickly and efficiently.


In some examples, sampling the audio input includes sampling the audio input using the first processor, as shown in optional block 1010. In some examples, sampling the audio input includes sampling the audio input using a second processor (e.g., 918), as shown in optional block 1012. In some examples, the second processor consumes more power while operating than the first processor. In some examples, the second processor is activated based on at least a third portion of the input representing motion of the electronic device.


In some examples, the audio input (e.g., 806) does not include a spoken trigger (e.g., a spoken trigger for initiating a virtual assistant such as “Hey Siri”). Sampling an audio input not including a spoken trigger and using such audio input to initiate a virtual assistant session enables natural and efficient virtual assistant initiation/interaction. For example, a user may simply utter a request (that does not include “Hey Siri”) to a virtual assistant to initiate the virtual assistant and to have it respond to the request. In this manner, the user-device interface is made more efficient (e.g., by reducing the amount of audio input a user provides), which additionally, reduces power usage and improves battery life of the device by enabling the user to use the device more quickly and efficiently.


At block 1014, it is determined (e.g., by raise to speak model 924), based on the audio input and the input representing motion of the electronic device, whether to initiate a virtual assistant session. As discussed, the exemplary techniques for determining whether to initiate a virtual assistant session discussed below may allow for appropriate motion and/or audio input to initiate a virtual assistant session and prevent inappropriate motion and/or audio input from initiating a virtual assistant session. In this manner, device operability is improved and the man-machine interface is made more efficient (e.g., by accurately and efficiently initiating a virtual assistant session when requested, by preventing a user from being bothered by an inadvertently initiated virtual assistant session, by reducing or eliminating battery power otherwise consumed by an inadvertently initiated virtual assistant, and by reducing or eliminating user input provided to deactivate an inadvertently initiated virtual assistant session).


In some examples, determining whether to initiate the virtual assistant session includes determining whether to initiate the virtual assistant session based on a motion model (e.g., 926), as shown in optional block 1016. In some examples, the motion model includes a first neural network. In some examples, the motion model is specific to a first user of the electronic device. In some examples, it is determined, using the motion model, a probability of the transition of the electronic device between two or more poses of the plurality of poses, as shown in optional block 1018. In some examples, it is determined, using the motion model, a probability of a pose of the plurality of poses, as shown in optional block 1020.


In some examples, determining whether to initiate the virtual assistant session includes determining (e.g., by model 926), based on the input representing motion of the electronic device, whether the motion of the electronic device includes a transition from the raising pose to the raised pose (e.g., as shown in FIGS. 8B and 8C), as shown in optional block 1022.


In some examples, determining whether to initiate the virtual assistant session includes determining (e.g., by model 926) a duration of the transition from the raising pose to the raised pose, as shown in optional block 1024.


In some examples, the audio input is sampled at a first time, the transition from the raising pose to the raised pose is associated with a second time, and determining (e.g., by model 924) whether to initiate the virtual assistant session is based on the first time and the second time, as shown in optional block 1026. In this way, a virtual assistant session may be initiated by detecting approximately synchronous motion and audio input for appropriate for initiating a virtual assistant. Further, inadvertent virtual assistant initiation based on motion input alone or audio input alone may be prevented (e.g., if the motion input and the audio input are not received within some appropriate duration of each other, the inputs are unlikely to be for initiating a virtual assistant).


In some examples, determining whether to initiate the virtual assistant session includes determining (e.g., by model 926), based on the input representing motion of the electronic device, whether a duration of the raised pose (e.g., shown in FIG. 8C) exceeds a first predetermined duration, as shown in optional block 1028.


In some examples, determining whether to initiate the virtual assistant session includes determining (e.g., by model 926), based on the input representing motion of the electronic device, whether the motion of the electronic device includes a first transition from the raised pose to the dropping pose (e.g., shown in FIG. 8F), as shown in optional block 1030.


In some examples, determining whether to initiate the virtual assistant session includes determining whether to initiate the virtual assistant session based on an audio model (e.g., 928), as shown in optional block 1032. In some examples, the audio model includes a second neural network. In some examples, the audio model is specific to a second user of the electronic device.


In some examples, determining whether to initiate the virtual session includes determining (e.g., by model 928) whether the audio input includes human speech as shown in optional block 1034. In some examples, determining whether the audio input includes human speech includes determining whether the audio input includes human speech spoken by an authorized user of the electronic device, as shown in optional block 1036. In this way, inadvertent virtual assistant initiation due to sampling noise (and/or speech from a non-authorized user) may be prevented. Further, accurate virtual assistant initiation based on receiving spoken requests from a human (and/or from an authorized user) may be provided.


In some examples, determining whether to initiate the virtual assistant session includes determining (e.g., by model 928) a direction associated with the audio input, as shown in optional block 1038. In this way, inadvertent virtual assistant initiation due to sampling audio not directed to the device configured to operate the virtual assistant may be prevented. Further, accurate virtual assistant initiation based on receiving audio input directed to the device may be provided.


In some examples, determining whether to initiate the virtual assistant session includes determining (e.g., by model 928) a proximity of the audio input from the electronic device, as shown in optional block 1040. In this way, inadvertent virtual assistant initiation due to sampling audio originating from a source too far from the device configured to operate the virtual assistant may be prevented (e.g., because in some examples, a user speaks to a device when the device is close to the user's mouth). Further, accurate virtual assistant initiation based on receiving audio input originating from a source close to the device may be provided.


In some examples, determining whether to initiate the virtual assistant session includes determining (e.g., by model 928), at a third time, whether to initiate the virtual assistant session based on the audio input, as shown in optional block 1042. In some examples, determining whether to initiate the virtual assistant session includes determining (e.g., by model 926), at a fourth time, whether to initiate the virtual assistant session based on the input representing motion of the electronic device, as shown in optional block 1044. In some examples, determining whether to initiate the virtual assistant session includes determining (e.g., by model 924) whether the third time and the fourth time are within a second predetermined duration, as shown in optional block 1046. In some examples, initiating the virtual assistant session is performed in accordance with a determination that the third time and the fourth time are within the second predetermined duration. Accordingly, in some examples, initiating a virtual assistant session is based on detecting synchronous or approximately synchronous motion and audio input appropriate for initiating the virtual assistant session. Thus, inadvertent initiation based on motion input alone and/or audio input alone may be prevented, despite that the motion input and/or audio input may each be appropriate for initiating the virtual assistant. Providing virtual assistant activation in this manner thus provides an efficient and intuitive way of initiating a virtual assistant session while reducing the chance of inadvertent initiation.


At block 1048, in accordance with a determination to initiate the virtual assistant session, the virtual assistant session is initiated (e.g., by model 924). In some examples, initiating the virtual assistant session includes displaying a first user interface associated with the virtual assistant (e.g., as shown on the rightmost display 804 in FIG. 8C), as shown in optional block 1050. In some examples, initiating the virtual assistant session includes providing audio output, as shown in optional block 1052. In some examples, initiating the virtual assistant session includes providing haptic output, as shown in optional block 1054.


At optional block 1056, a time associated with a third transition from the raised pose to the dropping pose is determined (e.g., by model 924). At optional block 1058, an endpoint of the audio input is determined based on the time associated with the third transition from the raised pose to the dropping pose (e.g., by model 924). Determining an endpoint of the audio input in this manner provides efficient and accurate way of endpointing audio inputs. For example, a user can simply drop his or her wrist (e.g., as shown in FIG. 8F) to indicate that he or she has finished speaking.


At block 1060, in accordance with a determination not to initiate the virtual assistant session, initiation of the virtual assistant session is forgone.


At optional block 1062, in accordance with initiating the virtual assistant session, a user intent is determined based on the audio input (e.g., by the digital assistant shown in FIG. 7B). At optional block 1064, in accordance with initiating the virtual assistant session, a task is performed based on the user intent. At optional block 1066, in accordance with initiating the virtual assistant session, an output associated with the task is provided (e.g., output 808).


At optional block 1068, in accordance with initiating the virtual assistant session and in accordance with not determining a user intent based on the audio input, providing an output responsive to the audio input is forgone.


At optional block 1070, in accordance with initiating the virtual assistant session, the virtual assistant session is deactivated (e.g., by model 924). In some examples, deactivating the virtual assistant session includes ceasing display of a second user interface associated with the digital assistant (e.g., as shown in FIGS. 8E and 8F), as shown in optional block 1072. In some examples, deactivating the virtual assistant session includes forgoing responding to the audio input, as shown in optional block 1074.


Deactivating a virtual assistant session allows cancellation of an inadvertently initiated virtual assistant session. Accordingly, battery and processing power otherwise consumed as a result of operating a virtual assistant when not desired is reduced. Additionally, deactivating a virtual assistant session when not desired improves device usability and operability (e.g., a user can continue using the device for other purposes without being bothered by an initiated virtual assistant). In this manner, the user-device interface is made more efficient (e.g., by preemptively deactivating a virtual assistant session when it is not desired), which additionally, reduces power usage and improves battery life of the device by enabling the user to use the device more quickly and efficiently.


Further, the below described techniques for deactivating a virtual assistant session may provide accurate and efficient determination of whether to deactivate the virtual assistant session and accurate and efficient deactivation of the virtual assistant session. Improving virtual assistant deactivation in the manner improves device usability and efficiency (e.g., by deactivating a virtual assistant session when not desired and by preventing a desired initiated virtual assistant session from being deactivated). Accordingly, the user-device interface is made more efficient (e.g., by accurately determining whether to deactivate the virtual assistant session), which additionally, reduces power usage and improves battery life of the device by enabling the user to use the device more quickly and efficiently.


At optional block 1076, in accordance with initiating the virtual assistant session, it is determined (e.g., by model 924), based on the input representing motion of the electronic device, whether the motion of the electronic device includes a second transition from the raised pose to the dropping pose (e.g., as shown in FIG. 8F).


At optional block 1078, a time associated with the second transition from the raised pose to the dropping pose is determined (e.g., by model 924).


At optional block 1080, a time associated with an end of speech in the audio input is determined (e.g., by model 924).


At optional block 1082, in accordance with a determination that the motion of the electronic device includes the second transition from the raised pose to the dropping pose, the virtual assistant session is deactivated (e.g., by model 924). In some examples, deactivating the virtual assistant session is further performed in accordance with a determination (e.g., by model 924) that the time associated with the second transition from the raised pose to the dropping pose is prior to the time associated with the end of speech in the audio input, as shown in optional block 1084.


At optional block 1086, in accordance with initiating the virtual assistant session, it is determined (e.g., by model 924) based on the linguistic content of the audio input (e.g., the audio input shown in FIG. 8E), whether to deactivate the virtual assistant session. At optional block 1088, in accordance with a determination to deactivate the virtual assistant session, the virtual assistant session is deactivated (e.g., by model 924). At optional block 1090, in accordance with a determination not to deactivate the virtual assistant session (e.g., by model 924), deactivating the virtual assistant session is forgone.


At optional block 1092, in accordance with initiating the virtual assistant session, it is determined whether a duration of the audio input is less than a threshold duration (e.g., by model 924). At optional block 1094, in accordance with a determination that the duration of the audio input is less than the threshold duration, the virtual assistant session is deactivated (e.g., by model 924).


The operations described above with reference to FIGS. 10A-D are optionally implemented by components depicted in FIGS. 1-4, 6A-B, 7A-C, 8A-F, and 9. For example, the operations of process 1000 may be implemented by processing unit 916 and/or by model unit 922. It would be clear to a person having ordinary skill in the art how other processes are implemented based on the components depicted in FIGS. 1-4, 6A-B, 7A-C, 8A-F, and 9.



FIG. 11 illustrates process 1100 for transmitting a communication according to various examples. Process 1100 is performed, for example, using one or more electronic devices (e.g., devices 104, 106, 200, 400, 600, or 800). In some examples, process 1100 is performed using a client-server system (e.g., system 100), and the blocks of process 1100 are divided up in any manner between the server (e.g., DA server 106) and a client device. In other examples, the blocks of process 1100 are divided up between the server and multiple client devices (e.g., a mobile phone and a smart watch). Thus, while portions of process 1100 are described herein as being performed by particular devices of a client-server system, it will be appreciated that process 1100 is not so limited. In other examples, process 1100 is performed using only a client device (e.g., user device 104) or only multiple client devices. In process 1100, some blocks are, optionally, combined, the order of some blocks is, optionally, changed, and some blocks are, optionally, omitted. In some examples, additional steps may be performed in combination with the process 1100.


As described below, process 1100 includes detecting input representing motion of an electronic device (e.g., a raising of the electronic device towards a user's mouth) and sampling, with a microphone of the electronic device, an audio input (e.g., “Hey Shawn, how are you?”). Process 1100 further includes determining a context of the electronic device (e.g., that the device is currently receiving a phone call (e.g., from a contact named “Shawn”)). In accordance with a determination that the context is a predetermined type of context representing communication with an external electronic device (e.g., the context of receiving a phone call), process 1110 includes determining, based on the audio input and the input representing motion of the electronic device, whether to transmit a communication associated with the audio input to the external electronic device. E.g., whether to transmit the audio “Hey Shawn, how are you?” to Shawn's device. In accordance with a determination to transmit the communication associated with the audio input to the external electronic device, process 1110 includes transmitting the communication associated with the audio input to the external electronic device. E.g., the device answers the phone call from Shawn and transmits “Hey Shawn, how are you?” to Shawn's device. In accordance with a determination not to transmit the communication associated with the audio input to the external electronic device, process 1100 includes forgoing transmitting the communication associated with the audio input to the external electronic device.


Determining a context of an electronic device allows the electronic device to accurately determine which device function to perform based on audio input and motion input. Specifically, in examples where a same or similar combination of motion input and audio input can cause performance of multiple device functions (e.g., the answering of a phone call, the initiation of a virtual assistant session), it may be important to distinguish (e.g., based on determined device context) which function of the device should be invoked based on audio input and motion input. Otherwise, for example, audio and motion input intended to answer a phone call may inadvertently initiate a virtual assistant session. Accordingly, using context information to determine which device function to perform enables a correct device function to be performed. In this manner, the user-device interface is made more efficient (e.g., by causing correct performance of a device function, by preventing incorrect performance of a device function, by reducing or eliminating user input to cancel an incorrectly performed device function) which additionally, reduces power usage and improves battery life of the device by enabling the user to use the device more quickly and efficiently.


Determining, based on audio input and input representing motion of the electronic device (e.g., “motion input”), whether to transmit a communication associated with the audio input to an external electronic device provides a natural and efficient way of communicating with external electronic devices. For example, to answer a phone call, a user simply raises a device near his or her mouth and provides a response to the phone call at approximately the same time (e.g., without providing tactile input to answer the phone call). Facilitating communication with external electronic devices in this manner enables quick communication with external devices (e.g., a user simply raises his or her device and speaks to cause a communication to be transmitted). Additionally, using both audio input and motion input to transmit a communication may prevent inadvertent communication transmission based on either audio input or motion input alone. This decreases the chance of transmitting communications when not desired. In this manner, the user-device interface is made more efficient (e.g., by enabling quick response to communications from external devices, by preventing inadvertent communication transmission), which additionally, reduces power usage and improves battery life of the device by enabling the user to use the device more quickly and efficiently.


At block 1102, input representing motion of an electronic device is detected (e.g., by input unit 902).


At block 1104, audio input is sampled with a microphone of the electronic device (e.g., by microphone(s) 904).


At block 1106, a context of the electronic device is determined (e.g., by context unit 934).


At block 1108, it is determined whether the context of the electronic device is a predetermined type of context representing communication with an external electronic device (e.g., by context unit 934).


At block 1110, in accordance with a determination that the context is the predetermined type of context representing communication with the external electronic device (block 1108, YES), it is determined (e.g. by model 924) based on the audio input and the input representing motion of the electronic device, whether to transmit a communication associated with the audio input to the external electronic device.


At block 1112, in accordance with a determination to transmit the communication associated with the audio input to the external electronic device, the communication associated with the audio input is transmitted to the external electronic device (e.g., by RF circuitry 208).


At block 1114, in accordance with a determination not to transmit the communication associated with the audio input to the external electronic device, transmitting the communication associated with the audio input to the external electronic device is forgone.


At block 1116, accordance with a determination that the context is not the predetermined type of context representing communication with the external electronic device (block 1108 NO), it is determined, based on the audio input and the input representing motion of the electronic device, whether to initiate a virtual assistant session (e.g., based on the techniques discussed above with respect to FIGS. 10A-D).


The operations described above with reference to FIG. 11 are optionally implemented by components depicted in FIGS. 1-4, 6A-B, 7A-C, 8A-F, and 9. For example, the operations of process 1100 may be implemented by processing unit 916 and/or by model unit 922. It would be clear to a person having ordinary skill in the art how other processes are implemented based on the components depicted in FIGS. 1-4, 6A-B, 7A-C, 8A-F, and 9.


In accordance with some implementations, a computer-readable storage medium (e.g., a non-transitory computer readable storage medium) is provided, the computer-readable storage medium storing one or more programs for execution by one or more processors of an electronic device, the one or more programs including instructions for performing any of the methods or processes described herein.


In accordance with some implementations, an electronic device (e.g., a portable electronic device) is provided that comprises means for performing any of the methods or processes described herein.


In accordance with some implementations, an electronic device (e.g., a portable electronic device) is provided that comprises a processing unit configured to perform any of the methods or processes described herein.


In accordance with some implementations, an electronic device (e.g., a portable electronic device) is provided that comprises one or more processors and memory storing one or more programs for execution by the one or more processors, the one or more programs including instructions for performing any of the methods or processes described herein.


The foregoing description, for purpose of explanation, has been described with reference to specific embodiments. However, the illustrative discussions above are not intended to be exhaustive or to limit the invention to the precise forms disclosed. Many modifications and variations are possible in view of the above teachings. The embodiments were chosen and described in order to best explain the principles of the techniques and their practical applications. Others skilled in the art are thereby enabled to best utilize the techniques and various embodiments with various modifications as are suited to the particular use contemplated.


Although the disclosure and examples have been fully described with reference to the accompanying drawings, it is to be noted that various changes and modifications will become apparent to those skilled in the art. Such changes and modifications are to be understood as being included within the scope of the disclosure and examples as defined by the claims.


As described above, one aspect of the present technology is the gathering and use of data available from various sources to improve a model for initiating/deactivating a virtual assistant. The present disclosure contemplates that in some instances, this gathered data may include personal information data that uniquely identifies or can be used to contact or locate a specific person. Such personal information data can include demographic data, location-based data, telephone numbers, email addresses, twitter IDs, home addresses, data or records relating to a user's health or level of fitness (e.g., vital signs measurements, medication information, exercise information), date of birth, or any other identifying or personal information.


The present disclosure recognizes that the use of such personal information data, in the present technology, can be used to the benefit of users. For example, the personal information data can be used to generate and/or a train a personalized model for initiating a virtual assistant. Accordingly, use of such personalized information data enables improved models for initiating a virtual assistant that are tailored to the way a specific user initiates a virtual assistant. Further, other uses for personal information data that benefit the user are also contemplated by the present disclosure. For instance, health and fitness data may be used to provide insights into a user's general wellness, or may be used as positive feedback to individuals using technology to pursue wellness goals.


The present disclosure contemplates that the entities responsible for the collection, analysis, disclosure, transfer, storage, or other use of such personal information data will comply with well-established privacy policies and/or privacy practices. In particular, such entities should implement and consistently use privacy policies and practices that are generally recognized as meeting or exceeding industry or governmental requirements for maintaining personal information data private and secure. Such policies should be easily accessible by users, and should be updated as the collection and/or use of data changes. Personal information from users should be collected for legitimate and reasonable uses of the entity and not shared or sold outside of those legitimate uses. Further, such collection/sharing should occur after receiving the informed consent of the users. Additionally, such entities should consider taking any needed steps for safeguarding and securing access to such personal information data and ensuring that others with access to the personal information data adhere to their privacy policies and procedures. Further, such entities can subject themselves to evaluation by third parties to certify their adherence to widely accepted privacy policies and practices. In addition, policies and practices should be adapted for the particular types of personal information data being collected and/or accessed and adapted to applicable laws and standards, including jurisdiction-specific considerations. For instance, in the US, collection of or access to certain health data may be governed by federal and/or state laws, such as the Health Insurance Portability and Accountability Act (HIPAA); whereas health data in other countries may be subject to other regulations and policies and should be handled accordingly. Hence different privacy practices should be maintained for different personal data types in each country.


Despite the foregoing, the present disclosure also contemplates embodiments in which users selectively block the use of, or access to, personal information data. That is, the present disclosure contemplates that hardware and/or software elements can be provided to prevent or block access to such personal information data. For example, in the case of collecting user specific motion inputs and audio inputs for initiating a virtual assistant (e.g., during an enrollment process), the present technology can be configured to allow users to select to “opt in” or “opt out” of participation in the collection of personal information data during registration for services or anytime thereafter. In another example, users can select to limit the length of time user specific motion input and/or audio input is maintained or entirely prohibit the collection of user specific motion input and/or audio input. In addition to providing “opt in” and “opt out” options, the present disclosure contemplates providing notifications relating to the access or use of personal information. For instance, a user may be notified upon downloading an app that their personal information data will be accessed and then reminded again just before personal information data is accessed by the app.


Moreover, it is the intent of the present disclosure that personal information data should be managed and handled in a way to minimize risks of unintentional or unauthorized access or use. Risk can be minimized by limiting the collection of data and deleting data once it is no longer needed. In addition, and when applicable, including in certain health related applications, data de-identification can be used to protect a user's privacy. De-identification may be facilitated, when appropriate, by removing specific identifiers (e.g., date of birth, etc.), controlling the amount or specificity of data stored (e.g., collecting location data at city level rather than at an address level), controlling how data is stored (e.g., aggregating data across users), and/or other methods.


Therefore, although the present disclosure broadly covers use of personal information data to implement one or more various disclosed embodiments, the present disclosure also contemplates that the various embodiments can also be implemented without the need for accessing such personal information data. That is, the various embodiments of the present technology are not rendered inoperable due to the lack of all or a portion of such personal information data. For example, a virtual assistant may be initiated using a generic (e.g., not specific to a user and/or to a particular group of users) model for initiating a virtual assistant based on non-personal information data or a bare minimum amount of personal information, such as the content being requested by the device associated with a user, other non-personal information available to the model for initiating a virtual assistant, or publicly available information.

Claims
  • 1. A non-transitory computer-readable storage medium storing one or more programs, the one or more programs comprising instructions, which when executed by one or more processors of an electronic device with a microphone, cause the electronic device to: detect input representing motion of the electronic device;sample, with the microphone, a spoken audio input;determine a context of the electronic device, wherein a predetermined type of context representing communication with an external electronic device includes that the electronic device is currently receiving a first communication from the external electronic device or that the electronic device is currently engaged in a communication session with the external electronic device;in accordance with a determination that the context is the predetermined type of context representing communication with the external electronic device: determine, based on the same spoken audio input and the input representing motion of the electronic device, whether to transmit a communication including a content of the same spoken audio input to the external electronic device;in accordance with a determination to transmit the communication including the content of the same spoken audio input to the external electronic device, transmit the communication including the content of the same spoken audio input to the external electronic device; andin accordance with a determination not to transmit the communication to the external electronic device, forgo transmitting the communication to the external electronic device.
  • 2. The non-transitory computer readable storage medium of claim 1, wherein the one or more programs further comprise instructions, which when executed by the one or more processors, cause the electronic device to: in accordance with a determination that the context is not the predetermined type of context representing communication with the external electronic device:determine, based on the spoken audio input and the input representing motion of the electronic device, whether to initiate a virtual assistant session.
  • 3. The non-transitory computer readable storage medium of claim 1, wherein the predetermined type of context includes that a second communication from the external electronic device has been received within a first predetermined duration before a current time.
  • 4. The non-transitory computer readable storage medium of claim 1, wherein the communication including the content of the spoken audio input includes a signal representing the audio content of the spoken audio input.
  • 5. The non-transitory computer readable storage medium of claim 1, wherein the one or more programs further comprise instructions, which when executed by the one or more processors, cause the electronic device to: determine a textual representation of the spoken audio input; andwherein the communication including the content of the spoken audio input includes a signal representing the textual representation of the spoken audio input.
  • 6. The non-transitory computer readable storage medium of claim 1, wherein the motion of the electronic device includes a transition of the electronic device between two or more of: a dropped pose, a raising pose, a raised pose, and a dropping pose.
  • 7. The non-transitory computer readable storage medium of claim 6, wherein determining whether to transmit the communication to the external electronic device includes: determining based on the input representing motion of the electronic device, whether the motion of the electronic device includes a transition from the raising pose to the raised pose.
  • 8. The non-transitory computer readable storage medium of claim 7, wherein determining whether to transmit the communication to the external electronic device includes: determining a duration of the transition from the raising pose to the raised pose.
  • 9. The non-transitory computer readable storage medium of claim 7, wherein: the spoken audio input is sampled at a first time;the transition from the raising pose to the raised pose is associated with a second time; anddetermining whether to transmit the communication to the external electronic device includes determining whether to transmit the communication to the external electronic device based on the first time and the second time.
  • 10. The non-transitory computer readable storage medium of claim 6, wherein determining whether to transmit the communication to the external electronic device includes: determining, based on the input representing motion of the electronic device, whether a duration of the raised pose exceeds a second predetermined duration.
  • 11. The non-transitory computer readable storage medium of claim 6, wherein determining whether to transmit the communication to the external electronic device includes determining whether to transmit the communication to the external electronic device based on a motion model.
  • 12. The non-transitory computer readable storage medium of claim 11, wherein the one or more programs further comprise instructions, which when executed by the one or more processors, cause the electronic device to: determine, using the motion model, a probability of the transition of the electronic device between two or more poses of a plurality of poses including the dropped pose, the raising pose, the raised pose, and the dropping pose; anddetermine using the motion model, a probability of a pose of the plurality of poses.
  • 13. The non-transitory computer readable storage medium of claim 1, wherein determining whether to transmit the communication to the external electronic device includes determining whether the spoken audio input includes human speech.
  • 14. The non-transitory computer readable storage medium of claim 13, wherein determining whether the spoken audio input includes human speech includes determining whether the spoken audio input includes human speech spoken by an authorized user of the electronic device.
  • 15. The non-transitory computer readable storage medium of claim 1, wherein determining whether to transmit the communication to the external electronic device includes determining a direction associated with the spoken audio input.
  • 16. The non-transitory computer readable storage medium of claim 1, wherein determining whether to transmit the communication to the external electronic device includes: determining, at a third time, whether to transmit the communication to the external electronic device based on the spoken audio input;determining, at a fourth time, whether to transmit the communication to the external electronic device based on the input representing motion of the electronic device; anddetermining whether the third time and the fourth time are within a third predetermined duration; andwherein transmitting the communication to the external electronic device is performed in accordance with a determination that the third time and the fourth time are within the third predetermined duration.
  • 17. The non-transitory computer readable storage medium of claim 1, wherein the one or more programs further comprise instructions, which when executed by the one or more processors, cause the electronic device to: in accordance with a determination to transmit the communication to the external electronic device: answer a phone call; and wherein:the communication includes an answer to the phone call.
  • 18. The non-transitory computer readable storage medium of claim 17, wherein the one or more programs further comprise instructions, which when executed by the one or more processors, cause the electronic device to: detect a first dropping of the electronic device from a second raised pose; andin accordance with detecting the first dropping, terminate the phone call.
  • 19. The non-transitory computer readable storage medium of claim 1, wherein the one or more programs further comprise instructions, which when executed by the one or more processors, cause the electronic device to: in accordance with a determination to transmit the communication to the external electronic device: open a communication channel in the communication session with the external electronic device; and wherein:the communication includes a communication of the communication session with the external electronic device.
  • 20. The non-transitory computer readable storage medium of claim 19, wherein the one or more programs further comprise instructions, which when executed by the one or more processors, cause the electronic device to: detect a second dropping of the electronic device from a third raised pose; andin accordance with detecting the second dropping, close the communication channel.
  • 21. The non-transitory computer readable storage medium of claim 1, wherein the communication includes a response to a message received from the external electronic device.
  • 22. An electronic device, comprising: a microphone;one or more processors;a memory; andone or more programs, wherein the one or more programs are stored in the memory and configured to be executed by the one or more processors, the one or more programs including instructions for: detecting input representing motion of the electronic device;sampling, with the microphone, a spoken audio input;determining a context of the electronic device, wherein a predetermined type of context representing communication with an external electronic device includes that the electronic device is currently receiving a first communication from the external electronic device or that the electronic device is currently engaged in a communication session with the external electronic device;in accordance with a determination that the context is the predetermined type of context representing communication with the external electronic device: determining, based on the same spoken audio input and the input representing motion of the electronic device, whether to transmit a communication including a content of the same spoken audio input to the external electronic device;in accordance with a determination to transmit the communication including the content of the same spoken audio input to the external electronic device, transmitting the communication including the content of the same spoken audio input to the external electronic device; andin accordance with a determination not to transmit the communication to the external electronic device, forgoing transmitting the communication to the external electronic device.
  • 23. The electronic device of claim 22, wherein the one or more programs further include instructions for: in accordance with a determination that the context is not the predetermined type of context representing communication with the external electronic device: determining, based on the spoken audio input and the input representing motion of the electronic device, whether to initiate a virtual assistant session.
  • 24. The electronic device of claim 22, wherein the predetermined type of context includes that a second communication from the external electronic device has been received within a first predetermined duration before a current time.
  • 25. The electronic device of claim 22, wherein the communication including the content of the spoken audio input includes a signal representing the audio content of the spoken audio input.
  • 26. The electronic device of claim 22, wherein the one or more programs further include instructions for: determining a textual representation of the spoken audio input; andwherein the communication including the content of the spoken audio input includes a signal representing the textual representation of the spoken audio input.
  • 27. The electronic device of claim 22, wherein the motion of the electronic device includes a transition of the electronic device between two or more of: a dropped pose, a raising pose, a raised pose, and a dropping pose.
  • 28. The electronic device of claim 27, wherein determining whether to transmit the communication to the external electronic device includes: determining based on the input representing motion of the electronic device, whether the motion of the electronic device includes a transition from the raising pose to the raised pose.
  • 29. The electronic device of claim 28, wherein determining whether to transmit the communication to the external electronic device includes: determining a duration of the transition from the raising pose to the raised pose.
  • 30. The electronic device of claim 28, wherein: the spoken audio input is sampled at a first time;the transition from the raising pose to the raised pose is associated with a second time; anddetermining whether to transmit the communication to the external electronic device includes determining whether to transmit the communication to the external electronic device based on the first time and the second time.
  • 31. The electronic device of claim 27, wherein determining whether to transmit the communication to the external electronic device includes: determining, based on the input representing motion of the electronic device, whether a duration of the raised pose exceeds a second predetermined duration.
  • 32. The electronic device of claim 27, wherein determining whether to transmit the communication to the external electronic device includes determining whether to transmit the communication to the external electronic device based on a motion model.
  • 33. The electronic device of claim 32, wherein the one or more programs further include instructions for: determining, using the motion model, a probability of the transition of the electronic device between two or more poses of a plurality of poses including the dropped pose, the raising pose, the raised pose, and the dropping pose; anddetermining, using the motion model, a probability of a pose of the plurality of poses.
  • 34. The electronic device of claim 22, wherein determining whether to transmit the communication to the external electronic device includes determining whether the spoken audio input includes human speech.
  • 35. The electronic device of claim 34, wherein determining whether the spoken audio input includes human speech includes determining whether the spoken audio input includes human speech spoken by an authorized user of the electronic device.
  • 36. The electronic device of claim 22, wherein determining whether to transmit the communication to the external electronic device includes determining a direction associated with the spoken audio input.
  • 37. The electronic device of claim 22, wherein determining whether to transmit the communication to the external electronic device includes: determining, at a third time, whether to transmit the communication to the external electronic device based on the spoken audio input;determining, at a fourth time, whether to transmit the communication to the external electronic device based on the input representing motion of the electronic device; anddetermining whether the third time and the fourth time are within a third predetermined duration; andwherein transmitting the communication to the external electronic device is performed in accordance with a determination that the third time and the fourth time are within the third predetermined duration.
  • 38. The electronic device of claim 22, wherein the one or more programs further include instructions for: in accordance with a determination to transmit the communication to the external electronic device: answering a phone call; and wherein:the communication includes an answer to the phone call.
  • 39. The electronic device of claim 38, wherein the one or more programs further include instructions for: detecting a first dropping of the electronic device from a second raised pose; andin accordance with detecting the first dropping, terminating the phone call.
  • 40. The electronic device of claim 22, wherein the one or more programs further include instructions for: in accordance with a determination to transmit the communication to the external electronic device: opening a communication channel in the communication session with the external electronic device; and wherein:the communication includes a communication of the communication session with the external electronic device.
  • 41. The electronic device of claim 40, wherein the one or more programs further include instructions for: detecting a second dropping of the electronic device from a third raised pose; andin accordance with detecting the second dropping, closing the communication channel.
  • 42. The electronic device of claim 22, wherein the communication includes a response to a message received from the external electronic device.
  • 43. A method, comprising: at an electronic device with a microphone: detecting input representing motion of the electronic device;sampling, with the microphone, a spoken audio input;determining a context of the electronic device, wherein a predetermined type of context representing communication with an external electronic device includes that the electronic device is currently receiving a first communication from the external electronic device or that the electronic device is currently engaged in a communication session with the external electronic device;in accordance with a determination that the context is the predetermined type of context representing communication with the external electronic device: determining, based on the same spoken audio input and the input representing motion of the electronic device, whether to transmit a communication including a content of the same spoken audio input to the external electronic device;in accordance with a determination to transmit the communication including the content of the same spoken audio input to the external electronic device, transmitting the communication including the content of the same spoken audio input to the external electronic device; andin accordance with a determination not to transmit the communication to the external electronic device, forgoing transmitting the communication to the external electronic device.
  • 44. The method of claim 43, further comprising: in accordance with a determination that the context is not the predetermined type of context representing communication with the external electronic device: determining, based on the spoken audio input and the input representing motion of the electronic device, whether to initiate a virtual assistant session.
  • 45. The method of claim 43, wherein the predetermined type of context includes that a second communication from the external electronic device has been received within a first predetermined duration before a current time.
  • 46. The method of claim 43, wherein the communication including the content of the spoken audio input includes a signal representing the audio content of the spoken audio input.
  • 47. The method of claim 43, further comprising: determining a textual representation of the spoken audio input; andwherein the communication including the content of the spoken audio input includes a signal representing the textual representation of the spoken audio input.
  • 48. The method of claim 43, wherein the motion of the electronic device includes a transition of the electronic device between two or more of: a dropped pose, a raising pose, a raised pose, and a dropping pose.
  • 49. The method of claim 48, wherein determining whether to transmit the communication to the external electronic device includes: determining based on the input representing motion of the electronic device, whether the motion of the electronic device includes a transition from the raising pose to the raised pose.
  • 50. The method of claim 49, wherein determining whether to transmit the communication to the external electronic device includes: determining a duration of the transition from the raising pose to the raised pose.
  • 51. The method of claim 49, wherein: the spoken audio input is sampled at a first time;the transition from the raising pose to the raised pose is associated with a second time; anddetermining whether to transmit the communication to the external electronic device includes determining whether to transmit the communication to the external electronic device based on the first time and the second time.
  • 52. The method of claim 48, wherein determining whether to transmit the communication to the external electronic device includes: determining, based on the input representing motion of the electronic device, whether a duration of the raised pose exceeds a second predetermined duration.
  • 53. The method of claim 48, wherein determining whether to transmit the communication to the external electronic device includes determining whether to transmit the communication to the external electronic device based on a motion model.
  • 54. The method of claim 53, further comprising: determining, using the motion model, a probability of the transition of the electronic device between two or more poses of a plurality of poses including the dropped pose, the raising pose, the raised pose, and the dropping pose; anddetermining, using the motion model, a probability of a pose of the plurality of poses.
  • 55. The method of claim 43, wherein determining whether to transmit the communication to the external electronic device includes determining whether the spoken audio input includes human speech.
  • 56. The method of claim 55, wherein determining whether the spoken audio input includes human speech includes determining whether the spoken audio input includes human speech spoken by an authorized user of the electronic device.
  • 57. The method of claim 43, wherein determining whether to transmit the communication to the external electronic device includes determining a direction associated with the spoken audio input.
  • 58. The method of claim 43, wherein determining whether to transmit the communication to the external electronic device includes: determining, at a third time, whether to transmit the communication to the external electronic device based on the spoken audio input;determining, at a fourth time, whether to transmit the communication to the external electronic device based on the input representing motion of the electronic device; anddetermining whether the third time and the fourth time are within a third predetermined duration; andwherein transmitting the communication to the external electronic device is performed in accordance with a determination that the third time and the fourth time are within the third predetermined duration.
  • 59. The method of claim 43, further comprising: in accordance with a determination to transmit the communication to the external electronic device: answering a phone call; and wherein:the communication includes an answer to the phone call.
  • 60. The method of claim 59, further comprising: detecting a first dropping of the electronic device from a second raised pose; andin accordance with detecting the first dropping, terminating the phone call.
  • 61. The method of claim 43, further comprising: in accordance with a determination to transmit the communication to the external electronic device: opening a communication channel in the communication session with the external electronic device; and wherein:the communication includes a communication of the communication session with the external electronic device.
  • 62. The method of claim 61, further comprising: detecting a second dropping of the electronic device from a third raised pose; andin accordance with detecting the second dropping, closing the communication channel.
  • 63. The method of claim 43, wherein the communication includes a response to a message received from the external electronic device.
Parent Case Info

This application is a continuation of U.S. patent application Ser. No. 16/032,487 entitled “RAISE TO SPEAK,” filed on Jul. 11, 2018, which claims priority to U.S. Patent Application No. 62/668,154, entitled “RAISE TO SPEAK,” filed on May 7, 2018, and to U.S. Patent Application No. 62/679,798, entitled “RAISE TO SPEAK,” filed on Jun. 2, 2018. The contents of each of these applications are hereby incorporated by reference in their entireties.

US Referenced Citations (3210)
Number Name Date Kind
7643990 Bellegarda Jan 2010 B1
7647225 Bennett et al. Jan 2010 B2
7649454 Singh et al. Jan 2010 B2
7649877 Vieri et al. Jan 2010 B2
7653883 Hotelling et al. Jan 2010 B2
7656393 King et al. Feb 2010 B2
7657424 Bennett Feb 2010 B2
7657430 Ogawa Feb 2010 B2
7657828 Lucas et al. Feb 2010 B2
7657844 Gibson et al. Feb 2010 B2
7657849 Chaudhri et al. Feb 2010 B2
7660715 Thambiratnam Feb 2010 B1
7663607 Hotelling et al. Feb 2010 B2
7664558 Lindahl et al. Feb 2010 B2
7664638 Cooper et al. Feb 2010 B2
7668710 Doyle Feb 2010 B2
7669134 Christie et al. Feb 2010 B1
7672841 Bennett Mar 2010 B2
7672952 Isaacson et al. Mar 2010 B2
7673238 Girish et al. Mar 2010 B2
7673251 Wibisono Mar 2010 B1
7673340 Cohen et al. Mar 2010 B1
7676026 Baxter, Jr. Mar 2010 B1
7676365 Hwang et al. Mar 2010 B2
7676463 Thompson et al. Mar 2010 B2
7679534 Kay et al. Mar 2010 B2
7680649 Park Mar 2010 B2
7681126 Roose Mar 2010 B2
7683886 Willey Mar 2010 B2
7683893 Kim Mar 2010 B2
7684985 Dominach et al. Mar 2010 B2
7684990 Caskey et al. Mar 2010 B2
7684991 Stohr et al. Mar 2010 B2
7689245 Cox et al. Mar 2010 B2
7689408 Chen et al. Mar 2010 B2
7689409 Heinecke Mar 2010 B2
7689412 Wu et al. Mar 2010 B2
7689421 Li et al. Mar 2010 B2
7689916 Goel et al. Mar 2010 B1
7693715 Hwang et al. Apr 2010 B2
7693717 Kahn et al. Apr 2010 B2
7693719 Chu et al. Apr 2010 B2
7693720 Kennewick et al. Apr 2010 B2
7698131 Bennett Apr 2010 B2
7698136 Nguyen et al. Apr 2010 B1
7702500 Blaedow Apr 2010 B2
7702508 Bennett Apr 2010 B2
7703091 Martin et al. Apr 2010 B1
7706510 Ng Apr 2010 B2
7707026 Liu Apr 2010 B2
7707027 Balchandran et al. Apr 2010 B2
7707032 Wang et al. Apr 2010 B2
7707221 Dunning et al. Apr 2010 B1
7707226 Tonse Apr 2010 B1
7707267 Lisitsa et al. Apr 2010 B2
7710262 Ruha May 2010 B2
7711129 Lindahl et al. May 2010 B2
7711550 Feinberg et al. May 2010 B1
7711565 Gazdzinski May 2010 B1
7711672 Au May 2010 B2
7712053 Bradford et al. May 2010 B2
7716056 Weng et al. May 2010 B2
7716077 Mikurak May 2010 B1
7716216 Harik et al. May 2010 B1
7720674 Kaiser et al. May 2010 B2
7720683 Vermeulen et al. May 2010 B1
7721226 Barabe et al. May 2010 B2
7721301 Wong et al. May 2010 B2
7724242 Hillis et al. May 2010 B2
7724696 Parekh May 2010 B1
7725307 Bennett May 2010 B2
7725318 Gavalda et al. May 2010 B2
7725320 Bennett May 2010 B2
7725321 Bennett May 2010 B2
7725419 Lee et al. May 2010 B2
7725838 Williams May 2010 B2
7729904 Bennett Jun 2010 B2
7729916 Coffman et al. Jun 2010 B2
7734461 Kwak et al. Jun 2010 B2
7735012 Naik Jun 2010 B2
7739588 Reynar et al. Jun 2010 B2
7742953 King et al. Jun 2010 B2
7743188 Haitani et al. Jun 2010 B2
7747616 Yamada et al. Jun 2010 B2
7752152 Paek et al. Jul 2010 B2
7756707 Garner et al. Jul 2010 B2
7756708 Cohen et al. Jul 2010 B2
7756868 Lee Jul 2010 B2
7756871 Yacoub et al. Jul 2010 B2
7757173 Beaman Jul 2010 B2
7757176 Vakil et al. Jul 2010 B2
7757182 Elliott et al. Jul 2010 B2
7761296 Bakis et al. Jul 2010 B1
7763842 Hsu et al. Jul 2010 B2
7770104 Scopes Aug 2010 B2
7774202 Spengler et al. Aug 2010 B2
7774204 Mozer et al. Aug 2010 B2
7774388 Runchey Aug 2010 B1
7774753 Reilly et al. Aug 2010 B1
7777717 Fux et al. Aug 2010 B2
7778432 Larsen Aug 2010 B2
7778595 White et al. Aug 2010 B2
7778632 Kurlander et al. Aug 2010 B2
7778830 Davis et al. Aug 2010 B2
7779069 Frid-Nielsen et al. Aug 2010 B2
7779353 Grigoriu et al. Aug 2010 B2
7779356 Griesmer Aug 2010 B2
7779357 Naik Aug 2010 B2
7783283 Kuusinen et al. Aug 2010 B2
7783486 Rosser et al. Aug 2010 B2
7788590 Taboada et al. Aug 2010 B2
7788663 Illowsky et al. Aug 2010 B2
7796980 Mckinney et al. Sep 2010 B1
7797265 Brinker et al. Sep 2010 B2
7797269 Rieman et al. Sep 2010 B2
7797331 Theimer et al. Sep 2010 B2
7797338 Feng et al. Sep 2010 B2
7797629 Fux et al. Sep 2010 B2
7801721 Rosart et al. Sep 2010 B2
7801728 Ben-David et al. Sep 2010 B2
7801729 Mozer Sep 2010 B2
7805299 Coifman Sep 2010 B2
7809550 Barrows Oct 2010 B1
7809565 Coifman Oct 2010 B2
7809569 Attwater et al. Oct 2010 B2
7809570 Kennewick et al. Oct 2010 B2
7809610 Cao Oct 2010 B2
7809744 Nevidomski et al. Oct 2010 B2
7813729 Lee et al. Oct 2010 B2
7818165 Carigren et al. Oct 2010 B2
7818176 Freeman et al. Oct 2010 B2
7818215 King et al. Oct 2010 B2
7818291 Ferguson et al. Oct 2010 B2
7818672 Mccormack et al. Oct 2010 B2
7822608 Cross, Jr. et al. Oct 2010 B2
7823123 Sabbouh Oct 2010 B2
7826945 Zhang et al. Nov 2010 B2
7827047 Anderson et al. Nov 2010 B2
7831246 Smith et al. Nov 2010 B1
7831423 Schubert Nov 2010 B2
7831426 Bennett Nov 2010 B2
7831432 Bodin et al. Nov 2010 B2
7835504 Donald et al. Nov 2010 B1
7836437 Kacmarcik Nov 2010 B2
7840348 Kim et al. Nov 2010 B2
7840400 Lavi et al. Nov 2010 B2
7840447 Kleinrock et al. Nov 2010 B2
7840581 Ross et al. Nov 2010 B2
7840912 Elias et al. Nov 2010 B2
7844394 Kim Nov 2010 B2
7848924 Nurminen et al. Dec 2010 B2
7848926 Goto et al. Dec 2010 B2
7853444 Wang et al. Dec 2010 B2
7853445 Bachenko et al. Dec 2010 B2
7853574 Kraenzel et al. Dec 2010 B2
7853577 Sundaresan et al. Dec 2010 B2
7853664 Wang et al. Dec 2010 B1
7853900 Nguyen et al. Dec 2010 B2
7861164 Qin Dec 2010 B2
7865817 Ryan et al. Jan 2011 B2
7869998 Fabbrizio et al. Jan 2011 B1
7869999 Amato et al. Jan 2011 B2
7870118 Jiang et al. Jan 2011 B2
7870133 Krishnamoorthy et al. Jan 2011 B2
7873149 Schultz et al. Jan 2011 B2
7873519 Bennett Jan 2011 B2
7873523 Potter et al. Jan 2011 B2
7873654 Bernard Jan 2011 B2
7877705 Chambers et al. Jan 2011 B2
7880730 Robinson et al. Feb 2011 B2
7881283 Cormier et al. Feb 2011 B2
7881936 Longe et al. Feb 2011 B2
7885390 Chaudhuri et al. Feb 2011 B2
7885844 Cohen et al. Feb 2011 B1
7886233 Rainisto et al. Feb 2011 B2
7889101 Yokota Feb 2011 B2
7889184 Blumenberg et al. Feb 2011 B2
7889185 Blumenberg et al. Feb 2011 B2
7890329 Wu et al. Feb 2011 B2
7890330 Ozkaragoz et al. Feb 2011 B2
7890652 Bull et al. Feb 2011 B2
7895039 Braho et al. Feb 2011 B2
7895531 Radtke et al. Feb 2011 B2
7899666 Varone Mar 2011 B2
7904297 Mirkovic et al. Mar 2011 B2
7908287 Katragadda Mar 2011 B1
7912289 Kansal et al. Mar 2011 B2
7912699 Saraclar et al. Mar 2011 B1
7912702 Bennett Mar 2011 B2
7912720 Hakkani-Tur et al. Mar 2011 B1
7912828 Bonnet et al. Mar 2011 B2
7913185 Benson et al. Mar 2011 B1
7916979 Simmons Mar 2011 B2
7917364 Yacoub Mar 2011 B2
7917367 Di Cristo et al. Mar 2011 B2
7917497 Harrison et al. Mar 2011 B2
7920678 Cooper et al. Apr 2011 B2
7920682 Byrne et al. Apr 2011 B2
7920857 Lau et al. Apr 2011 B2
7925525 Chin Apr 2011 B2
7925610 Elbaz et al. Apr 2011 B2
7929805 Wang et al. Apr 2011 B2
7930168 Weng et al. Apr 2011 B2
7930183 Odell et al. Apr 2011 B2
7930197 Ozzie et al. Apr 2011 B2
7933399 Knott et al. Apr 2011 B2
7936339 Marggraff et al. May 2011 B2
7936861 Knott et al. May 2011 B2
7936863 John et al. May 2011 B2
7937075 Zellner May 2011 B2
7941009 Li et al. May 2011 B2
7945294 Zhang et al. May 2011 B2
7945470 Cohen et al. May 2011 B1
7949529 Weider et al. May 2011 B2
7949534 Davis et al. May 2011 B2
7949752 White et al. May 2011 B2
7953679 Chidlovskii et al. May 2011 B2
7957975 Burns et al. Jun 2011 B2
7958136 Curtis et al. Jun 2011 B1
7962179 Huang Jun 2011 B2
7974835 Balchandran et al. Jul 2011 B2
7974844 Sumita Jul 2011 B2
7974972 Cao Jul 2011 B2
7975216 Woolf et al. Jul 2011 B2
7983478 Liu et al. Jul 2011 B2
7983915 Knight et al. Jul 2011 B2
7983917 Kennewick et al. Jul 2011 B2
7983919 Conkie Jul 2011 B2
7983997 Allen et al. Jul 2011 B2
7984062 Dunning et al. Jul 2011 B2
7986431 Emori et al. Jul 2011 B2
7987151 Schott et al. Jul 2011 B2
7987176 Latzina et al. Jul 2011 B2
7987244 Lewis et al. Jul 2011 B1
7991614 Washio et al. Aug 2011 B2
7992085 Wang-Aryattanwanich et al. Aug 2011 B2
7996228 Miller et al. Aug 2011 B2
7996589 Schultz et al. Aug 2011 B2
7996769 Fux et al. Aug 2011 B2
7996792 Anzures et al. Aug 2011 B2
7999669 Singh et al. Aug 2011 B2
8000453 Cooper et al. Aug 2011 B2
8001125 Magdalin et al. Aug 2011 B1
8005664 Hanumanthappa Aug 2011 B2
8005679 Jordan et al. Aug 2011 B2
8006180 Tunning et al. Aug 2011 B2
8010367 Muschett et al. Aug 2011 B2
8010614 Musat et al. Aug 2011 B1
8014308 Gates, III et al. Sep 2011 B2
8015006 Kennewick et al. Sep 2011 B2
8015011 Nagano et al. Sep 2011 B2
8015144 Zheng et al. Sep 2011 B2
8018431 Zehr et al. Sep 2011 B1
8019271 Izdepski Sep 2011 B1
8019604 Ma Sep 2011 B2
8020104 Robarts et al. Sep 2011 B2
8024195 Mozer et al. Sep 2011 B2
8024415 Horvitz et al. Sep 2011 B2
8027836 Baker et al. Sep 2011 B2
8031943 Chen et al. Oct 2011 B2
8032383 Bhardwaj et al. Oct 2011 B1
8032409 Mikurak Oct 2011 B1
8036901 Mozer Oct 2011 B2
8037034 Plachta et al. Oct 2011 B2
8041557 Liu Oct 2011 B2
8041570 Mirkovic et al. Oct 2011 B2
8041611 Kleinrock et al. Oct 2011 B2
8042053 Darwish et al. Oct 2011 B2
8046231 Hirota et al. Oct 2011 B2
8046363 Cha et al. Oct 2011 B2
8046374 Bromwich Oct 2011 B1
8050500 Batty et al. Nov 2011 B1
8050919 Das Nov 2011 B2
8054180 Scofield et al. Nov 2011 B1
8055296 Persson et al. Nov 2011 B1
8055502 Clark et al. Nov 2011 B2
8055708 Chitsaz et al. Nov 2011 B2
8056070 Goller et al. Nov 2011 B2
8060824 Brownrigg, Jr. et al. Nov 2011 B2
8064753 Freeman Nov 2011 B2
8065143 Yanagihara Nov 2011 B2
8065155 Gazdzinski Nov 2011 B1
8065156 Gazdzinski Nov 2011 B2
8068604 Leeds et al. Nov 2011 B2
8069046 Kennewick et al. Nov 2011 B2
8069422 Sheshagiri et al. Nov 2011 B2
8073681 Baldwin et al. Dec 2011 B2
8073695 Hendricks et al. Dec 2011 B1
8077153 Benko et al. Dec 2011 B2
8078473 Gazdzinski Dec 2011 B1
8078978 Perry et al. Dec 2011 B2
8082153 Coffman et al. Dec 2011 B2
8082498 Salamon et al. Dec 2011 B2
8090571 Elshishiny et al. Jan 2012 B2
8095364 Longe et al. Jan 2012 B2
8099289 Mozer et al. Jan 2012 B2
8099395 Pabla et al. Jan 2012 B2
8099418 Inoue et al. Jan 2012 B2
8103510 Sato Jan 2012 B2
8103947 Lunt et al. Jan 2012 B2
8107401 John et al. Jan 2012 B2
8112275 Kennewick et al. Feb 2012 B2
8112280 Lu Feb 2012 B2
8117026 Lee et al. Feb 2012 B2
8117037 Gazdzinski Feb 2012 B2
8117542 Radtke et al. Feb 2012 B2
8121413 Hwang et al. Feb 2012 B2
8121837 Agapi et al. Feb 2012 B2
8122094 Kotab Feb 2012 B1
8122353 Bouta Feb 2012 B2
8130929 Wilkes et al. Mar 2012 B2
8131557 Davis et al. Mar 2012 B2
8135115 Hogg, Jr. et al. Mar 2012 B1
8138912 Singh et al. Mar 2012 B2
8140330 Cevik et al. Mar 2012 B2
8140335 Kennewick et al. Mar 2012 B2
8140368 Eggenberger et al. Mar 2012 B2
8140567 Padovitz et al. Mar 2012 B2
8145489 Freeman et al. Mar 2012 B2
8150694 Kennewick et al. Apr 2012 B2
8150700 Shin et al. Apr 2012 B2
8155956 Cho et al. Apr 2012 B2
8156005 Vieri Apr 2012 B2
8160877 Nucci et al. Apr 2012 B1
8160883 Lecoeuche Apr 2012 B2
8165321 Paquier et al. Apr 2012 B2
8165886 Gagnon et al. Apr 2012 B1
8166019 Lee et al. Apr 2012 B1
8166032 Sommer et al. Apr 2012 B2
8170790 Lee et al. May 2012 B2
8170966 Musat et al. May 2012 B1
8171137 Parks et al. May 2012 B1
8175872 Kristjansson et al. May 2012 B2
8175876 Bou-Ghazale et al. May 2012 B2
8179370 Yamasani et al. May 2012 B1
8188856 Singh et al. May 2012 B2
8190359 Bourne May 2012 B2
8190596 Nambiar et al. May 2012 B2
8194827 Jaiswal et al. Jun 2012 B2
8195460 Degani et al. Jun 2012 B2
8195467 Mozer et al. Jun 2012 B2
8195468 Weider et al. Jun 2012 B2
8200489 Baggenstoss Jun 2012 B1
8200495 Braho et al. Jun 2012 B2
8201109 Van Os et al. Jun 2012 B2
8204238 Mozer Jun 2012 B2
8205788 Gazdzinski et al. Jun 2012 B1
8209183 Patel et al. Jun 2012 B1
8213911 Williams et al. Jul 2012 B2
8219115 Nelissen Jul 2012 B1
8219406 Yu et al. Jul 2012 B2
8219407 Roy et al. Jul 2012 B1
8219555 Mianji Jul 2012 B1
8219608 Aisafadi et al. Jul 2012 B2
8224649 Chaudhari et al. Jul 2012 B2
8224757 Bohle Jul 2012 B2
8228299 Maloney et al. Jul 2012 B1
8233919 Haag et al. Jul 2012 B2
8234111 Lloyd et al. Jul 2012 B2
8239206 Lebeau et al. Aug 2012 B1
8239207 Seligman et al. Aug 2012 B2
8244545 Paek et al. Aug 2012 B2
8244712 Serlet et al. Aug 2012 B2
8250071 Killalea et al. Aug 2012 B1
8254829 Kindred et al. Aug 2012 B1
8255216 White Aug 2012 B2
8255217 Stent et al. Aug 2012 B2
8260117 Xu et al. Sep 2012 B1
8260247 Lazaridis et al. Sep 2012 B2
8260617 Dhanakshirur et al. Sep 2012 B2
8260619 Bansal et al. Sep 2012 B1
8270933 Riemer et al. Sep 2012 B2
8271287 Kermani Sep 2012 B1
8275621 Alewine et al. Sep 2012 B2
8275736 Guo et al. Sep 2012 B2
8279171 Hirai et al. Oct 2012 B2
8280438 Barbera Oct 2012 B2
8285546 Reich Oct 2012 B2
8285551 Gazdzinski Oct 2012 B2
8285553 Gazdzinski Oct 2012 B2
8285737 Lynn et al. Oct 2012 B1
8290777 Nguyen et al. Oct 2012 B1
8290778 Gazdzinski Oct 2012 B2
8290781 Gazdzinski Oct 2012 B2
8296124 Holsztynska et al. Oct 2012 B1
8296145 Clark et al. Oct 2012 B2
8296146 Gazdzinski Oct 2012 B2
8296153 Gazdzinski Oct 2012 B2
8296380 Kelly et al. Oct 2012 B1
8296383 Lindahl Oct 2012 B2
8300776 Davies et al. Oct 2012 B2
8300801 Sweeney et al. Oct 2012 B2
8301456 Gazdzinski Oct 2012 B2
8311189 Champlin et al. Nov 2012 B2
8311834 Gazdzinski Nov 2012 B1
8311835 Lecoeuche Nov 2012 B2
8311838 Lindahl et al. Nov 2012 B2
8312017 Martin et al. Nov 2012 B2
8321786 Lunati Nov 2012 B2
8326627 Kennewick et al. Dec 2012 B2
8332205 Krishnan et al. Dec 2012 B2
8332218 Cross et al. Dec 2012 B2
8332224 Di Cristo et al. Dec 2012 B2
8332748 Karam Dec 2012 B1
8335689 Wittenstein et al. Dec 2012 B2
8340975 Rosenberger Dec 2012 B1
8345665 Vieri et al. Jan 2013 B2
8346563 Hjelm et al. Jan 2013 B1
8346757 Lamping et al. Jan 2013 B1
8352183 Thota et al. Jan 2013 B2
8352268 Naik et al. Jan 2013 B2
8352272 Rogers et al. Jan 2013 B2
8355919 Silverman et al. Jan 2013 B2
8359234 Vieri Jan 2013 B2
8370145 Endo et al. Feb 2013 B2
8370158 Gazdzinski Feb 2013 B2
8371503 Gazdzinski Feb 2013 B2
8374871 Ehsani et al. Feb 2013 B2
8375320 Kotler et al. Feb 2013 B2
8380504 Peden et al. Feb 2013 B1
8380507 Herman et al. Feb 2013 B2
8381107 Rottier et al. Feb 2013 B2
8381135 Hotelling et al. Feb 2013 B2
8386485 Kerschberg et al. Feb 2013 B2
8386926 Matsuoka et al. Feb 2013 B1
8391844 Novick et al. Mar 2013 B2
8396714 Rogers et al. Mar 2013 B2
8396715 Odell et al. Mar 2013 B2
8401163 Kirchhoff et al. Mar 2013 B1
8406745 Upadhyay et al. Mar 2013 B1
8407239 Dean et al. Mar 2013 B2
8423288 Stahl et al. Apr 2013 B2
8428758 Naik et al. Apr 2013 B2
8433572 Caskey et al. Apr 2013 B2
8433778 Shreesha et al. Apr 2013 B1
8434133 Kulkarni et al. Apr 2013 B2
8442821 Vanhoucke May 2013 B1
8447612 Gazdzinski May 2013 B2
8452597 Bringert et al. May 2013 B2
8452602 Bringert et al. May 2013 B1
8453058 Coccaro et al. May 2013 B1
8457959 Kaiser Jun 2013 B2
8458115 Cai et al. Jun 2013 B2
8458278 Christie et al. Jun 2013 B2
8463592 Lu et al. Jun 2013 B2
8464150 Davidson et al. Jun 2013 B2
8473289 Jitkoff et al. Jun 2013 B2
8477323 Low et al. Jul 2013 B2
8478816 Parks et al. Jul 2013 B2
8479122 Hotelling et al. Jul 2013 B2
8484027 Murphy Jul 2013 B1
8489599 Bellotti Jul 2013 B2
8498857 Kopparapu et al. Jul 2013 B2
8514197 Shahraray et al. Aug 2013 B2
8515736 Duta Aug 2013 B1
8515750 Lei et al. Aug 2013 B1
8521513 Millett et al. Aug 2013 B2
8521526 Lloyd et al. Aug 2013 B1
8521531 Kim Aug 2013 B1
8527276 Senior et al. Sep 2013 B1
8533266 Koulomzin et al. Sep 2013 B2
8537033 Gueziec Sep 2013 B2
8539342 Lewis Sep 2013 B1
8543375 Hong Sep 2013 B2
8543397 Nguyen Sep 2013 B1
8543398 Strope et al. Sep 2013 B1
8560229 Park et al. Oct 2013 B1
8560366 Mikurak Oct 2013 B2
8571528 Channakeshava Oct 2013 B1
8571851 Tickner et al. Oct 2013 B1
8577683 Dewitt Nov 2013 B2
8583416 Huang et al. Nov 2013 B2
8583511 Hendrickson Nov 2013 B2
8583638 Donelli Nov 2013 B2
8589156 Burke et al. Nov 2013 B2
8589161 Kennewick et al. Nov 2013 B2
8589374 Chaudhari Nov 2013 B2
8589869 Wolfram Nov 2013 B2
8589911 Sharkey et al. Nov 2013 B1
8595004 Koshinaka Nov 2013 B2
8595642 Lagassey Nov 2013 B1
8600743 Lindahl et al. Dec 2013 B2
8600746 Lei et al. Dec 2013 B1
8600930 Sata et al. Dec 2013 B2
8606090 Eyer Dec 2013 B2
8606568 Tickner et al. Dec 2013 B1
8606576 Barr et al. Dec 2013 B1
8606577 Stewart et al. Dec 2013 B1
8615221 Cosenza et al. Dec 2013 B1
8620659 Di Cristo et al. Dec 2013 B2
8620662 Bellegarda Dec 2013 B2
8626681 Jurca et al. Jan 2014 B1
8630841 Van Caldwell et al. Jan 2014 B2
8635073 Chang Jan 2014 B2
8638363 King et al. Jan 2014 B2
8639516 Lindahl et al. Jan 2014 B2
8645128 Agiomyrgiannakis Feb 2014 B1
8645137 Bellegarda et al. Feb 2014 B2
8645138 Weinstein et al. Feb 2014 B1
8654936 Eslambolchi et al. Feb 2014 B1
8655646 Lee et al. Feb 2014 B2
8655901 Li et al. Feb 2014 B1
8660843 Falcon et al. Feb 2014 B2
8660849 Gruber et al. Feb 2014 B2
8660924 Hoch et al. Feb 2014 B2
8660970 Fiedorowicz Feb 2014 B1
8661112 Creamer et al. Feb 2014 B2
8661340 Goldsmith et al. Feb 2014 B2
8670979 Gruber et al. Mar 2014 B2
8675084 Bolton et al. Mar 2014 B2
8676904 Lindahl Mar 2014 B2
8677377 Cheyer et al. Mar 2014 B2
8681950 Vlack et al. Mar 2014 B2
8682667 Haughay Mar 2014 B2
8687777 Lavian et al. Apr 2014 B1
8688446 Yanagihara Apr 2014 B2
8688453 Joshi et al. Apr 2014 B1
8689135 Portele et al. Apr 2014 B2
8694322 Snitkovskiy et al. Apr 2014 B2
8695074 Saraf et al. Apr 2014 B2
8696364 Cohen Apr 2014 B2
8706472 Ramerth et al. Apr 2014 B2
8706474 Blume et al. Apr 2014 B2
8706503 Cheyer et al. Apr 2014 B2
8707195 Fleizach et al. Apr 2014 B2
8712778 Thenthiruperai Apr 2014 B1
8713119 Lindahl et al. Apr 2014 B2
8713418 King et al. Apr 2014 B2
8719006 Bellegarda May 2014 B2
8719014 Wagner May 2014 B2
8719039 Sharifi May 2014 B1
8731610 Appaji May 2014 B2
8731912 Tickner et al. May 2014 B1
8731942 Cheyer et al. May 2014 B2
8739208 Davis et al. May 2014 B2
8744852 Seymour et al. Jun 2014 B1
8751971 Fleizach et al. Jun 2014 B2
8760537 Johnson et al. Jun 2014 B2
8762145 Ouchi et al. Jun 2014 B2
8762156 Chen Jun 2014 B2
8762469 Lindahl Jun 2014 B2
8768693 Somekh et al. Jul 2014 B2
8768702 Mason et al. Jul 2014 B2
8775154 Clinchant et al. Jul 2014 B2
8775177 Heigold et al. Jul 2014 B1
8775931 Fux et al. Jul 2014 B2
8781456 Prociw Jul 2014 B2
8781841 Wang Jul 2014 B1
8793301 Wegenkittl et al. Jul 2014 B2
8798255 Lubowich et al. Aug 2014 B2
8798995 Edara Aug 2014 B1
8799000 Guzzoni et al. Aug 2014 B2
8805690 Lebeau et al. Aug 2014 B1
8812299 Su Aug 2014 B1
8812302 Xiao et al. Aug 2014 B2
8812321 Gilbert et al. Aug 2014 B2
8823507 Touloumtzis Sep 2014 B1
8831947 Wasserblat et al. Sep 2014 B2
8831949 Smith et al. Sep 2014 B1
8838457 Cerra et al. Sep 2014 B2
8855915 Furuhata et al. Oct 2014 B2
8861925 Ohme Oct 2014 B1
8862252 Rottler et al. Oct 2014 B2
8868111 Kahn et al. Oct 2014 B1
8868409 Mengibar et al. Oct 2014 B1
8868469 Xu et al. Oct 2014 B2
8868529 Lerenc Oct 2014 B2
8880405 Cerra et al. Nov 2014 B2
8886534 Nakano et al. Nov 2014 B2
8886540 Cerra et al. Nov 2014 B2
8886541 Friedlander Nov 2014 B2
8892446 Cheyer et al. Nov 2014 B2
8893023 Perry et al. Nov 2014 B2
8897822 Martin Nov 2014 B2
8898064 Thomas et al. Nov 2014 B1
8898568 Bull et al. Nov 2014 B2
8903716 Chen et al. Dec 2014 B2
8909693 Frissora et al. Dec 2014 B2
8918321 Czahor Dec 2014 B2
8922485 Lloyd Dec 2014 B1
8930176 Li et al. Jan 2015 B2
8930191 Gruber et al. Jan 2015 B2
8938394 Faaborg et al. Jan 2015 B1
8938450 Spivack et al. Jan 2015 B2
8938688 Bradford et al. Jan 2015 B2
8942986 Cheyer et al. Jan 2015 B2
8943423 Merrill et al. Jan 2015 B2
8964947 Noolu et al. Feb 2015 B1
8972240 Brockett et al. Mar 2015 B2
8972432 Shaw et al. Mar 2015 B2
8972878 Mohler et al. Mar 2015 B2
8976063 Hawkins et al. Mar 2015 B1
8976108 Hawkins et al. Mar 2015 B2
8977255 Freeman et al. Mar 2015 B2
8983383 Haskin Mar 2015 B1
8989713 Doulton Mar 2015 B2
8990235 King et al. Mar 2015 B2
8994660 Neels et al. Mar 2015 B2
8995972 Cronin Mar 2015 B1
8996350 Dub et al. Mar 2015 B1
8996376 Fleizach et al. Mar 2015 B2
8996381 Mozer et al. Mar 2015 B2
8996639 Faaborg et al. Mar 2015 B1
9002714 Kim et al. Apr 2015 B2
9009046 Stewart Apr 2015 B1
9015036 Karov Zangvil et al. Apr 2015 B2
9020804 Barbaiani et al. Apr 2015 B2
9026425 Nikoulina et al. May 2015 B2
9026426 Wu et al. May 2015 B2
9031834 Coorman et al. May 2015 B2
9031970 Das et al. May 2015 B1
9037967 Al-Jefr et al. May 2015 B1
9043208 Koch et al. May 2015 B2
9043211 Haiut et al. May 2015 B2
9046932 Medlock et al. Jun 2015 B2
9049255 Macfarlane et al. Jun 2015 B2
9049295 Cooper et al. Jun 2015 B1
9053706 Jitkoff et al. Jun 2015 B2
9058105 Drory et al. Jun 2015 B2
9058332 Darby et al. Jun 2015 B1
9058811 Wang et al. Jun 2015 B2
9063979 Chiu et al. Jun 2015 B2
9064495 Torok et al. Jun 2015 B1
9065660 Ellis et al. Jun 2015 B2
9070247 Kuhn et al. Jun 2015 B2
9070366 Mathias et al. Jun 2015 B1
9071701 Donaldson et al. Jun 2015 B2
9075435 Noble et al. Jul 2015 B1
9076448 Bennett et al. Jul 2015 B2
9076450 Sadek et al. Jul 2015 B1
9081411 Kalns et al. Jul 2015 B2
9081482 Zhai et al. Jul 2015 B1
9082402 Yadgar et al. Jul 2015 B2
9083581 Addepalli et al. Jul 2015 B1
9094636 Sanders et al. Jul 2015 B1
9098467 Blanksteen et al. Aug 2015 B1
9101279 Ritchey et al. Aug 2015 B2
9112984 Sejnoha et al. Aug 2015 B2
9117447 Gruber et al. Aug 2015 B2
9123338 Sanders et al. Sep 2015 B1
9143907 Caldwell et al. Sep 2015 B1
9159319 Hoffmeister Oct 2015 B1
9164983 Liu et al. Oct 2015 B2
9171541 Kennewick et al. Oct 2015 B2
9171546 Pike Oct 2015 B1
9183845 Gopalakrishnan et al. Nov 2015 B1
9190062 Haughay Nov 2015 B2
9208153 Zaveri et al. Dec 2015 B1
9213754 Zhan et al. Dec 2015 B1
9218122 Thoma et al. Dec 2015 B2
9218809 Bellegarda et al. Dec 2015 B2
9218819 Stekkelpak et al. Dec 2015 B1
9223537 Brown et al. Dec 2015 B2
9236047 Rasmussen Jan 2016 B2
9241073 Rensburg et al. Jan 2016 B1
9251713 Giovanniello et al. Feb 2016 B1
9255812 Maeoka et al. Feb 2016 B2
9258604 Bilobrov et al. Feb 2016 B1
9262412 Yang et al. Feb 2016 B2
9262612 Cheyer Feb 2016 B2
9263058 Huang et al. Feb 2016 B2
9280535 Varma et al. Mar 2016 B2
9282211 Osawa Mar 2016 B2
9286910 Li et al. Mar 2016 B1
9292487 Weber Mar 2016 B1
9292489 Sak et al. Mar 2016 B1
9292492 Sarikaya et al. Mar 2016 B2
9299344 Braho et al. Mar 2016 B2
9300718 Khanna Mar 2016 B2
9301256 Mohan et al. Mar 2016 B2
9305543 Fleizach et al. Apr 2016 B2
9305548 Kennewick et al. Apr 2016 B2
9311308 Sankarasubramaniam et al. Apr 2016 B2
9311912 Swietlinski et al. Apr 2016 B1
9313317 Lebeau et al. Apr 2016 B1
9318108 Gruber et al. Apr 2016 B2
9325809 Barros et al. Apr 2016 B1
9325842 Siddiqi et al. Apr 2016 B1
9330659 Ju et al. May 2016 B2
9330668 Nanavati et al. May 2016 B2
9330720 Lee May 2016 B2
9335983 Breiner et al. May 2016 B2
9338493 Van Os et al. May 2016 B2
9349368 Lebeau et al. May 2016 B1
9355472 Kocienda et al. May 2016 B2
9361084 Costa Jun 2016 B1
9367541 Servan et al. Jun 2016 B1
9368114 Larson et al. Jun 2016 B2
9377871 Waddell et al. Jun 2016 B2
9378456 White et al. Jun 2016 B2
9378740 Rosen et al. Jun 2016 B1
9380155 Reding et al. Jun 2016 B1
9383827 Faaborg et al. Jul 2016 B1
9384185 Medlock et al. Jul 2016 B2
9390726 Smus et al. Jul 2016 B1
9396722 Chung et al. Jul 2016 B2
9401147 Jitkoff et al. Jul 2016 B2
9406224 Sanders et al. Aug 2016 B1
9406299 Gollan et al. Aug 2016 B2
9408182 Hurley et al. Aug 2016 B1
9412392 Lindahl Aug 2016 B2
9418650 Bharadwaj et al. Aug 2016 B2
9423266 Clark et al. Aug 2016 B2
9424246 Spencer et al. Aug 2016 B2
9424840 Hart et al. Aug 2016 B1
9431021 Scalise et al. Aug 2016 B1
9432499 Hajdu et al. Aug 2016 B2
9436918 Pantel et al. Sep 2016 B2
9437186 Liu et al. Sep 2016 B1
9437189 Epstein et al. Sep 2016 B2
9442687 Park et al. Sep 2016 B2
9443527 Watanabe et al. Sep 2016 B1
9454599 Golden et al. Sep 2016 B2
9454957 Mathias et al. Sep 2016 B1
9465798 Lin Oct 2016 B2
9465833 Aravamudan et al. Oct 2016 B2
9465864 Hu et al. Oct 2016 B2
9466027 Byrne et al. Oct 2016 B2
9466294 Tunstall-Pedoe et al. Oct 2016 B1
9471566 Zhang et al. Oct 2016 B1
9472196 Wang et al. Oct 2016 B1
9483388 Sankaranarasimhan et al. Nov 2016 B2
9483461 Fleizach et al. Nov 2016 B2
9484021 Mairesse et al. Nov 2016 B1
9495129 Fleizach et al. Nov 2016 B2
9501741 Cheyer et al. Nov 2016 B2
9502025 Kennewick et al. Nov 2016 B2
9508028 Bannister et al. Nov 2016 B2
9510044 Pereira et al. Nov 2016 B1
9514470 Topatan et al. Dec 2016 B2
9516014 Zafiroglu et al. Dec 2016 B2
9519453 Perkuhn et al. Dec 2016 B2
9524355 Forbes et al. Dec 2016 B2
9531862 Vadodaria Dec 2016 B1
9535906 Lee et al. Jan 2017 B2
9536527 Carlson Jan 2017 B1
9547647 Badaskar Jan 2017 B2
9548050 Gruber et al. Jan 2017 B2
9548979 Johnson et al. Jan 2017 B1
9569549 Jenkins et al. Feb 2017 B1
9575964 Yadgar et al. Feb 2017 B2
9578173 Sanghavi et al. Feb 2017 B2
9607612 Deleeuw Mar 2017 B2
9619200 Chakladar et al. Apr 2017 B2
9620113 Kennewick et al. Apr 2017 B2
9620126 Chiba Apr 2017 B2
9626955 Fleizach et al. Apr 2017 B2
9633004 Giuli et al. Apr 2017 B2
9633191 Fleizach et al. Apr 2017 B2
9633660 Haughay Apr 2017 B2
9652453 Mathur et al. May 2017 B2
9658746 Cohn et al. May 2017 B2
9659002 Medlock et al. May 2017 B2
9659298 Lynch et al. May 2017 B2
9665567 Li et al. May 2017 B2
9665662 Gautam et al. May 2017 B1
9668121 Naik et al. May 2017 B2
9672725 Dotan-cohen et al. Jun 2017 B2
9691378 Meyers et al. Jun 2017 B1
9697822 Naik et al. Jul 2017 B1
9697827 Lilly et al. Jul 2017 B1
9698999 Mutagi Jul 2017 B2
9720907 Bangalore et al. Aug 2017 B2
9721566 Newendorp et al. Aug 2017 B2
9721570 Beal et al. Aug 2017 B1
9723130 Rand Aug 2017 B2
9734817 Putrycz Aug 2017 B1
9734839 Adams Aug 2017 B1
9741343 Miles et al. Aug 2017 B1
9747083 Roman et al. Aug 2017 B1
9747093 Latino et al. Aug 2017 B2
9755605 Li et al. Sep 2017 B1
9760566 Heck et al. Sep 2017 B2
9767710 Lee et al. Sep 2017 B2
9786271 Combs et al. Oct 2017 B1
9792907 Booklet et al. Oct 2017 B2
9812128 Mixter et al. Nov 2017 B2
9813882 Masterman Nov 2017 B1
9818400 Paulik et al. Nov 2017 B2
9823811 Brown et al. Nov 2017 B2
9823828 Zambetti et al. Nov 2017 B2
9830044 Brown et al. Nov 2017 B2
9830449 Wagner Nov 2017 B1
9842584 Hart et al. Dec 2017 B1
9846685 Li Dec 2017 B2
9858925 Gruber et al. Jan 2018 B2
9858927 Williams et al. Jan 2018 B2
9886953 Lemay et al. Feb 2018 B2
9887949 Shepherd et al. Feb 2018 B2
9916839 Scalise et al. Mar 2018 B1
9922642 Pitschel et al. Mar 2018 B2
9934777 Joseph et al. Apr 2018 B1
9934785 Hulaud Apr 2018 B1
9946862 Yun et al. Apr 2018 B2
9948728 Linn et al. Apr 2018 B2
9959129 Kannan et al. May 2018 B2
9966065 Gruber et al. May 2018 B2
9966068 Cash et al. May 2018 B2
9967381 Kashimba et al. May 2018 B1
9971495 Shetty et al. May 2018 B2
9984686 Mutagi et al. May 2018 B1
9986419 Naik et al. May 2018 B2
9990129 Yang et al. Jun 2018 B2
9990176 Gray Jun 2018 B1
9998552 Ledet Jun 2018 B1
10001817 Zambetti et al. Jun 2018 B2
10013416 Bhardwaj et al. Jul 2018 B1
10013654 Levy et al. Jul 2018 B1
10013979 Roma et al. Jul 2018 B1
10019436 Huang Jul 2018 B2
10032451 Mamkina et al. Jul 2018 B1
10032455 Newman et al. Jul 2018 B2
10037758 Jing et al. Jul 2018 B2
10043516 Saddler et al. Aug 2018 B2
10049161 Kaneko Aug 2018 B2
10049663 Orr et al. Aug 2018 B2
10049668 Huang et al. Aug 2018 B2
10055681 Brown et al. Aug 2018 B2
10074360 Kim Sep 2018 B2
10074371 Wang et al. Sep 2018 B1
10083213 Podgorny et al. Sep 2018 B1
10083690 Giuli et al. Sep 2018 B2
10088972 Brown et al. Oct 2018 B2
10089072 Piersol et al. Oct 2018 B2
10096319 Jin et al. Oct 2018 B1
10101887 Bernstein et al. Oct 2018 B2
10102359 Cheyer Oct 2018 B2
10127901 Zhao et al. Nov 2018 B2
10127908 Deller et al. Nov 2018 B1
10134425 Johnson, Jr. Nov 2018 B1
10169329 Futrell et al. Jan 2019 B2
10170123 Orr et al. Jan 2019 B2
10170135 Pearce et al. Jan 2019 B1
10175879 Missig et al. Jan 2019 B2
10176167 Evermann Jan 2019 B2
10176802 Ladhak et al. Jan 2019 B1
10185542 Carson et al. Jan 2019 B2
10186254 Williams et al. Jan 2019 B2
10186266 Devaraj et al. Jan 2019 B1
10191627 Ciepiinski et al. Jan 2019 B2
10191646 Zambetti et al. Jan 2019 B2
10191718 Rhee et al. Jan 2019 B2
10192546 Piersol et al. Jan 2019 B1
10192552 Raitio et al. Jan 2019 B2
10192557 Lee et al. Jan 2019 B2
10199051 Binder et al. Feb 2019 B2
10200824 Gross et al. Feb 2019 B2
10216351 Yang Feb 2019 B2
10216832 Bangalore et al. Feb 2019 B2
10223066 Martel et al. Mar 2019 B2
10225711 Parks et al. Mar 2019 B2
10229356 Liu et al. Mar 2019 B1
10237711 Linn et al. Mar 2019 B2
10248308 Karunamuni et al. Apr 2019 B2
10255922 Sharifi et al. Apr 2019 B1
10269345 Castillo Sanchez et al. Apr 2019 B2
10296160 Shah et al. May 2019 B2
10297253 Walker, II et al. May 2019 B2
10303772 Hosn et al. May 2019 B2
10304463 Mixter et al. May 2019 B2
10311482 Baldwin Jun 2019 B2
10311871 Newendorp et al. Jun 2019 B2
10325598 Basye et al. Jun 2019 B2
10332513 D'souza et al. Jun 2019 B1
10332518 Garg et al. Jun 2019 B2
10346753 Soon-Shiong et al. Jul 2019 B2
10353975 Oh et al. Jul 2019 B2
10354677 Mohamed et al. Jul 2019 B2
10356243 Sanghavi et al. Jul 2019 B2
10366692 Adams et al. Jul 2019 B1
10372814 Gliozzo et al. Aug 2019 B2
10389876 Engelke et al. Aug 2019 B2
10402066 Kawana Sep 2019 B2
10403283 Schramm et al. Sep 2019 B1
10410637 Paulik et al. Sep 2019 B2
10417037 Gruber et al. Sep 2019 B2
10417554 Scheffler Sep 2019 B2
10446142 Lim et al. Oct 2019 B2
10469665 Bell et al. Nov 2019 B1
10474961 Brigham et al. Nov 2019 B2
10496705 Irani et al. Dec 2019 B1
10497365 Gruber et al. Dec 2019 B2
10504518 Irani et al. Dec 2019 B1
10521946 Roche et al. Dec 2019 B1
10528386 Yu Jan 2020 B2
10568032 Freeman et al. Feb 2020 B2
10630795 Aoki et al. Apr 2020 B2
10659851 Lister et al. May 2020 B2
10757499 Vautrin et al. Aug 2020 B1
10811013 Seeker-Walker et al. Oct 2020 B1
20090164219 Yeung et al. Jun 2009 A1
20090234655 Kwon Sep 2009 A1
20100004918 Lee et al. Jan 2010 A1
20100004930 Strope et al. Jan 2010 A1
20100004931 Ma et al. Jan 2010 A1
20100005081 Bennett Jan 2010 A1
20100007569 Sim et al. Jan 2010 A1
20100010803 Ishikawa et al. Jan 2010 A1
20100010814 Patel Jan 2010 A1
20100010948 Ito et al. Jan 2010 A1
20100013760 Hirai et al. Jan 2010 A1
20100013796 Abileah et al. Jan 2010 A1
20100017212 Attwater et al. Jan 2010 A1
20100017382 Katragadda et al. Jan 2010 A1
20100017741 Karp et al. Jan 2010 A1
20100019834 Zerbe et al. Jan 2010 A1
20100020035 Ryu et al. Jan 2010 A1
20100023318 Lemoine Jan 2010 A1
20100023320 Di Cristo et al. Jan 2010 A1
20100023331 Duta et al. Jan 2010 A1
20100026526 Yokota Feb 2010 A1
20100030549 Lee et al. Feb 2010 A1
20100030562 Yoshizawa et al. Feb 2010 A1
20100030928 Conroy et al. Feb 2010 A1
20100031143 Rao et al. Feb 2010 A1
20100031150 Andrew Feb 2010 A1
20100036653 Kim et al. Feb 2010 A1
20100036655 Cecil et al. Feb 2010 A1
20100036660 Bennett Feb 2010 A1
20100036829 Leyba Feb 2010 A1
20100036928 Granite et al. Feb 2010 A1
20100037183 Miyashita et al. Feb 2010 A1
20100037187 Kondziela Feb 2010 A1
20100039495 Rahman et al. Feb 2010 A1
20100042400 Block et al. Feb 2010 A1
20100042576 Roettger et al. Feb 2010 A1
20100046842 Conwell Feb 2010 A1
20100049498 Cao et al. Feb 2010 A1
20100049514 Kennewick et al. Feb 2010 A1
20100050064 Liu et al. Feb 2010 A1
20100050074 Nachmani et al. Feb 2010 A1
20100054512 Solum Mar 2010 A1
20100054601 Anbalagan et al. Mar 2010 A1
20100057435 Kent et al. Mar 2010 A1
20100057443 Di Cristo et al. Mar 2010 A1
20100057457 Ogata et al. Mar 2010 A1
20100057461 Neubacher et al. Mar 2010 A1
20100057643 Yang Mar 2010 A1
20100058200 Jablokov et al. Mar 2010 A1
20100060646 Unsal et al. Mar 2010 A1
20100063804 Sato et al. Mar 2010 A1
20100063825 Williams et al. Mar 2010 A1
20100063961 Guiheneuf et al. Mar 2010 A1
20100064113 Lindahl et al. Mar 2010 A1
20100064218 Bull et al. Mar 2010 A1
20100064226 Stefaniak et al. Mar 2010 A1
20100066546 Aaron Mar 2010 A1
20100066684 Shahraray et al. Mar 2010 A1
20100067723 Bergmann et al. Mar 2010 A1
20100067867 Lin Mar 2010 A1
20100070281 Conkie et al. Mar 2010 A1
20100070517 Ghosh et al. Mar 2010 A1
20100070521 Clinchant et al. Mar 2010 A1
20100070899 Hunt et al. Mar 2010 A1
20100071003 Bychkov et al. Mar 2010 A1
20100073201 Holcomb et al. Mar 2010 A1
20100076760 Kraenzel et al. Mar 2010 A1
20100076968 Boyns et al. Mar 2010 A1
20100076993 Klawitter et al. Mar 2010 A1
20100077350 Lim et al. Mar 2010 A1
20100077469 Furman et al. Mar 2010 A1
20100079501 Ikeda et al. Apr 2010 A1
20100079508 Hodge et al. Apr 2010 A1
20100080398 Waldmann Apr 2010 A1
20100080470 Deluca et al. Apr 2010 A1
20100081456 Singh et al. Apr 2010 A1
20100081487 Chen et al. Apr 2010 A1
20100082239 Hardy et al. Apr 2010 A1
20100082286 Leung Apr 2010 A1
20100082327 Rogers et al. Apr 2010 A1
20100082328 Rogers et al. Apr 2010 A1
20100082329 Silverman et al. Apr 2010 A1
20100082333 Al-shammari Apr 2010 A1
20100082343 Levit et al. Apr 2010 A1
20100082345 Wang et al. Apr 2010 A1
20100082346 Rogers et al. Apr 2010 A1
20100082347 Rogers et al. Apr 2010 A1
20100082348 Silverman et al. Apr 2010 A1
20100082349 Bellegarda et al. Apr 2010 A1
20100082376 Levitt Apr 2010 A1
20100082567 Rosenblatt et al. Apr 2010 A1
20100082653 Nair Apr 2010 A1
20100082970 Lindahl et al. Apr 2010 A1
20100086152 Rank et al. Apr 2010 A1
20100086153 Hagen et al. Apr 2010 A1
20100086156 Rank et al. Apr 2010 A1
20100088020 Sano et al. Apr 2010 A1
20100088093 Lee et al. Apr 2010 A1
20100088100 Lindahl Apr 2010 A1
20100094632 Davis et al. Apr 2010 A1
20100098231 Wohlert Apr 2010 A1
20100099354 Johnson Apr 2010 A1
20100100080 Huculak et al. Apr 2010 A1
20100100212 Lindahl et al. Apr 2010 A1
20100100371 Yuezhong et al. Apr 2010 A1
20100100384 Ju et al. Apr 2010 A1
20100100385 Davis et al. Apr 2010 A1
20100100515 Bangalore et al. Apr 2010 A1
20100100816 Mccloskey et al. Apr 2010 A1
20100103776 Chan Apr 2010 A1
20100106486 Hua et al. Apr 2010 A1
20100106498 Morrison et al. Apr 2010 A1
20100106500 Mckee et al. Apr 2010 A1
20100106503 Farrell et al. Apr 2010 A1
20100106975 Vandervort Apr 2010 A1
20100114856 Kuboyama May 2010 A1
20100114887 Conway et al. May 2010 A1
20100121637 Roy et al. May 2010 A1
20100122306 Pratt et al. May 2010 A1
20100125456 Weng et al. May 2010 A1
20100125458 Franco et al. May 2010 A1
20100125460 Mellott et al. May 2010 A1
20100125811 Moore et al. May 2010 A1
20100127854 Helvick et al. May 2010 A1
20100128701 Nagaraja May 2010 A1
20100131265 Liu et al. May 2010 A1
20100131269 Park et al. May 2010 A1
20100131273 Aley-Raz et al. May 2010 A1
20100131498 Linthicum et al. May 2010 A1
20100131899 Hubert May 2010 A1
20100138215 Williams Jun 2010 A1
20100138224 Bedingfield, Sr. Jun 2010 A1
20100138416 Bellotti Jun 2010 A1
20100138680 Brisebois et al. Jun 2010 A1
20100138759 Roy Jun 2010 A1
20100138798 Wilson et al. Jun 2010 A1
20100142740 Roerup Jun 2010 A1
20100145694 Ju et al. Jun 2010 A1
20100145700 Kennewick et al. Jun 2010 A1
20100145707 Ljolje et al. Jun 2010 A1
20100146442 Nagasaka et al. Jun 2010 A1
20100150321 Harris et al. Jun 2010 A1
20100153114 Shih et al. Jun 2010 A1
20100153115 Klee et al. Jun 2010 A1
20100153448 Harpur et al. Jun 2010 A1
20100153576 Wohlert et al. Jun 2010 A1
20100153968 Engel Jun 2010 A1
20100158207 Dhawan et al. Jun 2010 A1
20100161311 Massuh Jun 2010 A1
20100161313 Karttunen Jun 2010 A1
20100161337 Pulz et al. Jun 2010 A1
20100161554 Datuashvili et al. Jun 2010 A1
20100164897 Morin et al. Jul 2010 A1
20100169075 Raffa et al. Jul 2010 A1
20100169093 Washio Jul 2010 A1
20100169097 Nachman et al. Jul 2010 A1
20100169098 Patch Jul 2010 A1
20100171713 Kwok et al. Jul 2010 A1
20100174544 Heifets Jul 2010 A1
20100175066 Paik Jul 2010 A1
20100179932 Yoon et al. Jul 2010 A1
20100179991 Lorch et al. Jul 2010 A1
20100180218 Boston et al. Jul 2010 A1
20100185434 Burvall et al. Jul 2010 A1
20100185448 Meisel Jul 2010 A1
20100185949 Jaeger Jul 2010 A1
20100191466 Deluca et al. Jul 2010 A1
20100191520 Gruhn et al. Jul 2010 A1
20100192221 Waggoner Jul 2010 A1
20100195865 Luff Aug 2010 A1
20100197359 Harris Aug 2010 A1
20100198821 Loritz et al. Aug 2010 A1
20100199180 Brichter Aug 2010 A1
20100199215 Seymour et al. Aug 2010 A1
20100199340 Jonas et al. Aug 2010 A1
20100204986 Kennewick et al. Aug 2010 A1
20100211199 Naik et al. Aug 2010 A1
20100211379 Gorman et al. Aug 2010 A1
20100211644 Lavoie et al. Aug 2010 A1
20100215195 Harma et al. Aug 2010 A1
20100216509 Riemer et al. Aug 2010 A1
20100217581 Hong Aug 2010 A1
20100217604 Baldwin et al. Aug 2010 A1
20100222033 Scott et al. Sep 2010 A1
20100222098 Garg Sep 2010 A1
20100223055 Mclean Sep 2010 A1
20100223056 Kadirkamanathan Sep 2010 A1
20100223131 Scott et al. Sep 2010 A1
20100225599 Danielsson et al. Sep 2010 A1
20100225809 Connors et al. Sep 2010 A1
20100227642 Kim et al. Sep 2010 A1
20100228540 Bennett Sep 2010 A1
20100228549 Herman et al. Sep 2010 A1
20100228691 Yang et al. Sep 2010 A1
20100229082 Karmarkar et al. Sep 2010 A1
20100229100 Miller et al. Sep 2010 A1
20100231474 Yamagajo et al. Sep 2010 A1
20100235167 Bourdon Sep 2010 A1
20100235341 Bennett Sep 2010 A1
20100235729 Kocienda et al. Sep 2010 A1
20100235732 Bergman Sep 2010 A1
20100235770 Ording et al. Sep 2010 A1
20100235780 Westerman et al. Sep 2010 A1
20100235793 Ording et al. Sep 2010 A1
20100241418 Maeda et al. Sep 2010 A1
20100246784 Frazier et al. Sep 2010 A1
20100250542 Fujimaki Sep 2010 A1
20100250599 Schmidt et al. Sep 2010 A1
20100255858 Juhasz Oct 2010 A1
20100257160 Cao Oct 2010 A1
20100257478 Longe et al. Oct 2010 A1
20100257490 Lyon et al. Oct 2010 A1
20100262599 Nitz Oct 2010 A1
20100263015 Pandey et al. Oct 2010 A1
20100268537 Al-telmissani Oct 2010 A1
20100268539 Xu et al. Oct 2010 A1
20100269040 Lee Oct 2010 A1
20100274482 Feng Oct 2010 A1
20100274753 Liberty et al. Oct 2010 A1
20100277579 Cho et al. Nov 2010 A1
20100278320 Arsenault et al. Nov 2010 A1
20100278391 Hsu et al. Nov 2010 A1
20100278453 King Nov 2010 A1
20100280983 Cho et al. Nov 2010 A1
20100281034 Petrou et al. Nov 2010 A1
20100286984 Wandinger et al. Nov 2010 A1
20100286985 Kennewick et al. Nov 2010 A1
20100287241 Swanburg et al. Nov 2010 A1
20100287514 Cragun et al. Nov 2010 A1
20100290632 Lin Nov 2010 A1
20100293460 Budelli Nov 2010 A1
20100295645 Fälldin et al. Nov 2010 A1
20100299133 Kopparapu et al. Nov 2010 A1
20100299138 Kim Nov 2010 A1
20100299142 Freeman et al. Nov 2010 A1
20100299444 Nilo et al. Nov 2010 A1
20100302056 Dutton et al. Dec 2010 A1
20100303254 Yoshizawa et al. Dec 2010 A1
20100304342 Zilber Dec 2010 A1
20100304705 Hursey Dec 2010 A1
20100305807 Basir et al. Dec 2010 A1
20100305947 Schwarz et al. Dec 2010 A1
20100311395 Zheng et al. Dec 2010 A1
20100312547 Van Os et al. Dec 2010 A1
20100312566 Odinak et al. Dec 2010 A1
20100318293 Brush et al. Dec 2010 A1
20100318357 Istvan et al. Dec 2010 A1
20100318366 Sullivan et al. Dec 2010 A1
20100318570 Narasinghanallur et al. Dec 2010 A1
20100318576 Kim Dec 2010 A1
20100322438 Siotis Dec 2010 A1
20100324709 Starmen Dec 2010 A1
20100324895 Kurzweil et al. Dec 2010 A1
20100324896 Attwater et al. Dec 2010 A1
20100324905 Kurzweil et al. Dec 2010 A1
20100325131 Dumais et al. Dec 2010 A1
20100325158 Oral et al. Dec 2010 A1
20100325573 Estrada et al. Dec 2010 A1
20100325588 Reddy et al. Dec 2010 A1
20100330908 Maddern et al. Dec 2010 A1
20100332003 Yaguez Dec 2010 A1
20100332220 Hursey et al. Dec 2010 A1
20100332224 Makela et al. Dec 2010 A1
20100332235 David Dec 2010 A1
20100332236 Tan Dec 2010 A1
20100332280 Bradley et al. Dec 2010 A1
20100332348 Cao Dec 2010 A1
20100332428 Mchenry et al. Dec 2010 A1
20100332976 Fux et al. Dec 2010 A1
20100333030 Johns Dec 2010 A1
20100333163 Daly Dec 2010 A1
20110002487 Panther et al. Jan 2011 A1
20110004475 Bellegarda Jan 2011 A1
20110006876 Moberg et al. Jan 2011 A1
20110009107 Guba et al. Jan 2011 A1
20110010178 Lee et al. Jan 2011 A1
20110010644 Merrill et al. Jan 2011 A1
20110015928 Odell et al. Jan 2011 A1
20110016150 Engstrom et al. Jan 2011 A1
20110016421 Krupka et al. Jan 2011 A1
20110018695 Bells et al. Jan 2011 A1
20110021211 Ohki Jan 2011 A1
20110021213 Carr Jan 2011 A1
20110022292 Shen et al. Jan 2011 A1
20110022388 Wu et al. Jan 2011 A1
20110022393 Wäller et al. Jan 2011 A1
20110022394 Wide Jan 2011 A1
20110022472 Zon Jan 2011 A1
20110022952 Wu et al. Jan 2011 A1
20110028083 Soitis Feb 2011 A1
20110029616 Wang et al. Feb 2011 A1
20110029637 Morse Feb 2011 A1
20110030067 Wilson Feb 2011 A1
20110033064 Johnson et al. Feb 2011 A1
20110034183 Haag et al. Feb 2011 A1
20110035144 Okamoto et al. Feb 2011 A1
20110035434 Lockwood Feb 2011 A1
20110038489 Visser et al. Feb 2011 A1
20110039584 Merrett Feb 2011 A1
20110040707 Theisen et al. Feb 2011 A1
20110045841 Kuhlke et al. Feb 2011 A1
20110047072 Ciurea Feb 2011 A1
20110047149 Vaananen Feb 2011 A1
20110047161 Myaeng et al. Feb 2011 A1
20110047246 Frissora et al. Feb 2011 A1
20110047266 Yu et al. Feb 2011 A1
20110047605 Sontag et al. Feb 2011 A1
20110050591 Kim et al. Mar 2011 A1
20110050592 Kim et al. Mar 2011 A1
20110054647 Chipchase Mar 2011 A1
20110054894 Phillips et al. Mar 2011 A1
20110054901 Qin et al. Mar 2011 A1
20110055244 Donelli Mar 2011 A1
20110055256 Phillips et al. Mar 2011 A1
20110060584 Ferrucci et al. Mar 2011 A1
20110060587 Phillips et al. Mar 2011 A1
20110060589 Weinberg Mar 2011 A1
20110060807 Martin et al. Mar 2011 A1
20110060812 Middleton Mar 2011 A1
20110064378 Gharaat et al. Mar 2011 A1
20110064387 Mendeloff et al. Mar 2011 A1
20110065456 Brennan et al. Mar 2011 A1
20110066366 Ellanti et al. Mar 2011 A1
20110066436 Bezar Mar 2011 A1
20110066468 Huang et al. Mar 2011 A1
20110066602 Studer et al. Mar 2011 A1
20110066634 Phillips et al. Mar 2011 A1
20110072033 White et al. Mar 2011 A1
20110072114 Hoffert et al. Mar 2011 A1
20110072492 Mohler et al. Mar 2011 A1
20110075818 Vance et al. Mar 2011 A1
20110076994 Kim et al. Mar 2011 A1
20110077943 Miki et al. Mar 2011 A1
20110080260 Wang et al. Apr 2011 A1
20110081889 Gao et al. Apr 2011 A1
20110082688 Kim et al. Apr 2011 A1
20110083079 Farrell et al. Apr 2011 A1
20110087491 Wittenstein et al. Apr 2011 A1
20110087685 Lin et al. Apr 2011 A1
20110090078 Kim et al. Apr 2011 A1
20110092187 Miller Apr 2011 A1
20110093261 Angott Apr 2011 A1
20110093265 Stent et al. Apr 2011 A1
20110093271 Bernard Apr 2011 A1
20110093272 Isobe et al. Apr 2011 A1
20110099000 Rai et al. Apr 2011 A1
20110099157 LeBeau et al. Apr 2011 A1
20110102161 Heubel et al. May 2011 A1
20110103682 Chidlovskii et al. May 2011 A1
20110105097 Tadayon et al. May 2011 A1
20110106534 Lebeau et al. May 2011 A1
20110106536 Klappert May 2011 A1
20110106736 Aharonson et al. May 2011 A1
20110106878 Cho et al. May 2011 A1
20110106892 Nelson et al. May 2011 A1
20110110502 Daye et al. May 2011 A1
20110111724 Baptiste May 2011 A1
20110112825 Bellegarda May 2011 A1
20110112827 Kennewick et al. May 2011 A1
20110112837 Kurki-Suonio et al. May 2011 A1
20110112838 Adibi May 2011 A1
20110112921 Kennewick et al. May 2011 A1
20110116480 Li et al. May 2011 A1
20110116610 Shaw et al. May 2011 A1
20110119049 Ylonen May 2011 A1
20110119051 Li et al. May 2011 A1
20110119623 Kim May 2011 A1
20110119713 Chang et al. May 2011 A1
20110119715 Chang et al. May 2011 A1
20110123004 Chang et al. May 2011 A1
20110125498 Pickering et al. May 2011 A1
20110125540 Jang et al. May 2011 A1
20110125701 Nair et al. May 2011 A1
20110130958 Stahl et al. Jun 2011 A1
20110131036 Dicristo et al. Jun 2011 A1
20110131038 Oyaizu et al. Jun 2011 A1
20110131045 Cristo et al. Jun 2011 A1
20110137636 Srihari et al. Jun 2011 A1
20110137664 Kho et al. Jun 2011 A1
20110141141 Kankainen Jun 2011 A1
20110143718 Engelhart, Sr. Jun 2011 A1
20110143726 De Silva Jun 2011 A1
20110143811 Rodriguez Jun 2011 A1
20110144857 Wingrove et al. Jun 2011 A1
20110144901 Wang Jun 2011 A1
20110144973 Bocchieri et al. Jun 2011 A1
20110144999 Jang et al. Jun 2011 A1
20110145718 Ketola et al. Jun 2011 A1
20110151415 Darling et al. Jun 2011 A1
20110151830 Blanda, Jr. et al. Jun 2011 A1
20110153209 Geelen Jun 2011 A1
20110153322 Kwak et al. Jun 2011 A1
20110153324 Ballinger et al. Jun 2011 A1
20110153325 Ballinger et al. Jun 2011 A1
20110153329 Moorer Jun 2011 A1
20110153330 Yazdani et al. Jun 2011 A1
20110153373 Dantzig et al. Jun 2011 A1
20110154193 Creutz et al. Jun 2011 A1
20110157029 Tseng Jun 2011 A1
20110161072 Terao et al. Jun 2011 A1
20110161076 Davis et al. Jun 2011 A1
20110161079 Gruhn et al. Jun 2011 A1
20110161309 Lung et al. Jun 2011 A1
20110161852 Vainio et al. Jun 2011 A1
20110166851 Lebeau et al. Jul 2011 A1
20110166855 Vermeulen et al. Jul 2011 A1
20110166862 Eshed et al. Jul 2011 A1
20110167350 Hoellwarth Jul 2011 A1
20110173003 Levanon et al. Jul 2011 A1
20110173537 Hemphill Jul 2011 A1
20110175810 Markovic et al. Jul 2011 A1
20110178804 Inoue et al. Jul 2011 A1
20110179002 Dumitru et al. Jul 2011 A1
20110179372 Moore et al. Jul 2011 A1
20110183627 Ueda et al. Jul 2011 A1
20110183650 Mckee Jul 2011 A1
20110184721 Subramanian et al. Jul 2011 A1
20110184730 Lebeau et al. Jul 2011 A1
20110184736 Slotznick Jul 2011 A1
20110184737 Nakano et al. Jul 2011 A1
20110184768 Norton et al. Jul 2011 A1
20110184789 Kirsch Jul 2011 A1
20110185288 Gupta et al. Jul 2011 A1
20110191108 Friedlander Aug 2011 A1
20110191271 Baker et al. Aug 2011 A1
20110191344 Jin et al. Aug 2011 A1
20110195758 Damale et al. Aug 2011 A1
20110196670 Dang et al. Aug 2011 A1
20110197128 Assadollahi Aug 2011 A1
20110199312 Okuta Aug 2011 A1
20110201385 Higginbotham Aug 2011 A1
20110201387 Paek et al. Aug 2011 A1
20110202526 Lee et al. Aug 2011 A1
20110202594 Ricci Aug 2011 A1
20110202874 Ramer et al. Aug 2011 A1
20110205149 Tom Aug 2011 A1
20110208511 Sikstrom et al. Aug 2011 A1
20110208524 Haughay Aug 2011 A1
20110209088 Hinckley et al. Aug 2011 A1
20110212717 Rhoads et al. Sep 2011 A1
20110216093 Griffin Sep 2011 A1
20110218806 Alewine et al. Sep 2011 A1
20110218855 Cao et al. Sep 2011 A1
20110219018 Bailey et al. Sep 2011 A1
20110223893 Lau et al. Sep 2011 A1
20110224972 Millett et al. Sep 2011 A1
20110228913 Cochinwala et al. Sep 2011 A1
20110231182 Weider et al. Sep 2011 A1
20110231184 Kerr Sep 2011 A1
20110231188 Kennewick et al. Sep 2011 A1
20110231189 Anastasiadis et al. Sep 2011 A1
20110231218 Tovar Sep 2011 A1
20110231432 Sata et al. Sep 2011 A1
20110231474 Locker et al. Sep 2011 A1
20110238191 Kristjansson et al. Sep 2011 A1
20110238407 Kent Sep 2011 A1
20110238408 Larcheveque et al. Sep 2011 A1
20110238676 Liu et al. Sep 2011 A1
20110239111 Grover Sep 2011 A1
20110242007 Gray et al. Oct 2011 A1
20110244888 Ohki Oct 2011 A1
20110246471 Rakib Oct 2011 A1
20110249144 Chang Oct 2011 A1
20110250570 Mack Oct 2011 A1
20110252108 Morris et al. Oct 2011 A1
20110257966 Rychlik Oct 2011 A1
20110258188 Abdalmageed et al. Oct 2011 A1
20110260829 Lee Oct 2011 A1
20110260861 Singh et al. Oct 2011 A1
20110264530 Santangelo et al. Oct 2011 A1
20110264643 Cao Oct 2011 A1
20110264999 Bells et al. Oct 2011 A1
20110270604 Qi et al. Nov 2011 A1
20110274303 Filson et al. Nov 2011 A1
20110276595 Kirkland et al. Nov 2011 A1
20110276598 Kozempel Nov 2011 A1
20110276944 Bergman et al. Nov 2011 A1
20110279368 Klein et al. Nov 2011 A1
20110280143 Li et al. Nov 2011 A1
20110282663 Talwar et al. Nov 2011 A1
20110282888 Koperski et al. Nov 2011 A1
20110282903 Zhang Nov 2011 A1
20110282906 Wong Nov 2011 A1
20110283189 Mccarty Nov 2011 A1
20110283190 Poltorak Nov 2011 A1
20110288852 Dymetman et al. Nov 2011 A1
20110288855 Roy Nov 2011 A1
20110288861 Kurzwei et al. Nov 2011 A1
20110288863 Rasmussen Nov 2011 A1
20110288866 Rasmussen Nov 2011 A1
20110288917 Wanek et al. Nov 2011 A1
20110289530 Dureau et al. Nov 2011 A1
20110298585 Barry Dec 2011 A1
20110301943 Patch Dec 2011 A1
20110302162 Xiao et al. Dec 2011 A1
20110302645 Headley Dec 2011 A1
20110306426 Novak et al. Dec 2011 A1
20110307241 Waibel et al. Dec 2011 A1
20110307254 Hunt et al. Dec 2011 A1
20110307491 Fisk et al. Dec 2011 A1
20110307810 Hilerio et al. Dec 2011 A1
20110313775 Laligand et al. Dec 2011 A1
20110313803 Friend et al. Dec 2011 A1
20110314003 Ju et al. Dec 2011 A1
20110314032 Bennett et al. Dec 2011 A1
20110314404 Kotler et al. Dec 2011 A1
20110314539 Horton Dec 2011 A1
20110320187 Motik et al. Dec 2011 A1
20120002820 Leichter Jan 2012 A1
20120005602 Anttila et al. Jan 2012 A1
20120008754 Mukherjee et al. Jan 2012 A1
20120010886 Razavilar Jan 2012 A1
20120011138 Dunning et al. Jan 2012 A1
20120013609 Reponen et al. Jan 2012 A1
20120015629 Olsen et al. Jan 2012 A1
20120016658 Wu et al. Jan 2012 A1
20120016678 Gruber et al. Jan 2012 A1
20120019400 Patel et al. Jan 2012 A1
20120020490 Leichter Jan 2012 A1
20120020503 Endo et al. Jan 2012 A1
20120022787 Lebeau et al. Jan 2012 A1
20120022857 Baldwin et al. Jan 2012 A1
20120022860 Lloyd et al. Jan 2012 A1
20120022868 Lebeau et al. Jan 2012 A1
20120022869 Lloyd et al. Jan 2012 A1
20120022870 Kristjansson et al. Jan 2012 A1
20120022872 Gruber et al. Jan 2012 A1
20120022874 Lloyd et al. Jan 2012 A1
20120022876 Lebeau et al. Jan 2012 A1
20120022967 Bachman et al. Jan 2012 A1
20120023088 Cheng et al. Jan 2012 A1
20120023095 Wadycki et al. Jan 2012 A1
20120023462 Rosing et al. Jan 2012 A1
20120026395 Jin et al. Feb 2012 A1
20120029661 Jones et al. Feb 2012 A1
20120029910 Medlock et al. Feb 2012 A1
20120034904 Lebeau et al. Feb 2012 A1
20120035907 Lebeau et al. Feb 2012 A1
20120035908 Lebeau et al. Feb 2012 A1
20120035924 Jitkoff et al. Feb 2012 A1
20120035925 Friend et al. Feb 2012 A1
20120035926 Ambler Feb 2012 A1
20120035931 Lebeau et al. Feb 2012 A1
20120035932 Jitkoff et al. Feb 2012 A1
20120035935 Park et al. Feb 2012 A1
20120036556 Lebeau et al. Feb 2012 A1
20120039539 Boiman et al. Feb 2012 A1
20120039578 Issa et al. Feb 2012 A1
20120041752 Wang et al. Feb 2012 A1
20120041756 Hanazawa et al. Feb 2012 A1
20120041759 Barker et al. Feb 2012 A1
20120042014 Desai et al. Feb 2012 A1
20120042343 Laligand et al. Feb 2012 A1
20120052945 Miyamoto et al. Mar 2012 A1
20120053815 Montanari et al. Mar 2012 A1
20120053829 Agarwal et al. Mar 2012 A1
20120053945 Gupta et al. Mar 2012 A1
20120056815 Mehra Mar 2012 A1
20120059655 Cartales Mar 2012 A1
20120059813 Sejnoha et al. Mar 2012 A1
20120060052 White et al. Mar 2012 A1
20120062473 Xiao et al. Mar 2012 A1
20120064975 Gault et al. Mar 2012 A1
20120066212 Jennings Mar 2012 A1
20120066581 Spalink Mar 2012 A1
20120075054 Ge et al. Mar 2012 A1
20120075184 Madhvanath Mar 2012 A1
20120077479 Sabotta et al. Mar 2012 A1
20120078611 Soltani et al. Mar 2012 A1
20120078624 Yook et al. Mar 2012 A1
20120078627 Wagner Mar 2012 A1
20120078635 Rothkopf et al. Mar 2012 A1
20120078747 Chakrabarti et al. Mar 2012 A1
20120082317 Pance et al. Apr 2012 A1
20120083286 Kim et al. Apr 2012 A1
20120084086 Gilbert et al. Apr 2012 A1
20120084087 Yang et al. Apr 2012 A1
20120084089 Lloyd et al. Apr 2012 A1
20120084634 Wong et al. Apr 2012 A1
20120088219 Briscoe et al. Apr 2012 A1
20120089331 Schmidt et al. Apr 2012 A1
20120089659 Halevi et al. Apr 2012 A1
20120094645 Jeffrey Apr 2012 A1
20120101823 Weng et al. Apr 2012 A1
20120105257 Murillo et al. May 2012 A1
20120108166 Hymel May 2012 A1
20120108221 Thomas et al. May 2012 A1
20120109632 Sugiura et al. May 2012 A1
20120109753 Kennewick et al. May 2012 A1
20120109997 Sparks et al. May 2012 A1
20120110456 Larco et al. May 2012 A1
20120114108 Katis et al. May 2012 A1
20120116770 Chen et al. May 2012 A1
20120117499 Mori et al. May 2012 A1
20120117590 Agnihotri et al. May 2012 A1
20120124126 Alcazar et al. May 2012 A1
20120124177 Sparks May 2012 A1
20120124178 Sparks May 2012 A1
20120128322 Shaffer et al. May 2012 A1
20120130709 Bocchieri et al. May 2012 A1
20120130995 Risvik et al. May 2012 A1
20120135714 King, II May 2012 A1
20120136529 Curtis et al. May 2012 A1
20120136572 Norton May 2012 A1
20120136649 Freising et al. May 2012 A1
20120136855 Ni et al. May 2012 A1
20120136985 Popescu et al. May 2012 A1
20120137367 Dupont et al. May 2012 A1
20120149342 Cohen et al. Jun 2012 A1
20120149394 Singh et al. Jun 2012 A1
20120150532 Mirowski et al. Jun 2012 A1
20120150544 Mcloughlin et al. Jun 2012 A1
20120150580 Norton Jun 2012 A1
20120158293 Burnham Jun 2012 A1
20120158399 Tremblay et al. Jun 2012 A1
20120158422 Burnham et al. Jun 2012 A1
20120159380 Kocienda et al. Jun 2012 A1
20120163710 Skaff et al. Jun 2012 A1
20120166177 Beld et al. Jun 2012 A1
20120166196 Ju et al. Jun 2012 A1
20120166429 Moore et al. Jun 2012 A1
20120166942 Ramerth et al. Jun 2012 A1
20120166959 Hilerio et al. Jun 2012 A1
20120166998 Cotterill et al. Jun 2012 A1
20120173222 Wang et al. Jul 2012 A1
20120173244 Kwak et al. Jul 2012 A1
20120173464 Tur et al. Jul 2012 A1
20120174121 Treat et al. Jul 2012 A1
20120176255 Choi et al. Jul 2012 A1
20120179457 Newman et al. Jul 2012 A1
20120179467 Williams et al. Jul 2012 A1
20120179471 Newman et al. Jul 2012 A1
20120185237 Gajic et al. Jul 2012 A1
20120185480 Ni et al. Jul 2012 A1
20120185781 Guzman et al. Jul 2012 A1
20120191461 Lin et al. Jul 2012 A1
20120192096 Bowman et al. Jul 2012 A1
20120197743 Grigg et al. Aug 2012 A1
20120197995 Caruso Aug 2012 A1
20120197998 Kessel et al. Aug 2012 A1
20120201362 Crossan et al. Aug 2012 A1
20120203767 Williams et al. Aug 2012 A1
20120209454 Miller et al. Aug 2012 A1
20120209654 Romagnino et al. Aug 2012 A1
20120209853 Desai et al. Aug 2012 A1
20120209874 Wong et al. Aug 2012 A1
20120210266 Jiang et al. Aug 2012 A1
20120210378 Mccoy et al. Aug 2012 A1
20120214141 Raya et al. Aug 2012 A1
20120214517 Singh et al. Aug 2012 A1
20120215640 Ramer et al. Aug 2012 A1
20120215762 Hall et al. Aug 2012 A1
20120221339 Wang et al. Aug 2012 A1
20120221552 Reponen et al. Aug 2012 A1
20120223889 Medlock et al. Sep 2012 A1
20120223936 Aughey et al. Sep 2012 A1
20120232885 Barbosa et al. Sep 2012 A1
20120232886 Capuozzo et al. Sep 2012 A1
20120232906 Lindahl Sep 2012 A1
20120233207 Mohajer Sep 2012 A1
20120233266 Hassan et al. Sep 2012 A1
20120233280 Ebara Sep 2012 A1
20120239403 Cano et al. Sep 2012 A1
20120239661 Giblin Sep 2012 A1
20120239761 Linner et al. Sep 2012 A1
20120242482 Elumalai et al. Sep 2012 A1
20120245719 Story, Jr. et al. Sep 2012 A1
20120245939 Braho et al. Sep 2012 A1
20120245941 Cheyer Sep 2012 A1
20120245944 Gruber et al. Sep 2012 A1
20120246064 Balkow Sep 2012 A1
20120250858 Iqbal et al. Oct 2012 A1
20120252367 Gaglio et al. Oct 2012 A1
20120252540 Kirigaya Oct 2012 A1
20120253785 Hamid et al. Oct 2012 A1
20120253791 Heck et al. Oct 2012 A1
20120254143 Varma et al. Oct 2012 A1
20120254152 Park et al. Oct 2012 A1
20120254290 Naaman Oct 2012 A1
20120259615 Morin et al. Oct 2012 A1
20120262296 Bezar Oct 2012 A1
20120265482 Grokop et al. Oct 2012 A1
20120265528 Gruber et al. Oct 2012 A1
20120265535 Bryant-Rich et al. Oct 2012 A1
20120265787 Hsu et al. Oct 2012 A1
20120265806 Blanchflower et al. Oct 2012 A1
20120271625 Bernard Oct 2012 A1
20120271634 Lenke Oct 2012 A1
20120271635 Ljolje Oct 2012 A1
20120271640 Basir Oct 2012 A1
20120271676 Aravamudan et al. Oct 2012 A1
20120275377 Lehane et al. Nov 2012 A1
20120278744 Kozitsyn et al. Nov 2012 A1
20120278812 Wang Nov 2012 A1
20120284015 Drewes Nov 2012 A1
20120284027 Mallett et al. Nov 2012 A1
20120290291 Shelley et al. Nov 2012 A1
20120290300 Lee et al. Nov 2012 A1
20120290657 Parks et al. Nov 2012 A1
20120290680 Hwang Nov 2012 A1
20120295708 Hernandez-abrego et al. Nov 2012 A1
20120296638 Patwa Nov 2012 A1
20120296649 Bansal et al. Nov 2012 A1
20120296654 Hendrickson et al. Nov 2012 A1
20120296891 Rangan Nov 2012 A1
20120297341 Glazer et al. Nov 2012 A1
20120297348 Santoro Nov 2012 A1
20120303369 Brush et al. Nov 2012 A1
20120303371 Labsky et al. Nov 2012 A1
20120304124 Chen et al. Nov 2012 A1
20120304239 Shahraray et al. Nov 2012 A1
20120309363 Gruber et al. Dec 2012 A1
20120310642 Cao et al. Dec 2012 A1
20120310649 Cannistraro et al. Dec 2012 A1
20120310652 O'sullivan Dec 2012 A1
20120310922 Johnson et al. Dec 2012 A1
20120311478 Van Os et al. Dec 2012 A1
20120311583 Gruber et al. Dec 2012 A1
20120311584 Gruber et al. Dec 2012 A1
20120311585 Gruber et al. Dec 2012 A1
20120316774 Yariv et al. Dec 2012 A1
20120316862 Sultan et al. Dec 2012 A1
20120316875 Nyquist et al. Dec 2012 A1
20120316878 Singleton et al. Dec 2012 A1
20120316955 Panguluri et al. Dec 2012 A1
20120317194 Tian Dec 2012 A1
20120317498 Logan et al. Dec 2012 A1
20120321112 Schubert et al. Dec 2012 A1
20120323560 Perez Cortes et al. Dec 2012 A1
20120324391 Tocci Dec 2012 A1
20120327009 Fleizach Dec 2012 A1
20120329529 Van Der Raadt Dec 2012 A1
20120330660 Jaiswal Dec 2012 A1
20120330661 Lindahl Dec 2012 A1
20120330990 Chen et al. Dec 2012 A1
20130002716 Walker et al. Jan 2013 A1
20130005405 Prociw Jan 2013 A1
20130006633 Grokop et al. Jan 2013 A1
20130006637 Kanevsky et al. Jan 2013 A1
20130006638 Lindahl Jan 2013 A1
20130007240 Qiu et al. Jan 2013 A1
20130007648 Gamon et al. Jan 2013 A1
20130009858 Lacey Jan 2013 A1
20130010575 He et al. Jan 2013 A1
20130013313 Shechtman et al. Jan 2013 A1
20130013319 Grant et al. Jan 2013 A1
20130014026 Beringer et al. Jan 2013 A1
20130018659 Chi Jan 2013 A1
20130018863 Regan et al. Jan 2013 A1
20130024277 Tuchman et al. Jan 2013 A1
20130024576 Dishneau et al. Jan 2013 A1
20130027875 Zhu et al. Jan 2013 A1
20130028404 Omalley et al. Jan 2013 A1
20130030787 Cancedda et al. Jan 2013 A1
20130030789 Dalce Jan 2013 A1
20130030804 Zavaliagkos et al. Jan 2013 A1
20130030815 Madhvanath et al. Jan 2013 A1
20130030904 Aidasani et al. Jan 2013 A1
20130030913 Zhu et al. Jan 2013 A1
20130030955 David Jan 2013 A1
20130031162 Willis et al. Jan 2013 A1
20130031476 Coin et al. Jan 2013 A1
20130033643 Kim et al. Feb 2013 A1
20130035086 Chardon et al. Feb 2013 A1
20130035942 Kim et al. Feb 2013 A1
20130035961 Yegnanarayanan Feb 2013 A1
20130041647 Ramerth et al. Feb 2013 A1
20130041654 Walker et al. Feb 2013 A1
20130041661 Lee et al. Feb 2013 A1
20130041665 Jang et al. Feb 2013 A1
20130041667 Longe et al. Feb 2013 A1
20130041968 Cohen et al. Feb 2013 A1
20130046544 Kay et al. Feb 2013 A1
20130047178 Moon et al. Feb 2013 A1
20130050089 Neels et al. Feb 2013 A1
20130054550 Bolohan Feb 2013 A1
20130054609 Rajput et al. Feb 2013 A1
20130054613 Bishop Feb 2013 A1
20130054631 Govani et al. Feb 2013 A1
20130054675 Jenkins et al. Feb 2013 A1
20130054706 Graham et al. Feb 2013 A1
20130055099 Yao et al. Feb 2013 A1
20130055147 Vasudev et al. Feb 2013 A1
20130060571 Soemo et al. Mar 2013 A1
20130061139 Mahkovec et al. Mar 2013 A1
20130063611 Papakipos et al. Mar 2013 A1
20130066832 Sheehan et al. Mar 2013 A1
20130067307 Tian et al. Mar 2013 A1
20130067312 Rose Mar 2013 A1
20130067421 Osman et al. Mar 2013 A1
20130069769 Pennington et al. Mar 2013 A1
20130073286 Bastea-Forte et al. Mar 2013 A1
20130073293 Jang et al. Mar 2013 A1
20130073346 Chun et al. Mar 2013 A1
20130073580 Mehanna et al. Mar 2013 A1
20130078930 Chen et al. Mar 2013 A1
20130080152 Brun et al. Mar 2013 A1
20130080162 Chang et al. Mar 2013 A1
20130080167 Mozer Mar 2013 A1
20130080177 Chen Mar 2013 A1
20130080178 Kang et al. Mar 2013 A1
20130080251 Dempski Mar 2013 A1
20130082967 Hillis et al. Apr 2013 A1
20130085755 Bringert et al. Apr 2013 A1
20130085761 Bringert et al. Apr 2013 A1
20130086609 Levy et al. Apr 2013 A1
20130090921 Liu et al. Apr 2013 A1
20130091090 Spivack et al. Apr 2013 A1
20130095805 Lebeau et al. Apr 2013 A1
20130096909 Brun et al. Apr 2013 A1
20130096911 Beaufort et al. Apr 2013 A1
20130096917 Edgar et al. Apr 2013 A1
20130097566 Berglund Apr 2013 A1
20130097682 Zeljkovic et al. Apr 2013 A1
20130100017 Papakipos et al. Apr 2013 A1
20130100268 Mihailidis et al. Apr 2013 A1
20130103391 Millmore et al. Apr 2013 A1
20130103405 Namba et al. Apr 2013 A1
20130106742 Lee et al. May 2013 A1
20130107053 Ozaki May 2013 A1
20130110505 Gruber et al. May 2013 A1
20130110515 Guzzoni et al. May 2013 A1
20130110518 Gruber et al. May 2013 A1
20130110519 Cheyer et al. May 2013 A1
20130110520 Cheyer et al. May 2013 A1
20130110943 Menon et al. May 2013 A1
20130111330 Staikos et al. May 2013 A1
20130111348 Gruber et al. May 2013 A1
20130111365 Chen et al. May 2013 A1
20130111487 Cheyer et al. May 2013 A1
20130111581 Griffin et al. May 2013 A1
20130115927 Gruber et al. May 2013 A1
20130117022 Chen et al. May 2013 A1
20130124189 Baldwin et al. May 2013 A1
20130124672 Pan May 2013 A1
20130125168 Agnihotri et al. May 2013 A1
20130132081 Ryu et al. May 2013 A1
20130132084 Stonehocker et al. May 2013 A1
20130132089 Fanty et al. May 2013 A1
20130132871 Zeng et al. May 2013 A1
20130138440 Strope et al. May 2013 A1
20130141551 Kim Jun 2013 A1
20130142317 Reynolds Jun 2013 A1
20130142345 Waldmann Jun 2013 A1
20130144594 Bangalore et al. Jun 2013 A1
20130144616 Bangalore Jun 2013 A1
20130151339 Kim et al. Jun 2013 A1
20130152092 Yadgar Jun 2013 A1
20130154811 Ferren et al. Jun 2013 A1
20130155948 Pinheiro et al. Jun 2013 A1
20130156198 Kim et al. Jun 2013 A1
20130157629 Lee et al. Jun 2013 A1
20130158977 Senior Jun 2013 A1
20130159847 Banke et al. Jun 2013 A1
20130159861 Rottier et al. Jun 2013 A1
20130165232 Nelson et al. Jun 2013 A1
20130166278 James et al. Jun 2013 A1
20130166303 Chang et al. Jun 2013 A1
20130166332 Hammad Jun 2013 A1
20130166442 Nakajima et al. Jun 2013 A1
20130167242 Paliwal Jun 2013 A1
20130170738 Capuozzo et al. Jul 2013 A1
20130172022 Seymour et al. Jul 2013 A1
20130173258 Liu et al. Jul 2013 A1
20130173268 Weng et al. Jul 2013 A1
20130173513 Chu et al. Jul 2013 A1
20130174034 Brown et al. Jul 2013 A1
20130176147 Anderson et al. Jul 2013 A1
20130176244 Yamamoto et al. Jul 2013 A1
20130176592 Sasaki Jul 2013 A1
20130179168 Bae et al. Jul 2013 A1
20130179172 Nakamura et al. Jul 2013 A1
20130179440 Gordon Jul 2013 A1
20130183942 Novick et al. Jul 2013 A1
20130183944 Mozer et al. Jul 2013 A1
20130185059 Riccardi Jul 2013 A1
20130185066 Tzirkel-hancock et al. Jul 2013 A1
20130185074 Gruber et al. Jul 2013 A1
20130185081 Cheyer et al. Jul 2013 A1
20130185336 Singh et al. Jul 2013 A1
20130187850 Schulz et al. Jul 2013 A1
20130187857 Griffin et al. Jul 2013 A1
20130190021 Vieri et al. Jul 2013 A1
20130191117 Atti et al. Jul 2013 A1
20130191408 Volkert Jul 2013 A1
20130197911 Wei et al. Aug 2013 A1
20130197914 Yelvington et al. Aug 2013 A1
20130198159 Hendry Aug 2013 A1
20130198841 Poulson Aug 2013 A1
20130204813 Master et al. Aug 2013 A1
20130204897 Mcdougall Aug 2013 A1
20130204967 Seo et al. Aug 2013 A1
20130207898 Sullivan et al. Aug 2013 A1
20130210410 Xu Aug 2013 A1
20130210492 You et al. Aug 2013 A1
20130218553 Fujii et al. Aug 2013 A1
20130218560 Hsiao et al. Aug 2013 A1
20130218574 Falcon et al. Aug 2013 A1
20130218899 Raghavan et al. Aug 2013 A1
20130219333 Palwe et al. Aug 2013 A1
20130222249 Pasquero et al. Aug 2013 A1
20130225128 Gomar Aug 2013 A1
20130226935 Bai et al. Aug 2013 A1
20130231917 Naik Sep 2013 A1
20130234947 Kristensson et al. Sep 2013 A1
20130235987 Arroniz-escobar Sep 2013 A1
20130238326 Kim et al. Sep 2013 A1
20130238647 Thompson Sep 2013 A1
20130238729 Holzman et al. Sep 2013 A1
20130244615 Miller Sep 2013 A1
20130246048 Nagase et al. Sep 2013 A1
20130246050 Yu et al. Sep 2013 A1
20130246329 Pasquero et al. Sep 2013 A1
20130253911 Petri et al. Sep 2013 A1
20130253912 Medlock et al. Sep 2013 A1
20130262168 Makanawala et al. Oct 2013 A1
20130268263 Park et al. Oct 2013 A1
20130268956 Recco Oct 2013 A1
20130275117 Winer Oct 2013 A1
20130275138 Gruber et al. Oct 2013 A1
20130275164 Gruber et al. Oct 2013 A1
20130275199 Proctor et al. Oct 2013 A1
20130275625 Taivalsaari et al. Oct 2013 A1
20130275875 Gruber et al. Oct 2013 A1
20130275899 Schubert et al. Oct 2013 A1
20130279724 Stafford et al. Oct 2013 A1
20130282709 Zhu et al. Oct 2013 A1
20130283168 Brown et al. Oct 2013 A1
20130283199 Selig et al. Oct 2013 A1
20130283283 Wang et al. Oct 2013 A1
20130285913 Griffin et al. Oct 2013 A1
20130289991 Eshwar et al. Oct 2013 A1
20130289993 Rao Oct 2013 A1
20130289994 Newman et al. Oct 2013 A1
20130291015 Pan Oct 2013 A1
20130297198 Velde et al. Nov 2013 A1
20130297317 Lee et al. Nov 2013 A1
20130297319 Kim Nov 2013 A1
20130297348 Cardoza et al. Nov 2013 A1
20130300645 Fedorov Nov 2013 A1
20130300648 Kim et al. Nov 2013 A1
20130303106 Martin Nov 2013 A1
20130304479 Teller et al. Nov 2013 A1
20130304758 Gruber et al. Nov 2013 A1
20130304815 Puente et al. Nov 2013 A1
20130305119 Kern et al. Nov 2013 A1
20130307855 Lamb et al. Nov 2013 A1
20130307997 O'keefe et al. Nov 2013 A1
20130308922 Sano et al. Nov 2013 A1
20130311179 Wagner Nov 2013 A1
20130311184 Badavne et al. Nov 2013 A1
20130311487 Moore et al. Nov 2013 A1
20130311997 Gruber et al. Nov 2013 A1
20130315038 Ferren et al. Nov 2013 A1
20130316679 Miller et al. Nov 2013 A1
20130316746 Miller et al. Nov 2013 A1
20130317921 Havas Nov 2013 A1
20130318478 Ogura Nov 2013 A1
20130321267 Bhatti et al. Dec 2013 A1
20130322634 Bennett et al. Dec 2013 A1
20130322665 Bennett et al. Dec 2013 A1
20130325340 Forstall et al. Dec 2013 A1
20130325436 Wang et al. Dec 2013 A1
20130325443 Begeja et al. Dec 2013 A1
20130325447 Levien et al. Dec 2013 A1
20130325448 Levien et al. Dec 2013 A1
20130325480 Lee et al. Dec 2013 A1
20130325481 Van Os et al. Dec 2013 A1
20130325484 Chakladar et al. Dec 2013 A1
20130325967 Parks et al. Dec 2013 A1
20130325970 Roberts et al. Dec 2013 A1
20130325979 Mansfield et al. Dec 2013 A1
20130328809 Smith Dec 2013 A1
20130329023 Suplee, III et al. Dec 2013 A1
20130331127 Sabatelli et al. Dec 2013 A1
20130332159 Federighi et al. Dec 2013 A1
20130332162 Keen Dec 2013 A1
20130332164 Naik Dec 2013 A1
20130332168 Kim et al. Dec 2013 A1
20130332172 Prakash et al. Dec 2013 A1
20130332400 González Dec 2013 A1
20130332538 Clark et al. Dec 2013 A1
20130339256 Shroff Dec 2013 A1
20130339454 Walker et al. Dec 2013 A1
20130339991 Ricci Dec 2013 A1
20130342672 Gray et al. Dec 2013 A1
20130343584 Bennett et al. Dec 2013 A1
20130343721 Abecassis Dec 2013 A1
20130346065 Davidson et al. Dec 2013 A1
20130346068 Solem et al. Dec 2013 A1
20130346347 Patterson et al. Dec 2013 A1
20130347018 Limp et al. Dec 2013 A1
20130347029 Tang et al. Dec 2013 A1
20130347102 Shi Dec 2013 A1
20130347117 Parks et al. Dec 2013 A1
20140001255 Anthoine Jan 2014 A1
20140002338 Raffa Jan 2014 A1
20140006012 Zhou et al. Jan 2014 A1
20140006025 Krishnan et al. Jan 2014 A1
20140006027 Kim et al. Jan 2014 A1
20140006030 Fleizach et al. Jan 2014 A1
20140006153 Thangam et al. Jan 2014 A1
20140006483 Garmark et al. Jan 2014 A1
20140006496 Dearman et al. Jan 2014 A1
20140006562 Handa et al. Jan 2014 A1
20140006947 Garmark et al. Jan 2014 A1
20140006955 Greenzeiger et al. Jan 2014 A1
20140008163 Mikonaho et al. Jan 2014 A1
20140012574 Pasupalak et al. Jan 2014 A1
20140012580 Ganong, III et al. Jan 2014 A1
20140012586 Rubin et al. Jan 2014 A1
20140012587 Park Jan 2014 A1
20140019116 Lundberg et al. Jan 2014 A1
20140019133 Bao et al. Jan 2014 A1
20140019460 Sambrani et al. Jan 2014 A1
20140028029 Jochman Jan 2014 A1
20140028477 Michalske Jan 2014 A1
20140028735 Williams et al. Jan 2014 A1
20140032453 Eustice et al. Jan 2014 A1
20140033071 Gruber et al. Jan 2014 A1
20140035823 Khoe et al. Feb 2014 A1
20140037075 Bouzid et al. Feb 2014 A1
20140039888 Taubman et al. Feb 2014 A1
20140039893 Weiner et al. Feb 2014 A1
20140039894 Shostak Feb 2014 A1
20140040274 Aravamudan et al. Feb 2014 A1
20140040748 Lemay et al. Feb 2014 A1
20140040754 Donelli Feb 2014 A1
20140040801 Patel et al. Feb 2014 A1
20140040918 Li Feb 2014 A1
20140040961 Green et al. Feb 2014 A1
20140046934 Zhou et al. Feb 2014 A1
20140047001 Phillips et al. Feb 2014 A1
20140052451 Cheong et al. Feb 2014 A1
20140052680 Nitz et al. Feb 2014 A1
20140052791 Chakra et al. Feb 2014 A1
20140053082 Park Feb 2014 A1
20140053101 Buehler et al. Feb 2014 A1
20140053210 Cheong et al. Feb 2014 A1
20140057610 Olincy et al. Feb 2014 A1
20140059030 Hakkani-tur et al. Feb 2014 A1
20140067361 Nikoulina et al. Mar 2014 A1
20140067371 Liensberger Mar 2014 A1
20140067402 Kim Mar 2014 A1
20140067738 Kingsbury Mar 2014 A1
20140068751 Last Mar 2014 A1
20140074454 Brown et al. Mar 2014 A1
20140074466 Sharifi et al. Mar 2014 A1
20140074470 Jansche et al. Mar 2014 A1
20140074472 Lin et al. Mar 2014 A1
20140074483 Van Os Mar 2014 A1
20140074589 Nielsen et al. Mar 2014 A1
20140074815 Plimton Mar 2014 A1
20140075453 Bellessort et al. Mar 2014 A1
20140078065 Akkok Mar 2014 A1
20140079195 Srivastava et al. Mar 2014 A1
20140080410 Jung et al. Mar 2014 A1
20140080428 Rhoads et al. Mar 2014 A1
20140081619 Solntseva et al. Mar 2014 A1
20140081633 Badaskar Mar 2014 A1
20140081635 Yanagihara Mar 2014 A1
20140081829 Milne Mar 2014 A1
20140081941 Bai et al. Mar 2014 A1
20140082500 Wilensky et al. Mar 2014 A1
20140082501 Bae et al. Mar 2014 A1
20140082715 Grajek et al. Mar 2014 A1
20140086458 Rogers Mar 2014 A1
20140087711 Geyer et al. Mar 2014 A1
20140088952 Fife et al. Mar 2014 A1
20140088961 Woodward et al. Mar 2014 A1
20140088964 Bellegarda Mar 2014 A1
20140088970 Kang Mar 2014 A1
20140095171 Lynch et al. Apr 2014 A1
20140095172 Cabaco et al. Apr 2014 A1
20140095173 Lynch et al. Apr 2014 A1
20140095601 Abuelsaad et al. Apr 2014 A1
20140095965 Li Apr 2014 A1
20140096209 Saraf et al. Apr 2014 A1
20140098247 Rao et al. Apr 2014 A1
20140100847 Ishii et al. Apr 2014 A1
20140101127 Simhon et al. Apr 2014 A1
20140104175 Ouyang et al. Apr 2014 A1
20140108017 Mason et al. Apr 2014 A1
20140108391 Volkert Apr 2014 A1
20140112556 Kalinli-akbacak Apr 2014 A1
20140114554 Lagassey Apr 2014 A1
20140115062 Liu et al. Apr 2014 A1
20140115114 Garmark et al. Apr 2014 A1
20140118155 Bowers et al. May 2014 A1
20140118624 Jang et al. May 2014 A1
20140122059 Patel et al. May 2014 A1
20140122085 Piety et al. May 2014 A1
20140122086 Kapur et al. May 2014 A1
20140122136 Jayanthi May 2014 A1
20140122153 Truitt May 2014 A1
20140129226 Lee et al. May 2014 A1
20140132935 Kim et al. May 2014 A1
20140134983 Jung et al. May 2014 A1
20140135036 Bonanni et al. May 2014 A1
20140136013 Wolverton et al. May 2014 A1
20140136187 Wolverton et al. May 2014 A1
20140136195 Abdossalami et al. May 2014 A1
20140136212 Kwon et al. May 2014 A1
20140136946 Matas May 2014 A1
20140136987 Rodriguez May 2014 A1
20140142922 Liang et al. May 2014 A1
20140142923 Jones et al. May 2014 A1
20140142935 Lindahl et al. May 2014 A1
20140142953 Kim et al. May 2014 A1
20140143550 Ganong, III et al. May 2014 A1
20140143721 Suzuki et al. May 2014 A1
20140146200 Scott et al. May 2014 A1
20140149118 Lee et al. May 2014 A1
20140152577 Yuen et al. Jun 2014 A1
20140153709 Byrd et al. Jun 2014 A1
20140155031 Lee et al. Jun 2014 A1
20140156262 Yuen et al. Jun 2014 A1
20140156279 Okamoto et al. Jun 2014 A1
20140157319 Kimura et al. Jun 2014 A1
20140157422 Livshits et al. Jun 2014 A1
20140163951 Nikoulina et al. Jun 2014 A1
20140163953 Parikh Jun 2014 A1
20140163954 Joshi et al. Jun 2014 A1
20140163962 Castelli et al. Jun 2014 A1
20140163976 Park et al. Jun 2014 A1
20140163977 Hoffmeister et al. Jun 2014 A1
20140163981 Cook et al. Jun 2014 A1
20140163995 Burns et al. Jun 2014 A1
20140164305 Lynch et al. Jun 2014 A1
20140164312 Lynch et al. Jun 2014 A1
20140164476 Thomson Jun 2014 A1
20140164508 Lynch et al. Jun 2014 A1
20140164532 Lynch et al. Jun 2014 A1
20140164533 Lynch et al. Jun 2014 A1
20140164953 Lynch et al. Jun 2014 A1
20140169795 Clough Jun 2014 A1
20140171064 Das Jun 2014 A1
20140172878 Clark et al. Jun 2014 A1
20140173460 Kim Jun 2014 A1
20140176814 Ahn Jun 2014 A1
20140179295 Luebbers et al. Jun 2014 A1
20140180499 Cooper et al. Jun 2014 A1
20140180689 Kim Jun 2014 A1
20140180697 Torok et al. Jun 2014 A1
20140181865 Koganei Jun 2014 A1
20140188460 Ouyang et al. Jul 2014 A1
20140188477 Zhang Jul 2014 A1
20140188478 Zhang Jul 2014 A1
20140188485 Kim et al. Jul 2014 A1
20140188835 Zhang et al. Jul 2014 A1
20140195226 Yun et al. Jul 2014 A1
20140195230 Han et al. Jul 2014 A1
20140195233 Bapat et al. Jul 2014 A1
20140195244 Cha et al. Jul 2014 A1
20140195251 Zeinstra et al. Jul 2014 A1
20140195252 Gruber et al. Jul 2014 A1
20140198048 Unruh et al. Jul 2014 A1
20140203939 Harrington et al. Jul 2014 A1
20140205076 Kumar et al. Jul 2014 A1
20140207439 Venkatapathy et al. Jul 2014 A1
20140207446 Klein et al. Jul 2014 A1
20140207447 Jiang et al. Jul 2014 A1
20140207466 Smadi Jul 2014 A1
20140207468 Bartnik Jul 2014 A1
20140207582 Flinn et al. Jul 2014 A1
20140211944 Hayward et al. Jul 2014 A1
20140214429 Pantel Jul 2014 A1
20140214537 Yoo et al. Jul 2014 A1
20140215513 Ramer et al. Jul 2014 A1
20140218372 Missig et al. Aug 2014 A1
20140222435 Li et al. Aug 2014 A1
20140222436 Binder et al. Aug 2014 A1
20140222678 Sheets et al. Aug 2014 A1
20140222967 Harrang et al. Aug 2014 A1
20140223377 Shaw et al. Aug 2014 A1
20140223481 Fundament Aug 2014 A1
20140226503 Cooper et al. Aug 2014 A1
20140229184 Shires Aug 2014 A1
20140230055 Boehl Aug 2014 A1
20140232570 Skinder et al. Aug 2014 A1
20140232656 Pasquero et al. Aug 2014 A1
20140236595 Gray Aug 2014 A1
20140236986 Guzman Aug 2014 A1
20140237042 Ahmed et al. Aug 2014 A1
20140237366 Poulos et al. Aug 2014 A1
20140244248 Arisoy et al. Aug 2014 A1
20140244249 Mohamed et al. Aug 2014 A1
20140244254 Ju et al. Aug 2014 A1
20140244257 Colibro et al. Aug 2014 A1
20140244258 Song et al. Aug 2014 A1
20140244263 Pontual et al. Aug 2014 A1
20140244266 Brown et al. Aug 2014 A1
20140244268 Abdelsamie et al. Aug 2014 A1
20140244270 Han et al. Aug 2014 A1
20140244271 Lindahl Aug 2014 A1
20140244712 Walters et al. Aug 2014 A1
20140245140 Brown et al. Aug 2014 A1
20140247383 Dave et al. Sep 2014 A1
20140247926 Gainsboro et al. Sep 2014 A1
20140249812 Bou-Ghazale et al. Sep 2014 A1
20140249816 Pickering et al. Sep 2014 A1
20140249817 Hart et al. Sep 2014 A1
20140249820 Hsu et al. Sep 2014 A1
20140249821 Kennewick et al. Sep 2014 A1
20140250046 Winn et al. Sep 2014 A1
20140257809 Goel et al. Sep 2014 A1
20140257815 Zhao et al. Sep 2014 A1
20140257902 Moore et al. Sep 2014 A1
20140258324 Mauro et al. Sep 2014 A1
20140258357 Singh et al. Sep 2014 A1
20140258857 Dykstra-erickson et al. Sep 2014 A1
20140258905 Lee et al. Sep 2014 A1
20140267022 Kim Sep 2014 A1
20140267599 Drouin et al. Sep 2014 A1
20140267933 Young Sep 2014 A1
20140272821 Pitschel et al. Sep 2014 A1
20140273979 Van Os et al. Sep 2014 A1
20140274005 Luna et al. Sep 2014 A1
20140274203 Ganong, III et al. Sep 2014 A1
20140274211 Sejnoha et al. Sep 2014 A1
20140278051 Mcgavran et al. Sep 2014 A1
20140278343 Tran Sep 2014 A1
20140278349 Grieves et al. Sep 2014 A1
20140278379 Coccaro et al. Sep 2014 A1
20140278390 Kingsbury et al. Sep 2014 A1
20140278391 Braho et al. Sep 2014 A1
20140278394 Bastyr et al. Sep 2014 A1
20140278406 Tsumura et al. Sep 2014 A1
20140278413 Pitschel et al. Sep 2014 A1
20140278426 Jost et al. Sep 2014 A1
20140278429 Ganong, III Sep 2014 A1
20140278435 Ganong, III et al. Sep 2014 A1
20140278436 Khanna et al. Sep 2014 A1
20140278438 Hart et al. Sep 2014 A1
20140278443 Gunn et al. Sep 2014 A1
20140278444 Larson et al. Sep 2014 A1
20140278513 Prakash et al. Sep 2014 A1
20140279622 Lamoureux et al. Sep 2014 A1
20140279739 Elkington et al. Sep 2014 A1
20140279787 Cheng et al. Sep 2014 A1
20140280072 Coleman Sep 2014 A1
20140280107 Heymans et al. Sep 2014 A1
20140280138 Li et al. Sep 2014 A1
20140280292 Skinder Sep 2014 A1
20140280353 Delaney et al. Sep 2014 A1
20140280450 Luna Sep 2014 A1
20140281944 Winer Sep 2014 A1
20140281983 Xian et al. Sep 2014 A1
20140281997 Fleizach et al. Sep 2014 A1
20140282003 Gruber et al. Sep 2014 A1
20140282007 Fleizach Sep 2014 A1
20140282045 Ayanam et al. Sep 2014 A1
20140282178 Borzello et al. Sep 2014 A1
20140282201 Pasquero et al. Sep 2014 A1
20140282203 Pasquero et al. Sep 2014 A1
20140282559 Verduzco et al. Sep 2014 A1
20140282586 Shear et al. Sep 2014 A1
20140282743 Howard et al. Sep 2014 A1
20140288990 Moore et al. Sep 2014 A1
20140289508 Wang Sep 2014 A1
20140297267 Spencer et al. Oct 2014 A1
20140297281 Togawa et al. Oct 2014 A1
20140297284 Gruber et al. Oct 2014 A1
20140297288 Yu et al. Oct 2014 A1
20140298395 Yang et al. Oct 2014 A1
20140304086 Dasdan et al. Oct 2014 A1
20140304605 Ohmura et al. Oct 2014 A1
20140309990 Gandrabur et al. Oct 2014 A1
20140309996 Zhang Oct 2014 A1
20140310001 Kains et al. Oct 2014 A1
20140310002 Nitz et al. Oct 2014 A1
20140310348 Keskitalo et al. Oct 2014 A1
20140310365 Sample et al. Oct 2014 A1
20140310595 Acharya et al. Oct 2014 A1
20140313007 Harding Oct 2014 A1
20140315492 Woods Oct 2014 A1
20140316585 Boesveld et al. Oct 2014 A1
20140317030 Shen et al. Oct 2014 A1
20140317502 Brown et al. Oct 2014 A1
20140324429 Weilhammer et al. Oct 2014 A1
20140324884 Lindahl et al. Oct 2014 A1
20140330569 Kolavennu et al. Nov 2014 A1
20140330951 Sukoff et al. Nov 2014 A1
20140335823 Heredia et al. Nov 2014 A1
20140337037 Chi Nov 2014 A1
20140337048 Brown et al. Nov 2014 A1
20140337266 Wolverton et al. Nov 2014 A1
20140337370 Aravamudan et al. Nov 2014 A1
20140337371 Li Nov 2014 A1
20140337438 Govande et al. Nov 2014 A1
20140337621 Nakhimov Nov 2014 A1
20140337751 Lim et al. Nov 2014 A1
20140337814 Kalns et al. Nov 2014 A1
20140342762 Hajdu et al. Nov 2014 A1
20140343834 Demerchant et al. Nov 2014 A1
20140343943 Al-telmissani Nov 2014 A1
20140343946 Torok et al. Nov 2014 A1
20140344205 Luna et al. Nov 2014 A1
20140344627 Schaub et al. Nov 2014 A1
20140344687 Durham et al. Nov 2014 A1
20140347181 Luna et al. Nov 2014 A1
20140350847 Ichinokawa Nov 2014 A1
20140350924 Zurek et al. Nov 2014 A1
20140350933 Bak et al. Nov 2014 A1
20140351741 Medlock et al. Nov 2014 A1
20140351760 Skory et al. Nov 2014 A1
20140358519 Mirkin et al. Dec 2014 A1
20140358523 Sheth et al. Dec 2014 A1
20140358549 O'connor et al. Dec 2014 A1
20140359637 Yan Dec 2014 A1
20140359709 Nassar et al. Dec 2014 A1
20140361973 Raux et al. Dec 2014 A1
20140363074 Dolfing et al. Dec 2014 A1
20140364149 Marti et al. Dec 2014 A1
20140365209 Evermann Dec 2014 A1
20140365214 Bayley Dec 2014 A1
20140365216 Gruber et al. Dec 2014 A1
20140365226 Sinha Dec 2014 A1
20140365227 Cash et al. Dec 2014 A1
20140365407 Brown et al. Dec 2014 A1
20140365505 Clark et al. Dec 2014 A1
20140365880 Bellegarda Dec 2014 A1
20140365885 Carson et al. Dec 2014 A1
20140365895 Magahern et al. Dec 2014 A1
20140365922 Yang Dec 2014 A1
20140365945 Karunamuni et al. Dec 2014 A1
20140370817 Luna Dec 2014 A1
20140370841 Roberts et al. Dec 2014 A1
20140372112 Xue et al. Dec 2014 A1
20140372356 Bilal et al. Dec 2014 A1
20140372468 Collins et al. Dec 2014 A1
20140372931 Zhai et al. Dec 2014 A1
20140379334 Fry Dec 2014 A1
20140379341 Seo et al. Dec 2014 A1
20140379798 Bunner et al. Dec 2014 A1
20140380285 Gabel et al. Dec 2014 A1
20150003797 Schmidt Jan 2015 A1
20150004958 Wang et al. Jan 2015 A1
20150006148 Goldszmit et al. Jan 2015 A1
20150006157 Silva et al. Jan 2015 A1
20150006167 Kato et al. Jan 2015 A1
20150006176 Pogue et al. Jan 2015 A1
20150006178 Peng et al. Jan 2015 A1
20150006184 Marti et al. Jan 2015 A1
20150006199 Snider et al. Jan 2015 A1
20150012271 Peng et al. Jan 2015 A1
20150019219 Tzirkel-hancock et al. Jan 2015 A1
20150019221 Lee et al. Jan 2015 A1
20150019944 Kalgi Jan 2015 A1
20150019974 Doi et al. Jan 2015 A1
20150025405 Vairavan et al. Jan 2015 A1
20150026620 Kwon et al. Jan 2015 A1
20150027178 Scalisi Jan 2015 A1
20150031416 Labowicz et al. Jan 2015 A1
20150032443 Karov et al. Jan 2015 A1
20150033219 Breiner et al. Jan 2015 A1
20150033275 Natani et al. Jan 2015 A1
20150034855 Shen Feb 2015 A1
20150038161 Jakobson et al. Feb 2015 A1
20150039292 Suleman et al. Feb 2015 A1
20150039295 Soschen Feb 2015 A1
20150039299 Weinstein et al. Feb 2015 A1
20150039305 Huang Feb 2015 A1
20150039606 Salaka et al. Feb 2015 A1
20150040012 Faaborg et al. Feb 2015 A1
20150045003 Vora et al. Feb 2015 A1
20150045007 Cash Feb 2015 A1
20150045068 Softer et al. Feb 2015 A1
20150046434 Lim et al. Feb 2015 A1
20150046537 Rakib Feb 2015 A1
20150046828 Desai et al. Feb 2015 A1
20150050633 Christmas et al. Feb 2015 A1
20150050923 Tu et al. Feb 2015 A1
20150051754 Kwon et al. Feb 2015 A1
20150053779 Adamek et al. Feb 2015 A1
20150053781 Nelson et al. Feb 2015 A1
20150055879 Yang Feb 2015 A1
20150058013 Pakhomov et al. Feb 2015 A1
20150058018 Georges et al. Feb 2015 A1
20150058720 Smadja et al. Feb 2015 A1
20150058785 Ookawara Feb 2015 A1
20150065149 Russell et al. Mar 2015 A1
20150065200 Namgung et al. Mar 2015 A1
20150066494 Salvador et al. Mar 2015 A1
20150066496 Deoras et al. Mar 2015 A1
20150066506 Romano et al. Mar 2015 A1
20150066516 Nishikawa et al. Mar 2015 A1
20150066817 Slayton et al. Mar 2015 A1
20150067485 Kim et al. Mar 2015 A1
20150067822 Randall Mar 2015 A1
20150071121 Patil et al. Mar 2015 A1
20150073788 Sak et al. Mar 2015 A1
20150073804 Senior et al. Mar 2015 A1
20150074524 Nicholson et al. Mar 2015 A1
20150074615 Han et al. Mar 2015 A1
20150081295 Yun et al. Mar 2015 A1
20150082229 Ouyang et al. Mar 2015 A1
20150086174 Abecassis et al. Mar 2015 A1
20150088511 Bharadwaj et al. Mar 2015 A1
20150088514 Typrin Mar 2015 A1
20150088518 Kim et al. Mar 2015 A1
20150088522 Hendrickson et al. Mar 2015 A1
20150088523 Schuster Mar 2015 A1
20150088998 Isensee et al. Mar 2015 A1
20150092520 Robison Apr 2015 A1
20150094834 Vega et al. Apr 2015 A1
20150095031 Conkie et al. Apr 2015 A1
20150095268 Greenzeiger et al. Apr 2015 A1
20150095278 Flinn et al. Apr 2015 A1
20150100144 Lee et al. Apr 2015 A1
20150100313 Sharma Apr 2015 A1
20150100316 Williams et al. Apr 2015 A1
20150100537 Grieves et al. Apr 2015 A1
20150100983 Pan Apr 2015 A1
20150106093 Weeks et al. Apr 2015 A1
20150106737 Montoy-Wilson et al. Apr 2015 A1
20150113407 Hoffert et al. Apr 2015 A1
20150113435 Phillips Apr 2015 A1
20150120296 Stern et al. Apr 2015 A1
20150120641 Soon-Shiong et al. Apr 2015 A1
20150120723 Deshmukh et al. Apr 2015 A1
20150121216 Brown et al. Apr 2015 A1
20150123898 Kim et al. May 2015 A1
20150127337 Heigold et al. May 2015 A1
20150127348 Follis May 2015 A1
20150127350 Agiomyrgiannakis May 2015 A1
20150133049 Lee et al. May 2015 A1
20150133109 Freeman et al. May 2015 A1
20150134318 Cuthbert et al. May 2015 A1
20150134322 Cuthbert et al. May 2015 A1
20150134334 Sachidanandam et al. May 2015 A1
20150135085 Shoham et al. May 2015 A1
20150135123 Carr et al. May 2015 A1
20150140934 Abdurrahman et al. May 2015 A1
20150141150 Zha May 2015 A1
20150142420 Sarikaya et al. May 2015 A1
20150142438 Dai et al. May 2015 A1
20150142447 Kennewick et al. May 2015 A1
20150142851 Gupta et al. May 2015 A1
20150143419 Bhagwat et al. May 2015 A1
20150148013 Baldwin et al. May 2015 A1
20150149177 Kains et al. May 2015 A1
20150149182 Kains et al. May 2015 A1
20150149354 Mccoy May 2015 A1
20150149469 Xu et al. May 2015 A1
20150149899 Bernstein et al. May 2015 A1
20150149964 Bernstein et al. May 2015 A1
20150154001 Knox et al. Jun 2015 A1
20150154185 Waibel Jun 2015 A1
20150154976 Mutagi Jun 2015 A1
20150160855 Bi Jun 2015 A1
20150161291 Gur et al. Jun 2015 A1
20150161370 North et al. Jun 2015 A1
20150161521 Shah et al. Jun 2015 A1
20150161989 Hsu et al. Jun 2015 A1
20150162001 Kar et al. Jun 2015 A1
20150162006 Kummer Jun 2015 A1
20150163558 Wheatley Jun 2015 A1
20150169081 Neels et al. Jun 2015 A1
20150169284 Quast et al. Jun 2015 A1
20150169336 Harper et al. Jun 2015 A1
20150169696 Krishnappa et al. Jun 2015 A1
20150170073 Baker Jun 2015 A1
20150170664 Doherty et al. Jun 2015 A1
20150172262 Ortiz, Jr. et al. Jun 2015 A1
20150172463 Quast et al. Jun 2015 A1
20150178388 Winnemoeller et al. Jun 2015 A1
20150178785 Salonen Jun 2015 A1
20150179176 Ryu et al. Jun 2015 A1
20150181285 Zhang et al. Jun 2015 A1
20150185964 Stout Jul 2015 A1
20150185996 Brown et al. Jul 2015 A1
20150186012 Coleman et al. Jul 2015 A1
20150186110 Kannan Jul 2015 A1
20150186154 Brown et al. Jul 2015 A1
20150186155 Brown et al. Jul 2015 A1
20150186156 Brown et al. Jul 2015 A1
20150186351 Hicks et al. Jul 2015 A1
20150186538 Yan et al. Jul 2015 A1
20150186783 Byrne et al. Jul 2015 A1
20150187355 Parkinson et al. Jul 2015 A1
20150187369 Dadu et al. Jul 2015 A1
20150189362 Lee et al. Jul 2015 A1
20150193379 Mehta Jul 2015 A1
20150193391 Khvostichenko et al. Jul 2015 A1
20150193392 Greenblatt et al. Jul 2015 A1
20150194152 Katuri et al. Jul 2015 A1
20150194165 Faaborg et al. Jul 2015 A1
20150195379 Zhang et al. Jul 2015 A1
20150195606 Mcdevitt Jul 2015 A1
20150199077 Zuger et al. Jul 2015 A1
20150199960 Huo et al. Jul 2015 A1
20150199965 Leak et al. Jul 2015 A1
20150199967 Reddy et al. Jul 2015 A1
20150201064 Bells et al. Jul 2015 A1
20150201077 Konig et al. Jul 2015 A1
20150205425 Kuscher et al. Jul 2015 A1
20150205568 Matsuoka Jul 2015 A1
20150205858 Xie et al. Jul 2015 A1
20150206529 Kwon et al. Jul 2015 A1
20150208226 Kuusilinna et al. Jul 2015 A1
20150212791 Kumar et al. Jul 2015 A1
20150213140 Volkert Jul 2015 A1
20150213796 Waltermann et al. Jul 2015 A1
20150215258 Nowakowski et al. Jul 2015 A1
20150215350 Slayton et al. Jul 2015 A1
20150220264 Lewis et al. Aug 2015 A1
20150220507 Mohajer et al. Aug 2015 A1
20150220715 Kim et al. Aug 2015 A1
20150220972 Subramanya et al. Aug 2015 A1
20150221304 Stewart Aug 2015 A1
20150221307 Shah et al. Aug 2015 A1
20150227505 Morimoto Aug 2015 A1
20150227633 Shapira Aug 2015 A1
20150228274 Leppanen et al. Aug 2015 A1
20150228275 Watanabe et al. Aug 2015 A1
20150228281 Raniere Aug 2015 A1
20150228283 Ehsani et al. Aug 2015 A1
20150228292 Goldstein et al. Aug 2015 A1
20150230095 Smith et al. Aug 2015 A1
20150234636 Barnes, Jr. Aug 2015 A1
20150234800 Patrick et al. Aug 2015 A1
20150237301 Shi et al. Aug 2015 A1
20150242091 Lu et al. Aug 2015 A1
20150242385 Bao et al. Aug 2015 A1
20150243278 Kibre et al. Aug 2015 A1
20150243279 Morse et al. Aug 2015 A1
20150243283 Halash et al. Aug 2015 A1
20150244665 Choi et al. Aug 2015 A1
20150245154 Dadu et al. Aug 2015 A1
20150248651 Akutagawa et al. Sep 2015 A1
20150248886 Sarikaya et al. Sep 2015 A1
20150253146 Annapureddy et al. Sep 2015 A1
20150253885 Kagan et al. Sep 2015 A1
20150254057 Klein et al. Sep 2015 A1
20150254058 Klein et al. Sep 2015 A1
20150254333 Fife et al. Sep 2015 A1
20150255071 Chiba Sep 2015 A1
20150256873 Klein et al. Sep 2015 A1
20150261298 Li Sep 2015 A1
20150261496 Faaborg et al. Sep 2015 A1
20150261850 Mittal Sep 2015 A1
20150269139 Mcateer et al. Sep 2015 A1
20150269617 Mikurak Sep 2015 A1
20150269677 Milne Sep 2015 A1
20150269943 VanBlon et al. Sep 2015 A1
20150277574 Jain et al. Oct 2015 A1
20150278348 Paruchuri et al. Oct 2015 A1
20150278370 Stratvert et al. Oct 2015 A1
20150278737 Chen Huebscher et al. Oct 2015 A1
20150279358 Kingsbury et al. Oct 2015 A1
20150279360 Mengibar et al. Oct 2015 A1
20150279366 Krestnikov et al. Oct 2015 A1
20150281380 Wang et al. Oct 2015 A1
20150281401 Le et al. Oct 2015 A1
20150286627 Chang et al. Oct 2015 A1
20150286716 Snibbe et al. Oct 2015 A1
20150286937 Hildebrand Oct 2015 A1
20150287401 Lee et al. Oct 2015 A1
20150287409 Jang Oct 2015 A1
20150287411 Kojima et al. Oct 2015 A1
20150288629 Choi et al. Oct 2015 A1
20150294086 Kare et al. Oct 2015 A1
20150294377 Chow Oct 2015 A1
20150294516 Chiang Oct 2015 A1
20150295915 Xiu Oct 2015 A1
20150301796 Visser et al. Oct 2015 A1
20150302855 Kim et al. Oct 2015 A1
20150302856 Kim et al. Oct 2015 A1
20150302857 Yamada Oct 2015 A1
20150302870 Burke et al. Oct 2015 A1
20150309997 Lee et al. Oct 2015 A1
20150310114 Ryger et al. Oct 2015 A1
20150310858 Li et al. Oct 2015 A1
20150310862 Dauphin et al. Oct 2015 A1
20150310879 Buchanan et al. Oct 2015 A1
20150310888 Chen Oct 2015 A1
20150312182 Langholz Oct 2015 A1
20150312409 Czarnecki et al. Oct 2015 A1
20150314454 Breazeal et al. Nov 2015 A1
20150317069 Clements et al. Nov 2015 A1
20150317310 Eiche et al. Nov 2015 A1
20150319411 Kasmir et al. Nov 2015 A1
20150324041 Varley et al. Nov 2015 A1
20150324334 Lee et al. Nov 2015 A1
20150331664 Osawa et al. Nov 2015 A1
20150331711 Huang et al. Nov 2015 A1
20150332667 Mason Nov 2015 A1
20150334346 Cheatham, III et al. Nov 2015 A1
20150339049 Kasemset et al. Nov 2015 A1
20150339391 Kang et al. Nov 2015 A1
20150340033 Di Fabbrizio et al. Nov 2015 A1
20150340040 Mun et al. Nov 2015 A1
20150340042 Sejnoha et al. Nov 2015 A1
20150341717 Song et al. Nov 2015 A1
20150346845 Di Censo et al. Dec 2015 A1
20150347086 Liedholm et al. Dec 2015 A1
20150347381 Bellegarda Dec 2015 A1
20150347382 Dolfing et al. Dec 2015 A1
20150347383 Willmore et al. Dec 2015 A1
20150347385 Flor et al. Dec 2015 A1
20150347393 Futrell et al. Dec 2015 A1
20150347552 Habouzit et al. Dec 2015 A1
20150347733 Tsou et al. Dec 2015 A1
20150347985 Gross et al. Dec 2015 A1
20150348533 Saddler et al. Dec 2015 A1
20150348547 Paulik et al. Dec 2015 A1
20150348548 Piernot Dec 2015 A1
20150348549 Giuli et al. Dec 2015 A1
20150348551 Gruber et al. Dec 2015 A1
20150348554 Orr et al. Dec 2015 A1
20150348555 Sugita Dec 2015 A1
20150348565 Rhoten et al. Dec 2015 A1
20150349934 Pollack et al. Dec 2015 A1
20150350031 Burks et al. Dec 2015 A1
20150350342 Thorpe et al. Dec 2015 A1
20150350594 Mate et al. Dec 2015 A1
20150352999 Bando et al. Dec 2015 A1
20150355879 Beckhardt et al. Dec 2015 A1
20150356410 Faith et al. Dec 2015 A1
20150363587 Ahn et al. Dec 2015 A1
20150364128 Zhao et al. Dec 2015 A1
20150364140 Thörn Dec 2015 A1
20150370531 Faaborg Dec 2015 A1
20150370780 Wang et al. Dec 2015 A1
20150370787 Akbacak et al. Dec 2015 A1
20150370884 Hurley et al. Dec 2015 A1
20150371215 Zhou et al. Dec 2015 A1
20150371529 Dolecki Dec 2015 A1
20150371639 Foerster et al. Dec 2015 A1
20150371663 Gustafson et al. Dec 2015 A1
20150371665 Naik et al. Dec 2015 A1
20150373183 Woolsey et al. Dec 2015 A1
20150379118 Wickenkamp et al. Dec 2015 A1
20150379414 Yeh et al. Dec 2015 A1
20150379993 Subhojit et al. Dec 2015 A1
20150381923 Wickenkamp et al. Dec 2015 A1
20150382047 Van Os et al. Dec 2015 A1
20150382079 Lister et al. Dec 2015 A1
20150382147 Clark et al. Dec 2015 A1
20160004690 Bangalore et al. Jan 2016 A1
20160005320 deCharms et al. Jan 2016 A1
20160012038 Edwards et al. Jan 2016 A1
20160014476 Caliendo, Jr. et al. Jan 2016 A1
20160018872 Tu et al. Jan 2016 A1
20160018900 Tu et al. Jan 2016 A1
20160018959 Yamashita et al. Jan 2016 A1
20160019886 Hong Jan 2016 A1
20160021414 Padi et al. Jan 2016 A1
20160026258 Ou et al. Jan 2016 A1
20160027431 Kurzweil et al. Jan 2016 A1
20160028666 Li Jan 2016 A1
20160029316 Mohan et al. Jan 2016 A1
20160034042 Joo Feb 2016 A1
20160034811 Paulik et al. Feb 2016 A1
20160036953 Lee et al. Feb 2016 A1
20160041809 Clayton et al. Feb 2016 A1
20160042735 Vibbert et al. Feb 2016 A1
20160042748 Jain et al. Feb 2016 A1
20160043905 Fiedler Feb 2016 A1
20160048666 Dey et al. Feb 2016 A1
20160050254 Rao et al. Feb 2016 A1
20160055422 Li Feb 2016 A1
20160062605 Agarwal et al. Mar 2016 A1
20160063094 Udupa et al. Mar 2016 A1
20160063998 Krishnamoorthy et al. Mar 2016 A1
20160070581 Soon-Shiong Mar 2016 A1
20160071516 Lee et al. Mar 2016 A1
20160071517 Beaver et al. Mar 2016 A1
20160071521 Haughay Mar 2016 A1
20160072940 Cronin Mar 2016 A1
20160077794 Kim et al. Mar 2016 A1
20160078860 Paulik et al. Mar 2016 A1
20160080165 Ehsani et al. Mar 2016 A1
20160080475 Singh et al. Mar 2016 A1
20160085295 Shimy et al. Mar 2016 A1
20160085827 Chadha et al. Mar 2016 A1
20160086116 Rao et al. Mar 2016 A1
20160086599 Kurata et al. Mar 2016 A1
20160088335 Zucchetta Mar 2016 A1
20160091967 Prokofieva et al. Mar 2016 A1
20160092434 Bellegarda Mar 2016 A1
20160092447 Pathurudeen et al. Mar 2016 A1
20160092766 Sainath et al. Mar 2016 A1
20160093291 Kim Mar 2016 A1
20160093298 Naik et al. Mar 2016 A1
20160093301 Bellegarda et al. Mar 2016 A1
20160093304 Kim et al. Mar 2016 A1
20160094700 Lee et al. Mar 2016 A1
20160094889 Venkataraman et al. Mar 2016 A1
20160094979 Naik et al. Mar 2016 A1
20160098991 Luo et al. Apr 2016 A1
20160098992 Renard et al. Apr 2016 A1
20160099892 Palakovich et al. Apr 2016 A1
20160099984 Karagiannis et al. Apr 2016 A1
20160104480 Sharifi Apr 2016 A1
20160104486 Penilla et al. Apr 2016 A1
20160111091 Bakish Apr 2016 A1
20160112746 Zhang et al. Apr 2016 A1
20160117386 Ajmera et al. Apr 2016 A1
20160118048 Heide Apr 2016 A1
20160119338 Cheyer Apr 2016 A1
20160125048 Hamada May 2016 A1
20160125071 Gabbai May 2016 A1
20160132046 Beoughter et al. May 2016 A1
20160132484 Nauze et al. May 2016 A1
20160132488 Clark et al. May 2016 A1
20160133254 Vogel et al. May 2016 A1
20160139662 Dabhade May 2016 A1
20160140951 Agiomyrgiannakis et al. May 2016 A1
20160140962 Sharifi May 2016 A1
20160147725 Patten et al. May 2016 A1
20160148610 Kennewick, Jr. et al. May 2016 A1
20160150020 Farmer et al. May 2016 A1
20160154624 Son Jun 2016 A1
20160154880 Hoarty Jun 2016 A1
20160155442 Kannan et al. Jun 2016 A1
20160155443 Khan et al. Jun 2016 A1
20160156574 Hum et al. Jun 2016 A1
20160162456 Munro et al. Jun 2016 A1
20160163311 Crook et al. Jun 2016 A1
20160163312 Naik et al. Jun 2016 A1
20160170966 Kolo Jun 2016 A1
20160173578 Sharma et al. Jun 2016 A1
20160173617 Allinson Jun 2016 A1
20160173960 Snibbe et al. Jun 2016 A1
20160179462 Bjorkengren Jun 2016 A1
20160179464 Reddy et al. Jun 2016 A1
20160179787 Deleeuw Jun 2016 A1
20160180840 Siddiq et al. Jun 2016 A1
20160180844 Vanbion et al. Jun 2016 A1
20160182410 Janakiraman et al. Jun 2016 A1
20160182709 Kim et al. Jun 2016 A1
20160188181 Smith Jun 2016 A1
20160188738 Gruber et al. Jun 2016 A1
20160189717 Kannan et al. Jun 2016 A1
20160196110 Yehoshua et al. Jul 2016 A1
20160198319 Huang et al. Jul 2016 A1
20160203002 Kannan et al. Jul 2016 A1
20160210551 Lee et al. Jul 2016 A1
20160210981 Lee Jul 2016 A1
20160212488 Os et al. Jul 2016 A1
20160217784 Gelfenbeyn et al. Jul 2016 A1
20160224540 Stewart et al. Aug 2016 A1
20160224774 Pender Aug 2016 A1
20160225372 Cheung et al. Aug 2016 A1
20160227107 Beaumont Aug 2016 A1
20160232500 Wang et al. Aug 2016 A1
20160239645 Heo et al. Aug 2016 A1
20160240187 Fleizach et al. Aug 2016 A1
20160240189 Lee et al. Aug 2016 A1
20160240192 Raghuvir Aug 2016 A1
20160247061 Trask et al. Aug 2016 A1
20160249319 Dotan-Cohen et al. Aug 2016 A1
20160253312 Rhodes Sep 2016 A1
20160253528 Gao et al. Sep 2016 A1
20160259623 Sumner et al. Sep 2016 A1
20160259656 Sumner et al. Sep 2016 A1
20160259779 Labský et al. Sep 2016 A1
20160260431 Dorp Sep 2016 A1
20160260433 Sumner et al. Sep 2016 A1
20160260434 Gelfenbeyn et al. Sep 2016 A1
20160260436 Lemay et al. Sep 2016 A1
20160266871 Schmid et al. Sep 2016 A1
20160267904 Biadsy et al. Sep 2016 A1
20160274938 Strinati et al. Sep 2016 A1
20160275941 Bellegarda et al. Sep 2016 A1
20160275947 Li et al. Sep 2016 A1
20160282824 Smallwood et al. Sep 2016 A1
20160282956 Ouyang et al. Sep 2016 A1
20160283185 Mclaren et al. Sep 2016 A1
20160284005 Daniel et al. Sep 2016 A1
20160284199 Dotan-Cohen et al. Sep 2016 A1
20160285808 Franklin et al. Sep 2016 A1
20160286045 Shaltiel et al. Sep 2016 A1
20160293157 Chen et al. Oct 2016 A1
20160293168 Chen Oct 2016 A1
20160294755 Prabhu Oct 2016 A1
20160299685 Zhai et al. Oct 2016 A1
20160299882 Hegerty et al. Oct 2016 A1
20160299883 Zhu et al. Oct 2016 A1
20160299977 Hreha Oct 2016 A1
20160300571 Foerster et al. Oct 2016 A1
20160301639 Liu et al. Oct 2016 A1
20160307566 Bellegarda Oct 2016 A1
20160308799 Schubert et al. Oct 2016 A1
20160313906 Kilchenko et al. Oct 2016 A1
20160314788 Jitkoff et al. Oct 2016 A1
20160314792 Alvarez et al. Oct 2016 A1
20160315996 Ha et al. Oct 2016 A1
20160317924 Tanaka et al. Nov 2016 A1
20160321239 Iso-Sipilä et al. Nov 2016 A1
20160321261 Spasojevic et al. Nov 2016 A1
20160321358 Kanani et al. Nov 2016 A1
20160322043 Bellegarda Nov 2016 A1
20160322044 Jung et al. Nov 2016 A1
20160322045 Hatfield et al. Nov 2016 A1
20160322048 Amano et al. Nov 2016 A1
20160322050 Wang et al. Nov 2016 A1
20160328147 Zhang et al. Nov 2016 A1
20160328205 Agrawal et al. Nov 2016 A1
20160328893 Cordova et al. Nov 2016 A1
20160329060 Ito et al. Nov 2016 A1
20160334973 Reckhow et al. Nov 2016 A1
20160335532 Sanghavi et al. Nov 2016 A1
20160336007 Hanazawa et al. Nov 2016 A1
20160336010 Lindahl Nov 2016 A1
20160336011 Koll et al. Nov 2016 A1
20160336024 Choi et al. Nov 2016 A1
20160337299 Lane et al. Nov 2016 A1
20160337301 Rollins et al. Nov 2016 A1
20160342317 Lim et al. Nov 2016 A1
20160342685 Basu et al. Nov 2016 A1
20160342781 Jeon Nov 2016 A1
20160350650 Leeman-Munk et al. Dec 2016 A1
20160351190 Piemot et al. Dec 2016 A1
20160352567 Robbins et al. Dec 2016 A1
20160357304 Hatori et al. Dec 2016 A1
20160357728 Bellegarda et al. Dec 2016 A1
20160357790 Elkington et al. Dec 2016 A1
20160357861 Carlhian et al. Dec 2016 A1
20160357870 Hentschel et al. Dec 2016 A1
20160358598 Williams et al. Dec 2016 A1
20160358600 Nallasamy et al. Dec 2016 A1
20160358619 Ramprashad et al. Dec 2016 A1
20160359771 Sridhar Dec 2016 A1
20160360039 Sanghavi et al. Dec 2016 A1
20160360336 Gross et al. Dec 2016 A1
20160360382 Gross et al. Dec 2016 A1
20160364378 Futrell et al. Dec 2016 A1
20160365101 Foy et al. Dec 2016 A1
20160371250 Rhodes Dec 2016 A1
20160372112 Miller et al. Dec 2016 A1
20160372119 Sak et al. Dec 2016 A1
20160378747 Orr et al. Dec 2016 A1
20160379091 Lin et al. Dec 2016 A1
20160379626 Deisher et al. Dec 2016 A1
20160379632 Hoffmeister et al. Dec 2016 A1
20160379633 Lehman et al. Dec 2016 A1
20160379639 Weinstein et al. Dec 2016 A1
20160379641 Liu et al. Dec 2016 A1
20170003931 Dvortsov et al. Jan 2017 A1
20170004824 Yoo et al. Jan 2017 A1
20170005818 Gould Jan 2017 A1
20170011091 Chehreghani Jan 2017 A1
20170011303 Annapureddy et al. Jan 2017 A1
20170011742 Jing et al. Jan 2017 A1
20170013124 Havelka et al. Jan 2017 A1
20170013331 Watanabe et al. Jan 2017 A1
20170018271 Khan et al. Jan 2017 A1
20170019987 Dragone et al. Jan 2017 A1
20170023963 Davis et al. Jan 2017 A1
20170025124 Mixter et al. Jan 2017 A1
20170026318 Daniel et al. Jan 2017 A1
20170026509 Rand Jan 2017 A1
20170031576 Saoji et al. Feb 2017 A1
20170032783 Lord et al. Feb 2017 A1
20170032787 Dayal Feb 2017 A1
20170032791 Elson et al. Feb 2017 A1
20170039283 Bennett et al. Feb 2017 A1
20170039475 Cheyer et al. Feb 2017 A1
20170040002 Basson et al. Feb 2017 A1
20170047063 Ohmura et al. Feb 2017 A1
20170053652 Choi et al. Feb 2017 A1
20170055895 Jardins et al. Mar 2017 A1
20170060853 Lee et al. Mar 2017 A1
20170061423 Bryant et al. Mar 2017 A1
20170068423 Napolitano et al. Mar 2017 A1
20170068513 Stasior et al. Mar 2017 A1
20170068550 Zeitlin Mar 2017 A1
20170068670 Orr et al. Mar 2017 A1
20170069308 Aleksic et al. Mar 2017 A1
20170075653 Dawidowsky et al. Mar 2017 A1
20170076720 Gopalan et al. Mar 2017 A1
20170076721 Bargetzi et al. Mar 2017 A1
20170078490 Kaminsky et al. Mar 2017 A1
20170083179 Gruber et al. Mar 2017 A1
20170083285 Meyers et al. Mar 2017 A1
20170083504 Huang Mar 2017 A1
20170084277 Sharifi Mar 2017 A1
20170085547 De Aguiar et al. Mar 2017 A1
20170090569 Levesque Mar 2017 A1
20170091168 Bellegarda et al. Mar 2017 A1
20170091169 Bellegarda et al. Mar 2017 A1
20170091612 Gruber et al. Mar 2017 A1
20170092259 Jeon Mar 2017 A1
20170092270 Newendorp et al. Mar 2017 A1
20170092278 Evermann et al. Mar 2017 A1
20170093356 Cudak et al. Mar 2017 A1
20170102837 Toumpelis Apr 2017 A1
20170102915 Kuscher et al. Apr 2017 A1
20170103749 Zhao et al. Apr 2017 A1
20170105190 Logan et al. Apr 2017 A1
20170110117 Chakladar et al. Apr 2017 A1
20170116177 Walia Apr 2017 A1
20170116982 Gelfenbeyn et al. Apr 2017 A1
20170116989 Yadgar et al. Apr 2017 A1
20170124190 Wang et al. May 2017 A1
20170125016 Wang May 2017 A1
20170127124 Wilson et al. May 2017 A9
20170131778 Iyer May 2017 A1
20170132019 Karashchuk et al. May 2017 A1
20170132199 Vescovi et al. May 2017 A1
20170133007 Drewes May 2017 A1
20170140041 Dotan-Cohen et al. May 2017 A1
20170140644 Hwang et al. May 2017 A1
20170140760 Sachdev May 2017 A1
20170147841 Stagg et al. May 2017 A1
20170148044 Fukuda et al. May 2017 A1
20170154033 Lee Jun 2017 A1
20170154055 Dimson et al. Jun 2017 A1
20170155940 Jin et al. Jun 2017 A1
20170161018 Lemay et al. Jun 2017 A1
20170161268 Badaskar Jun 2017 A1
20170161293 Ionescu et al. Jun 2017 A1
20170161393 Oh et al. Jun 2017 A1
20170162191 Grost et al. Jun 2017 A1
20170162203 Huang et al. Jun 2017 A1
20170169818 Vanbion et al. Jun 2017 A1
20170169819 Mese et al. Jun 2017 A1
20170177547 Ciereszko et al. Jun 2017 A1
20170178619 Naik et al. Jun 2017 A1
20170178620 Fleizach et al. Jun 2017 A1
20170178626 Gruber et al. Jun 2017 A1
20170180499 Gelfenbeyn et al. Jun 2017 A1
20170185375 Martel et al. Jun 2017 A1
20170185581 Bojja et al. Jun 2017 A1
20170186429 Giuli et al. Jun 2017 A1
20170187711 Joo et al. Jun 2017 A1
20170193083 Bhatt et al. Jul 2017 A1
20170195493 Sudarsan et al. Jul 2017 A1
20170195636 Child et al. Jul 2017 A1
20170199870 Zheng et al. Jul 2017 A1
20170199874 Patel et al. Jul 2017 A1
20170200066 Wang et al. Jul 2017 A1
20170201609 Salmenkaita et al. Jul 2017 A1
20170201613 Engelke et al. Jul 2017 A1
20170206899 Bryant et al. Jul 2017 A1
20170215052 Koum et al. Jul 2017 A1
20170221486 Kurata et al. Aug 2017 A1
20170223189 Meredith et al. Aug 2017 A1
20170227935 Su et al. Aug 2017 A1
20170228367 Pasupalak et al. Aug 2017 A1
20170228382 Haviv et al. Aug 2017 A1
20170230429 Garmark et al. Aug 2017 A1
20170230497 Kim et al. Aug 2017 A1
20170230709 Van Os et al. Aug 2017 A1
20170235361 Rigazio et al. Aug 2017 A1
20170235618 Lin et al. Aug 2017 A1
20170235721 Almosallam et al. Aug 2017 A1
20170236512 Williams et al. Aug 2017 A1
20170236514 Nelson Aug 2017 A1
20170238039 Sabattini Aug 2017 A1
20170242653 Lang et al. Aug 2017 A1
20170242657 Jarvis et al. Aug 2017 A1
20170243468 Dotan-cohen et al. Aug 2017 A1
20170243576 Millington et al. Aug 2017 A1
20170243586 Civelli et al. Aug 2017 A1
20170256256 Wang et al. Sep 2017 A1
20170263247 Kang et al. Sep 2017 A1
20170263248 Gruber et al. Sep 2017 A1
20170263249 Akbacak et al. Sep 2017 A1
20170264451 Yu et al. Sep 2017 A1
20170264711 Natarajan et al. Sep 2017 A1
20170270912 Levit et al. Sep 2017 A1
20170278514 Mathias et al. Sep 2017 A1
20170285915 Napolitano et al. Oct 2017 A1
20170286397 Gonzalez Oct 2017 A1
20170287472 Ogawa et al. Oct 2017 A1
20170289305 Liensberger et al. Oct 2017 A1
20170295446 Shivappa Oct 2017 A1
20170308609 Berkhin et al. Oct 2017 A1
20170311005 Lin Oct 2017 A1
20170316775 Le et al. Nov 2017 A1
20170316782 Haughay Nov 2017 A1
20170319123 Voss et al. Nov 2017 A1
20170323637 Naik Nov 2017 A1
20170329466 Krenkler et al. Nov 2017 A1
20170329490 Esinovskaya et al. Nov 2017 A1
20170329572 Shah et al. Nov 2017 A1
20170329630 Jann et al. Nov 2017 A1
20170330567 Van Wissen et al. Nov 2017 A1
20170337035 Choudhary et al. Nov 2017 A1
20170337478 Sarikaya et al. Nov 2017 A1
20170345411 Raitio et al. Nov 2017 A1
20170345420 Barnett, Jr. Nov 2017 A1
20170345429 Hardee et al. Nov 2017 A1
20170346949 Sanghavi et al. Nov 2017 A1
20170351487 Avilés-Casco et al. Dec 2017 A1
20170352346 Paulik et al. Dec 2017 A1
20170352350 Booker et al. Dec 2017 A1
20170357478 Piersol et al. Dec 2017 A1
20170357632 Pagallo et al. Dec 2017 A1
20170357633 Wang et al. Dec 2017 A1
20170357637 Nell et al. Dec 2017 A1
20170357640 Bellegarda et al. Dec 2017 A1
20170357716 Bellegarda et al. Dec 2017 A1
20170358300 Laurens et al. Dec 2017 A1
20170358301 Raitio et al. Dec 2017 A1
20170358302 Orr et al. Dec 2017 A1
20170358303 Walker, II et al. Dec 2017 A1
20170358304 Castillo et al. Dec 2017 A1
20170358305 Kudurshian et al. Dec 2017 A1
20170358317 James Dec 2017 A1
20170365251 Park et al. Dec 2017 A1
20170371509 Jung et al. Dec 2017 A1
20170371885 Aggarwal et al. Dec 2017 A1
20170374093 Dhar et al. Dec 2017 A1
20170374176 Agrawal et al. Dec 2017 A1
20180005112 Iso-Sipila et al. Jan 2018 A1
20180007060 Leblang et al. Jan 2018 A1
20180007096 Levin et al. Jan 2018 A1
20180007538 Naik et al. Jan 2018 A1
20180012596 Piernot et al. Jan 2018 A1
20180018248 Bhargava et al. Jan 2018 A1
20180024985 Asano Jan 2018 A1
20180033431 Newendorp et al. Feb 2018 A1
20180033436 Zhou Feb 2018 A1
20180047201 Filev et al. Feb 2018 A1
20180047406 Park Feb 2018 A1
20180052909 Sharifi et al. Feb 2018 A1
20180054505 Hart et al. Feb 2018 A1
20180060032 Boesen Mar 2018 A1
20180060301 Li et al. Mar 2018 A1
20180060312 Won Mar 2018 A1
20180061400 Carbune et al. Mar 2018 A1
20180061401 Sarikaya et al. Mar 2018 A1
20180062691 Barnett, Jr. Mar 2018 A1
20180063308 Crystal et al. Mar 2018 A1
20180063324 Van Meter, II Mar 2018 A1
20180063624 Boesen Mar 2018 A1
20180067904 Li Mar 2018 A1
20180067914 Chen et al. Mar 2018 A1
20180067918 Bellegarda et al. Mar 2018 A1
20180069743 Bakken et al. Mar 2018 A1
20180075847 Lee et al. Mar 2018 A1
20180088969 Vanbion et al. Mar 2018 A1
20180089166 Meyer et al. Mar 2018 A1
20180089588 Ravi et al. Mar 2018 A1
20180090143 Saddler et al. Mar 2018 A1
20180091847 Wu et al. Mar 2018 A1
20180096683 James et al. Apr 2018 A1
20180096690 Mixter et al. Apr 2018 A1
20180102914 Kawachi et al. Apr 2018 A1
20180107917 Hewavitharana et al. Apr 2018 A1
20180107945 Gao et al. Apr 2018 A1
20180108346 Paulik et al. Apr 2018 A1
20180113673 Sheynblat Apr 2018 A1
20180121432 Parson et al. May 2018 A1
20180122376 Kojima May 2018 A1
20180122378 Mixter et al. May 2018 A1
20180129967 Herreshoff May 2018 A1
20180130470 Lemay et al. May 2018 A1
20180130471 Trufinescu et al. May 2018 A1
20180137856 Gilbert May 2018 A1
20180137857 Zhou et al. May 2018 A1
20180137865 Ling May 2018 A1
20180143967 Anbazhagan et al. May 2018 A1
20180144615 Kinney et al. May 2018 A1
20180144746 Mishra et al. May 2018 A1
20180144748 Leong May 2018 A1
20180146089 Rauenbuehler et al. May 2018 A1
20180150744 Orr et al. May 2018 A1
20180157372 Kurabayashi Jun 2018 A1
20180157992 Susskind et al. Jun 2018 A1
20180158548 Taheri et al. Jun 2018 A1
20180166076 Higuchi et al. Jun 2018 A1
20180167884 Dawid et al. Jun 2018 A1
20180173403 Carbune et al. Jun 2018 A1
20180173542 Chan et al. Jun 2018 A1
20180174406 Arashi et al. Jun 2018 A1
20180174576 Soltau et al. Jun 2018 A1
20180174597 Lee et al. Jun 2018 A1
20180182376 Gysel et al. Jun 2018 A1
20180188840 Tamura et al. Jul 2018 A1
20180190273 Karimli et al. Jul 2018 A1
20180190279 Anderson et al. Jul 2018 A1
20180191670 Suyama Jul 2018 A1
20180196683 Radebaugh et al. Jul 2018 A1
20180210874 Fuxman et al. Jul 2018 A1
20180213448 Segal et al. Jul 2018 A1
20180218735 Hunt et al. Aug 2018 A1
20180225274 Tommy et al. Aug 2018 A1
20180232203 Gelfenbeyn et al. Aug 2018 A1
20180233140 Koishida et al. Aug 2018 A1
20180247065 Rhee et al. Aug 2018 A1
20180253209 Jaygarl et al. Sep 2018 A1
20180253652 Palzer et al. Sep 2018 A1
20180260680 Finkelstein et al. Sep 2018 A1
20180268106 Velaga Sep 2018 A1
20180270343 Rout et al. Sep 2018 A1
20180275839 Kocienda et al. Sep 2018 A1
20180276197 Nell et al. Sep 2018 A1
20180277113 Hartung et al. Sep 2018 A1
20180278740 Choi et al. Sep 2018 A1
20180285056 Cutler et al. Oct 2018 A1
20180293984 Lindahl Oct 2018 A1
20180293988 Huang et al. Oct 2018 A1
20180308477 Nagasaka Oct 2018 A1
20180308480 Jang et al. Oct 2018 A1
20180308485 Kudurshian et al. Oct 2018 A1
20180308486 Saddler et al. Oct 2018 A1
20180314552 Kim et al. Nov 2018 A1
20180315416 Berthelsen et al. Nov 2018 A1
20180322112 Bellegarda et al. Nov 2018 A1
20180322881 Min et al. Nov 2018 A1
20180329677 Gruber et al. Nov 2018 A1
20180329957 Frazzingaro et al. Nov 2018 A1
20180329982 Patel et al. Nov 2018 A1
20180329998 Thomson et al. Nov 2018 A1
20180330714 Paulik et al. Nov 2018 A1
20180330721 Thomson et al. Nov 2018 A1
20180330722 Newendorp et al. Nov 2018 A1
20180330723 Acero et al. Nov 2018 A1
20180330729 Golipour et al. Nov 2018 A1
20180330730 Garg et al. Nov 2018 A1
20180330731 Zeitlin et al. Nov 2018 A1
20180330733 Orr et al. Nov 2018 A1
20180330737 Paulik et al. Nov 2018 A1
20180332118 Phipps et al. Nov 2018 A1
20180336184 Bellegarda et al. Nov 2018 A1
20180336197 Skilling et al. Nov 2018 A1
20180336275 Graham et al. Nov 2018 A1
20180336439 Kliger et al. Nov 2018 A1
20180336449 Adan et al. Nov 2018 A1
20180336892 Kim et al. Nov 2018 A1
20180336894 Graham et al. Nov 2018 A1
20180336904 Piercy et al. Nov 2018 A1
20180336905 Kim et al. Nov 2018 A1
20180336920 Bastian et al. Nov 2018 A1
20180341643 Alders et al. Nov 2018 A1
20180343557 Naik et al. Nov 2018 A1
20180349084 Nagasaka et al. Dec 2018 A1
20180349346 Hatori et al. Dec 2018 A1
20180349349 Bellegarda et al. Dec 2018 A1
20180349447 Maccartney et al. Dec 2018 A1
20180349472 Kohlschuetter et al. Dec 2018 A1
20180350345 Naik Dec 2018 A1
20180350353 Gruber et al. Dec 2018 A1
20180357073 Johnson et al. Dec 2018 A1
20180357308 Cheyer Dec 2018 A1
20180358015 Cash et al. Dec 2018 A1
20180358019 Mont-Reynaud Dec 2018 A1
20180365653 Cleaver et al. Dec 2018 A1
20180366105 Kim Dec 2018 A1
20180373487 Gruber et al. Dec 2018 A1
20180374484 Huang et al. Dec 2018 A1
20190012141 Piersol et al. Jan 2019 A1
20190012449 Cheyer Jan 2019 A1
20190013018 Rekstad Jan 2019 A1
20190013025 Alcorn et al. Jan 2019 A1
20190014450 Gruber et al. Jan 2019 A1
20190019077 Griffin et al. Jan 2019 A1
20190027152 Huang et al. Jan 2019 A1
20190034040 Shah et al. Jan 2019 A1
20190034826 Ahmad et al. Jan 2019 A1
20190035405 Haughay Jan 2019 A1
20190042059 Baer Feb 2019 A1
20190042627 Osotio et al. Feb 2019 A1
20190043507 Huang et al. Feb 2019 A1
20190045040 Lee et al. Feb 2019 A1
20190051309 Kim et al. Feb 2019 A1
20190057697 Giuli et al. Feb 2019 A1
20190065144 Sumner et al. Feb 2019 A1
20190065993 Srinivasan et al. Feb 2019 A1
20190066674 Jaygarl et al. Feb 2019 A1
20190068810 Okamoto et al. Feb 2019 A1
20190073998 Leblang et al. Mar 2019 A1
20190074009 Kim et al. Mar 2019 A1
20190074015 Orr et al. Mar 2019 A1
20190074016 Orr et al. Mar 2019 A1
20190079476 Funes Mar 2019 A1
20190080685 Johnson, Jr. Mar 2019 A1
20190080698 Miller Mar 2019 A1
20190087412 Seyed Ibrahim et al. Mar 2019 A1
20190087455 He et al. Mar 2019 A1
20190095050 Gruber et al. Mar 2019 A1
20190095171 Carson et al. Mar 2019 A1
20190102378 Piernot et al. Apr 2019 A1
20190102381 Futrell et al. Apr 2019 A1
20190103103 Ni et al. Apr 2019 A1
20190103112 Walker et al. Apr 2019 A1
20190116264 Sanghavi et al. Apr 2019 A1
20190122666 Raitio et al. Apr 2019 A1
20190122692 Binder et al. Apr 2019 A1
20190124019 Leon et al. Apr 2019 A1
20190129615 Sundar et al. May 2019 A1
20190132694 Hanes et al. May 2019 A1
20190139541 Andersen et al. May 2019 A1
20190141494 Gross et al. May 2019 A1
20190147880 Booker et al. May 2019 A1
20190149972 Parks et al. May 2019 A1
20190156830 Devaraj et al. May 2019 A1
20190158994 Gross et al. May 2019 A1
20190164546 Piemot et al. May 2019 A1
20190172467 Kim et al. Jun 2019 A1
20190179607 Thangarathnam et al. Jun 2019 A1
20190179890 Evermann Jun 2019 A1
20190180770 Kothari et al. Jun 2019 A1
20190182176 Niewczas Jun 2019 A1
20190187787 White et al. Jun 2019 A1
20190188326 Daianu et al. Jun 2019 A1
20190188328 Oyenan et al. Jun 2019 A1
20190189118 Piernot et al. Jun 2019 A1
20190189125 Van Os et al. Jun 2019 A1
20190197053 Graham et al. Jun 2019 A1
20190213999 Grupen et al. Jul 2019 A1
20190214024 Gruber et al. Jul 2019 A1
20190220245 Martel et al. Jul 2019 A1
20190220246 Orr et al. Jul 2019 A1
20190220247 Lemay et al. Jul 2019 A1
20190222684 Li et al. Jul 2019 A1
20190236130 Li et al. Aug 2019 A1
20190236459 Cheyer et al. Aug 2019 A1
20190244618 Newendorp et al. Aug 2019 A1
20190251339 Hawker Aug 2019 A1
20190251960 Maker et al. Aug 2019 A1
20190259386 Kudurshian et al. Aug 2019 A1
20190272825 O'Malley et al. Sep 2019 A1
20190272831 Kajarekar Sep 2019 A1
20190273963 Jobanputra et al. Sep 2019 A1
20190278841 Pusateri et al. Sep 2019 A1
20190287522 Lambourne et al. Sep 2019 A1
20190295544 Garcia et al. Sep 2019 A1
20190303442 Peitz et al. Oct 2019 A1
20190310765 Napolitano et al. Oct 2019 A1
20190318739 Garg et al. Oct 2019 A1
20190339784 Lemay et al. Nov 2019 A1
20190341027 Vescovi et al. Nov 2019 A1
20190341056 Paulik et al. Nov 2019 A1
20190347063 Liu et al. Nov 2019 A1
20190348022 Park et al. Nov 2019 A1
20190354548 Orr et al. Nov 2019 A1
20190355346 Bellegarda Nov 2019 A1
20190361729 Gruber et al. Nov 2019 A1
20190369748 Hindi et al. Dec 2019 A1
20190369842 Dolbakian et al. Dec 2019 A1
20190370292 Irani et al. Dec 2019 A1
20190370323 Davidson et al. Dec 2019 A1
20190371315 Newendorp et al. Dec 2019 A1
20190371316 Weinstein et al. Dec 2019 A1
20190371317 Irani et al. Dec 2019 A1
20190371331 Schramm et al. Dec 2019 A1
20190372902 Piersol Dec 2019 A1
20190373102 Weinstein et al. Dec 2019 A1
20200019609 Yu et al. Jan 2020 A1
20200042334 Radebaugh et al. Feb 2020 A1
20200043482 Gruber et al. Feb 2020 A1
20200043489 Bradley et al. Feb 2020 A1
20200044485 Smith et al. Feb 2020 A1
20200053218 Gray Feb 2020 A1
20200058299 Lee et al. Feb 2020 A1
20200075018 Chen Mar 2020 A1
20200091958 Curtis et al. Mar 2020 A1
20200092625 Raffle Mar 2020 A1
20200098362 Piernot et al. Mar 2020 A1
20200098368 Lemay et al. Mar 2020 A1
20200104357 Bellegarda et al. Apr 2020 A1
20200104362 Yang et al. Apr 2020 A1
20200104369 Bellegarda Apr 2020 A1
20200104668 Sanghavi et al. Apr 2020 A1
20200105260 Piernot et al. Apr 2020 A1
20200118568 Kudurshian et al. Apr 2020 A1
20200125820 Kim et al. Apr 2020 A1
20200127988 Bradley et al. Apr 2020 A1
20200135209 Delfarah et al. Apr 2020 A1
20200137230 Spohrer Apr 2020 A1
20200143812 Walker, II et al. May 2020 A1
20200159579 Shear et al. May 2020 A1
20200160179 Chien et al. May 2020 A1
20200169637 Sanghavi et al. May 2020 A1
20200175566 Bender et al. Jun 2020 A1
20200184964 Myers et al. Jun 2020 A1
20200193997 Piernot et al. Jun 2020 A1
20200221155 Hansen et al. Jul 2020 A1
20200227034 Summa et al. Jul 2020 A1
20200227044 Lindahl Jul 2020 A1
20200249985 Zeitlin Aug 2020 A1
20200252508 Gray Aug 2020 A1
20200267222 Phipps et al. Aug 2020 A1
20200272485 Karashchuk et al. Aug 2020 A1
20200279556 Gruber et al. Sep 2020 A1
20200279576 Binder et al. Sep 2020 A1
20200279627 Nida et al. Sep 2020 A1
20200285327 Hindi et al. Sep 2020 A1
20200286472 Newendorp et al. Sep 2020 A1
20200286493 Orr et al. Sep 2020 A1
20200302356 Gruber et al. Sep 2020 A1
20200302919 Greborio et al. Sep 2020 A1
20200302925 Shah et al. Sep 2020 A1
20200302932 Schramm et al. Sep 2020 A1
20200304955 Gross et al. Sep 2020 A1
20200304972 Gross et al. Sep 2020 A1
20200305084 Freeman et al. Sep 2020 A1
20200312317 Kothari et al. Oct 2020 A1
20200314191 Madhavan et al. Oct 2020 A1
20200319850 Stasior et al. Oct 2020 A1
20200327895 Gruber et al. Oct 2020 A1
20200356243 Meyer et al. Nov 2020 A1
20200357391 Ghoshal et al. Nov 2020 A1
20200357406 York et al. Nov 2020 A1
20200357409 Sun et al. Nov 2020 A1
20200364411 Evermann Nov 2020 A1
20200365155 Milden Nov 2020 A1
20200372904 Vescovi et al. Nov 2020 A1
20200374243 Jina et al. Nov 2020 A1
20200379610 Ford et al. Dec 2020 A1
20200379640 Bellegarda et al. Dec 2020 A1
20200379726 Blafz et al. Dec 2020 A1
20200379727 Blatz et al. Dec 2020 A1
20200379728 Gada et al. Dec 2020 A1
20200380389 Eldeeb et al. Dec 2020 A1
20200380956 Rossi et al. Dec 2020 A1
20200380963 Chappidi et al. Dec 2020 A1
20200380966 Acero et al. Dec 2020 A1
20200380973 Novitchenko et al. Dec 2020 A1
20200380980 Shum et al. Dec 2020 A1
20200380985 Gada et al. Dec 2020 A1
20200382616 Vaishampayan et al. Dec 2020 A1
20200382635 Vora et al. Dec 2020 A1
Foreign Referenced Citations (590)
Number Date Country
2014100581 Sep 2014 AU
2015203483 Jul 2015 AU
2015101171 Oct 2015 AU
2018100187 Mar 2018 AU
2017222436 Oct 2018 AU
2670562 Jan 2010 CA
2694314 Aug 2010 CA
2792412 Jul 2011 CA
2666438 Jun 2013 CA
101632316 Jan 2010 CN
101636736 Jan 2010 CN
101667424 Mar 2010 CN
101673544 Mar 2010 CN
101751387 Jun 2010 CN
101833286 Sep 2010 CN
101847405 Sep 2010 CN
101855521 Oct 2010 CN
101894547 Nov 2010 CN
101910960 Dec 2010 CN
101923853 Dec 2010 CN
101930789 Dec 2010 CN
101939740 Jan 2011 CN
101951553 Jan 2011 CN
101958958 Jan 2011 CN
101971250 Feb 2011 CN
101992779 Mar 2011 CN
102056026 May 2011 CN
102122506 Jul 2011 CN
102124515 Jul 2011 CN
102137085 Jul 2011 CN
102137193 Jul 2011 CN
102160043 Aug 2011 CN
102201235 Sep 2011 CN
102214187 Oct 2011 CN
102237088 Nov 2011 CN
102246136 Nov 2011 CN
202035047 Nov 2011 CN
102282609 Dec 2011 CN
202092650 Dec 2011 CN
102340590 Feb 2012 CN
102346557 Feb 2012 CN
102368256 Mar 2012 CN
102402985 Apr 2012 CN
102405463 Apr 2012 CN
102498457 Jun 2012 CN
102510426 Jun 2012 CN
102629246 Aug 2012 CN
102651217 Aug 2012 CN
102681896 Sep 2012 CN
102682769 Sep 2012 CN
102682771 Sep 2012 CN
102685295 Sep 2012 CN
102693725 Sep 2012 CN
102694909 Sep 2012 CN
202453859 Sep 2012 CN
102722478 Oct 2012 CN
102737104 Oct 2012 CN
102750087 Oct 2012 CN
102792320 Nov 2012 CN
102801853 Nov 2012 CN
102820033 Dec 2012 CN
102844738 Dec 2012 CN
102866828 Jan 2013 CN
102870065 Jan 2013 CN
102882752 Jan 2013 CN
102917004 Feb 2013 CN
102917271 Feb 2013 CN
102918493 Feb 2013 CN
102955652 Mar 2013 CN
103035240 Apr 2013 CN
103035251 Apr 2013 CN
103038728 Apr 2013 CN
103093334 May 2013 CN
103135916 Jun 2013 CN
103198831 Jul 2013 CN
103209369 Jul 2013 CN
103226949 Jul 2013 CN
103236260 Aug 2013 CN
103246638 Aug 2013 CN
103268315 Aug 2013 CN
103280218 Sep 2013 CN
103292437 Sep 2013 CN
103327063 Sep 2013 CN
103365279 Oct 2013 CN
103366741 Oct 2013 CN
103390016 Nov 2013 CN
103412789 Nov 2013 CN
103426428 Dec 2013 CN
103455234 Dec 2013 CN
103456306 Dec 2013 CN
103533143 Jan 2014 CN
103533154 Jan 2014 CN
103543902 Jan 2014 CN
103562863 Feb 2014 CN
103608859 Feb 2014 CN
103645876 Mar 2014 CN
103716454 Apr 2014 CN
103727948 Apr 2014 CN
103744761 Apr 2014 CN
103760984 Apr 2014 CN
103765385 Apr 2014 CN
103792985 May 2014 CN
103794212 May 2014 CN
103795850 May 2014 CN
103841268 Jun 2014 CN
103902373 Jul 2014 CN
103930945 Jul 2014 CN
103959751 Jul 2014 CN
203721183 Jul 2014 CN
103971680 Aug 2014 CN
104007832 Aug 2014 CN
104038621 Sep 2014 CN
104090652 Oct 2014 CN
104113471 Oct 2014 CN
104125322 Oct 2014 CN
104144377 Nov 2014 CN
104169837 Nov 2014 CN
104180815 Dec 2014 CN
104243699 Dec 2014 CN
104281259 Jan 2015 CN
104284257 Jan 2015 CN
104335207 Feb 2015 CN
104335234 Feb 2015 CN
104374399 Feb 2015 CN
104423625 Mar 2015 CN
104427104 Mar 2015 CN
104463552 Mar 2015 CN
104487929 Apr 2015 CN
104516522 Apr 2015 CN
104573472 Apr 2015 CN
104575501 Apr 2015 CN
104584010 Apr 2015 CN
104604274 May 2015 CN
104679472 Jun 2015 CN
104769584 Jul 2015 CN
104836909 Aug 2015 CN
104854583 Aug 2015 CN
104869342 Aug 2015 CN
104951077 Sep 2015 CN
104967748 Oct 2015 CN
104969289 Oct 2015 CN
104978963 Oct 2015 CN
105025051 Nov 2015 CN
105027197 Nov 2015 CN
105093526 Nov 2015 CN
105100356 Nov 2015 CN
105190607 Dec 2015 CN
105247511 Jan 2016 CN
105264524 Jan 2016 CN
105278681 Jan 2016 CN
105320251 Feb 2016 CN
105320726 Feb 2016 CN
105379234 Mar 2016 CN
105430186 Mar 2016 CN
105471705 Apr 2016 CN
105472587 Apr 2016 CN
105556592 May 2016 CN
105808200 Jul 2016 CN
105830048 Aug 2016 CN
105869641 Aug 2016 CN
106030699 Oct 2016 CN
106062734 Oct 2016 CN
106415412 Feb 2017 CN
106462383 Feb 2017 CN
106463114 Feb 2017 CN
106465074 Feb 2017 CN
106534469 Mar 2017 CN
106773742 May 2017 CN
106776581 May 2017 CN
107450800 Dec 2017 CN
107480161 Dec 2017 CN
107491468 Dec 2017 CN
107545262 Jan 2018 CN
107608998 Jan 2018 CN
107615378 Jan 2018 CN
107852436 Mar 2018 CN
107871500 Apr 2018 CN
107919123 Apr 2018 CN
107924313 Apr 2018 CN
107978313 May 2018 CN
108647681 Oct 2018 CN
109447234 Mar 2019 CN
109657629 Apr 2019 CN
110135411 Aug 2019 CN
110531860 Dec 2019 CN
110598671 Dec 2019 CN
110647274 Jan 2020 CN
110825469 Feb 2020 CN
20201600822 6 May 2017 DE
2144226 Jan 2010 EP
2168399 Mar 2010 EP
1720375 Jul 2010 EP
2205010 Jul 2010 EP
2250640 Nov 2010 EP
2309491 Apr 2011 EP
2329348 Jun 2011 EP
2339576 Jun 2011 EP
2355093 Aug 2011 EP
2393056 Dec 2011 EP
2400373 Dec 2011 EP
2431842 Mar 2012 EP
2523109 Nov 2012 EP
2523188 Nov 2012 EP
2551784 Jan 2013 EP
2555536 Feb 2013 EP
2575128 Apr 2013 EP
2632129 Aug 2013 EP
2639792 Sep 2013 EP
2669889 Dec 2013 EP
2672229 Dec 2013 EP
2672231 Dec 2013 EP
2675147 Dec 2013 EP
2680257 Jan 2014 EP
2683147 Jan 2014 EP
2683175 Jan 2014 EP
2717259 Apr 2014 EP
2725577 Apr 2014 EP
2733598 May 2014 EP
2733896 May 2014 EP
2743846 Jun 2014 EP
2760015 Jul 2014 EP
2781883 Sep 2014 EP
2801890 Nov 2014 EP
2801972 Nov 2014 EP
2801974 Nov 2014 EP
2824564 Jan 2015 EP
2849177 Mar 2015 EP
2879402 Jun 2015 EP
2881939 Jun 2015 EP
2891049 Jul 2015 EP
2930715 Oct 2015 EP
2938022 Oct 2015 EP
2940556 Nov 2015 EP
2947859 Nov 2015 EP
2950307 Dec 2015 EP
2957986 Dec 2015 EP
2985984 Feb 2016 EP
2891049 Mar 2016 EP
3032532 Jun 2016 EP
3035329 Jun 2016 EP
3038333 Jun 2016 EP
3115905 Jan 2017 EP
3125097 Feb 2017 EP
3224708 Oct 2017 EP
3246916 Nov 2017 EP
3300074 Mar 2018 EP
2983065 Aug 2018 EP
3392876 Oct 2018 EP
3401773 Nov 2018 EP
3506151 Jul 2019 EP
2470585 Dec 2010 GB
2010-66519 Mar 2010 JP
2010-78602 Apr 2010 JP
2010-78979 Apr 2010 JP
2010-108378 May 2010 JP
2010-109789 May 2010 JP
2010-518475 May 2010 JP
2010-518526 May 2010 JP
2010-122928 Jun 2010 JP
2010-135976 Jun 2010 JP
2010-146347 Jul 2010 JP
2010-157207 Jul 2010 JP
2010-166478 Jul 2010 JP
2010-205111 Sep 2010 JP
2010-224236 Oct 2010 JP
2010-236858 Oct 2010 JP
4563106 Oct 2010 JP
2010-256392 Nov 2010 JP
2010-535377 Nov 2010 JP
2010-287063 Dec 2010 JP
2011-33874 Feb 2011 JP
2011-41026 Feb 2011 JP
2011-45005 Mar 2011 JP
2011-59659 Mar 2011 JP
2011-81541 Apr 2011 JP
2011-525045 Sep 2011 JP
2011-237621 Nov 2011 JP
2011-238022 Nov 2011 JP
2011-250027 Dec 2011 JP
2012-14394 Jan 2012 JP
2012-502377 Jan 2012 JP
2012-22478 Feb 2012 JP
2012-33997 Feb 2012 JP
2012-37619 Feb 2012 JP
2012-63536 Mar 2012 JP
2012-508530 Apr 2012 JP
2012-89020 May 2012 JP
2012-116442 Jun 2012 JP
2012-142744 Jul 2012 JP
2012-147063 Aug 2012 JP
2012-150804 Aug 2012 JP
2012-518847 Aug 2012 JP
2012-211932 Nov 2012 JP
2013-37688 Feb 2013 JP
2013-46171 Mar 2013 JP
2013-511214 Mar 2013 JP
2013-65284 Apr 2013 JP
2013-73240 Apr 2013 JP
2013-513315 Apr 2013 JP
2013-80476 May 2013 JP
2013-517566 May 2013 JP
2013-134430 Jul 2013 JP
2013-134729 Jul 2013 JP
2013-140520 Jul 2013 JP
2013-527947 Jul 2013 JP
2013-528012 Jul 2013 JP
2013-148419 Aug 2013 JP
2013-156349 Aug 2013 JP
2013-200423 Oct 2013 JP
2013-205999 Oct 2013 JP
2013-238936 Nov 2013 JP
2013-258600 Dec 2013 JP
2014-2586 Jan 2014 JP
2014-10688 Jan 2014 JP
20145-2445 Jan 2014 JP
2014-26629 Feb 2014 JP
2014-45449 Mar 2014 JP
2014-507903 Mar 2014 JP
2014-60600 Apr 2014 JP
2014-72586 Apr 2014 JP
2014-77969 May 2014 JP
2014-89711 May 2014 JP
2014-109889 Jun 2014 JP
2014-124332 Jul 2014 JP
2014-126600 Jul 2014 JP
2014-140121 Jul 2014 JP
2014-518409 Jul 2014 JP
2014-142566 Aug 2014 JP
2014-145842 Aug 2014 JP
2014-146940 Aug 2014 JP
2014-150323 Aug 2014 JP
2014-519648 Aug 2014 JP
2014-191272 Oct 2014 JP
2014-219614 Nov 2014 JP
2014-222514 Nov 2014 JP
2015-4928 Jan 2015 JP
2015-8001 Jan 2015 JP
2015-12301 Jan 2015 JP
2015-18365 Jan 2015 JP
2015-501022 Jan 2015 JP
2015-504619 Feb 2015 JP
2015-41845 Mar 2015 JP
2015-52500 Mar 2015 JP
2015-60423 Mar 2015 JP
2015-81971 Apr 2015 JP
2015-83938 Apr 2015 JP
2015-94848 May 2015 JP
2015-514254 May 2015 JP
2015-519675 Jul 2015 JP
2015-524974 Aug 2015 JP
2015-526776 Sep 2015 JP
2015-527683 Sep 2015 JP
2015-528140 Sep 2015 JP
2015-528918 Oct 2015 JP
2015-531909 Nov 2015 JP
2016-504651 Feb 2016 JP
2016-508007 Mar 2016 JP
2016-71247 May 2016 JP
2016-119615 Jun 2016 JP
2016-151928 Aug 2016 JP
2016-524193 Aug 2016 JP
2016-536648 Nov 2016 JP
2017-19331 Jan 2017 JP
2017-516153 Jun 2017 JP
2017-537361 Dec 2017 JP
6291147 Feb 2018 JP
2018-525950 Sep 2018 JP
10-2010-0015958 Feb 2010 KR
10-2010-0048571 May 2010 KR
10-2010-0053149 May 2010 KR
10-2010-0119519 Nov 2010 KR
10-2011-0005937 Jan 2011 KR
10-2011-0013625 Feb 2011 KR
10-2011-0043644 Apr 2011 KR
10-1032792 May 2011 KR
10-2011-0068490 Jun 2011 KR
10-2011-0072847 Jun 2011 KR
10-2011-0086492 Jul 2011 KR
10-2011-0100620 Sep 2011 KR
10-2011-0113414 Oct 2011 KR
10-2011-0115134 Oct 2011 KR
10-2012-0020164 Mar 2012 KR
10-2012-0031722 Apr 2012 KR
10-2012-0066523 Jun 2012 KR
10-2012-0082371 Jul 2012 KR
10-2012-0084472 Jul 2012 KR
10-1178310 Aug 2012 KR
10-2012-0120316 Nov 2012 KR
10-2012-0137424 Dec 2012 KR
10-2012-0137435 Dec 2012 KR
10-2012-0137440 Dec 2012 KR
10-2012-0138826 Dec 2012 KR
10-2012-0139827 Dec 2012 KR
10-1193668 Dec 2012 KR
10-2013-0035983 Apr 2013 KR
10-2013-0090947 Aug 2013 KR
10-2013-0108563 Oct 2013 KR
10-1334342 Nov 2013 KR
10-2013-0131252 Dec 2013 KR
10-2013-0133629 Dec 2013 KR
10-2014-0024271 Feb 2014 KR
10-2014-0031283 Mar 2014 KR
10-2014-0033574 Mar 2014 KR
10-2014-0042994 Apr 2014 KR
10-2014-0055204 May 2014 KR
10-2014-0068752 Jun 2014 KR
10-2014-0088449 Jul 2014 KR
10-2014-0106715 Sep 2014 KR
10-2014-0147557 Dec 2014 KR
10-2015-0013631 Feb 2015 KR
10-1506510 Mar 2015 KR
10-2015-0038375 Apr 2015 KR
10-2015-0039380 Apr 2015 KR
10-2015-0041974 Apr 2015 KR
10-2015-0043512 Apr 2015 KR
10-2015-0095624 Aug 2015 KR
10-1555742 Sep 2015 KR
10-2015-0113127 Oct 2015 KR
10-2015-0138109 Dec 2015 KR
10-2016-0004351 Jan 2016 KR
10-2016-0010523 Jan 2016 KR
10-2016-0040279 Apr 2016 KR
10-2016-0055839 May 2016 KR
10-2016-0065503 Jun 2016 KR
10-2016-0101198 Aug 2016 KR
10-2016-0105847 Sep 2016 KR
10-2016-0121585 Oct 2016 KR
10-2016-0140694 Dec 2016 KR
10-2017-0036805 Apr 2017 KR
10-2017-0107058 Sep 2017 KR
10-2018-0032632 Mar 2018 KR
10-2018-0034637 Apr 2018 KR
201018258 May 2010 TW
201027515 Jul 2010 TW
201028996 Aug 2010 TW
201110108 Mar 2011 TW
201142823 Dec 2011 TW
201227715 Jul 2012 TW
201245989 Nov 2012 TW
201312548 Mar 2013 TW
2010013369 Feb 2010 WO
2010054373 May 2010 WO
2010075623 Jul 2010 WO
2010100937 Sep 2010 WO
2010141802 Dec 2010 WO
2010144651 Dec 2010 WO
2011028842 Mar 2011 WO
2011057346 May 2011 WO
2011060106 May 2011 WO
2011082521 Jul 2011 WO
2011088053 Jul 2011 WO
2011093025 Aug 2011 WO
2011100142 Aug 2011 WO
2011116309 Sep 2011 WO
2011123122 Oct 2011 WO
2011133543 Oct 2011 WO
2011133573 Oct 2011 WO
2011097309 Dec 2011 WO
2011150730 Dec 2011 WO
2011163350 Dec 2011 WO
2011088053 Jan 2012 WO
2012008434 Jan 2012 WO
2012019020 Feb 2012 WO
2012019637 Feb 2012 WO
2012063260 May 2012 WO
2012092562 Jul 2012 WO
2012112331 Aug 2012 WO
2012129231 Sep 2012 WO
2012063260 Oct 2012 WO
2012135157 Oct 2012 WO
2012154317 Nov 2012 WO
2012154748 Nov 2012 WO
2012155079 Nov 2012 WO
2012167168 Dec 2012 WO
2012173902 Dec 2012 WO
2013009578 Jan 2013 WO
2013022135 Feb 2013 WO
2013022223 Feb 2013 WO
2013048880 Apr 2013 WO
2013049358 Apr 2013 WO
2013057153 Apr 2013 WO
2013122310 Aug 2013 WO
2013137660 Sep 2013 WO
2013163113 Oct 2013 WO
2013163857 Nov 2013 WO
2013169842 Nov 2013 WO
2013173504 Nov 2013 WO
2013173511 Nov 2013 WO
2013176847 Nov 2013 WO
2013184953 Dec 2013 WO
2013184990 Dec 2013 WO
2014003138 Jan 2014 WO
2014004544 Jan 2014 WO
2014021967 Feb 2014 WO
2014022148 Feb 2014 WO
2014028735 Feb 2014 WO
2014028797 Feb 2014 WO
2014031505 Feb 2014 WO
2014032461 Mar 2014 WO
2014047047 Mar 2014 WO
2014066352 May 2014 WO
2014070872 May 2014 WO
2014078965 May 2014 WO
2014093339 Jun 2014 WO
2014096506 Jun 2014 WO
2014124332 Aug 2014 WO
2014137074 Sep 2014 WO
2014138604 Sep 2014 WO
2014143959 Sep 2014 WO
2014144395 Sep 2014 WO
2014144579 Sep 2014 WO
2014144949 Sep 2014 WO
2014151153 Sep 2014 WO
2014124332 Oct 2014 WO
2014159578 Oct 2014 WO
2014159581 Oct 2014 WO
2014162570 Oct 2014 WO
2014169269 Oct 2014 WO
2014173189 Oct 2014 WO
2013173504 Dec 2014 WO
2014197336 Dec 2014 WO
2014197635 Dec 2014 WO
2014197730 Dec 2014 WO
2014200728 Dec 2014 WO
2014204659 Dec 2014 WO
2014210392 Dec 2014 WO
2015018440 Feb 2015 WO
2015020942 Feb 2015 WO
2015029379 Mar 2015 WO
2015030796 Mar 2015 WO
2015041882 Mar 2015 WO
2015041892 Mar 2015 WO
2015047932 Apr 2015 WO
2015053485 Apr 2015 WO
2015084659 Jun 2015 WO
2015092943 Jun 2015 WO
2015094169 Jun 2015 WO
2015094369 Jun 2015 WO
2015098306 Jul 2015 WO
2015099939 Jul 2015 WO
2015116151 Aug 2015 WO
2015151133 Oct 2015 WO
2015153310 Oct 2015 WO
2015157013 Oct 2015 WO
2015183401 Dec 2015 WO
2015183699 Dec 2015 WO
2015184186 Dec 2015 WO
2015184387 Dec 2015 WO
2015200207 Dec 2015 WO
2016027933 Feb 2016 WO
2016028946 Feb 2016 WO
2016033257 Mar 2016 WO
2016039992 Mar 2016 WO
2016052164 Apr 2016 WO
2016054230 Apr 2016 WO
2016057268 Apr 2016 WO
2016075081 May 2016 WO
2016085775 Jun 2016 WO
2016085776 Jun 2016 WO
2016089029 Jun 2016 WO
2016100139 Jun 2016 WO
2016111881 Jul 2016 WO
2016144840 Sep 2016 WO
2016144982 Sep 2016 WO
2016144983 Sep 2016 WO
2016175354 Nov 2016 WO
2016187149 Nov 2016 WO
2016190950 Dec 2016 WO
2016209444 Dec 2016 WO
2016209924 Dec 2016 WO
2017044160 Mar 2017 WO
2017044257 Mar 2017 WO
2017044260 Mar 2017 WO
2017044629 Mar 2017 WO
2017053311 Mar 2017 WO
2017058293 Apr 2017 WO
2017059388 Apr 2017 WO
2017071420 May 2017 WO
2017142116 Aug 2017 WO
2017160487 Sep 2017 WO
2017213682 Dec 2017 WO
2018009397 Jan 2018 WO
2018213401 Nov 2018 WO
2018213415 Nov 2018 WO
2019067930 Apr 2019 WO
2019078576 Apr 2019 WO
2019079017 Apr 2019 WO
2019147429 Aug 2019 WO
2019236217 Dec 2019 WO
2020010530 Jan 2020 WO
Non-Patent Literature Citations (228)
Entry
Supplemental Notice of Allowance received for U.S. Appl. No. 16/032,487, dated Oct. 22, 2020, 2 pages.
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2019/023337, dated Nov. 19, 2020, 14 pages.
Notice of Acceptance received for Australian Patent Application No. 2020256472, dated Nov. 3, 2020, 3 pages.
Advisory Action received for U.S. Appl. No. 16/032,487, dated Jun. 10, 2020, 7 pages.
“Alexa, Turn Up the Heat!, Smartthings Samsung [online]”, Available online at:—<https://web.archive.org/web/20160329142041/https://blog.smartthings.com/news/smartthingsupdates/alexa-turn-up-the-heat/>, Mar. 3, 2016, 3 pages.
Applicant Initiated Interview Summary received for U.S. Appl. No. 16/032,487, dated Mar. 19, 2020, 4 pages.
Applicant Initiated Interview Summary received for U.S. Appl. No. 16/032,487, dated May 26, 2020, 4 pages.
“Ask Alexa—Things That Are Smart Wiki”, Available online at:—<http://thingsthataresmart.wiki/index.php?title=Ask_Alexa&oldid=4283>, Jun. 8, 2016, pp. 1-31.
Adium, “AboutAdium—Adium X—Trac”, Online available at:—<http://web.archive.org/web/20070819113247/http://trac.adiumx.com/wiki/AboutAdium>, retrieved on Nov. 25, 2011, 2 pages.
Alfred APP, “Alfred”, Online available at <http://www.alfredapp.com/>, retrieved on Feb. 8, 2012, 5 pages.
Anania Peter, “Amazon Echo with Home Automation (Smartthings)”, Available online at https://www.youtube.com/watch?v=LMW6aXmsWNE, Dec. 20, 2015, 1 page.
API.AI, “Android App Review—Speaktoit Assistant”, Online Available at:—<https://www.youtube.com/watch?v=myE498nyfGw>, Mar. 30, 2011, 3 pages.
Apple, “VoiceOver for OS X”, Online Available at:—<http://www.apple.com/accessibility/voiceover/>, May 19, 2014, pp. 1-3.
Asakura et al., “What LG thinks; How the TV should be in the Living Room”, HiVi, vol. 31, No. 7, Stereo Sound Publishing, Inc., Jun. 17, 2013, pp. 68-71.
Berry et al., “PTIME: Personalized Assistance for Calendaring”, ACM Transactions on Intelligent Systems and Technology, vol. 2, No. 4, Article 40, Jul. 2011, pp. 1-22.
Bertolucci Jeff, “Google Adds Voice Search to Chrome Browser”, PC World, Jun. 14, 2011, 5 pages.
Bocchieri et al., “Use of Geographical Meta-Data in ASR Language and Acoustic Models”, IEEE International Conference on Acoustics Speech and Signal Processing, 2010, pp. 5118-5121.
Butcher Mike, “EVI Arrives in Town to go Toe-to-Toe with Siri”, TechCrunch, Jan. 23, 2012, pp. 1-2.
Cambria et al., “Jumping NLP curves: A review of natural language processing research.”, IEEE Computational Intelligence magazine, 2014, vol. 9, May 2014, pp. 48-57.
Caraballo et al., “Language Identification Based on a Discriminative Text Categorization Technique”, IBERSPEECH 2012—VII Jornadas En Tecnologia Del Habla and III Iberian Sltech Workshop, Nov. 21, 2012, pp. 1-10.
Castleos, “Whole House Voice Control Demonstration”, available online at : https://www.youtube.com/watch?v=9SRCoxrZ_W4, Jun. 2, 2012, 1 pages.
Cheyer Adam, “Adam Cheyer—About”, available at <http://www.adam.cheyer.com/about.html>, retrieved on Sep. 17, 2012, pp. 1-2.
Choi et al., “Acoustic and Visual Signal based Context Awareness System for Mobile Application”, IEEE Transactions on Consumer Electronics, vol. 57, No. 2, May 2011, pp. 738-746.
Colt Sam, “Here's One Way Apple's Smartwatch Could Be Better Than Anything Else”, Business Insider, Aug. 21, 2014, pp. 1-4.
Decision to Grant received for Danish Patent Application No. PA201870384, dated Jun. 26, 2019, 2 pages.
Deedeevuu, “Amazon Echo Alarm Feature”, Available online at https://www.youtube.com/watch?v=fdjU8eRLk7c, Feb. 16, 2015, 1 page.
“DIRECTV™ Voice”, Now Part of the DIRECTTV Mobile App for Phones, Sep. 18, 2013, 5 pages.
European Search Report received for European Patent Application No. 19171414.6, dated Sep. 5, 2019, 6 pages.
Evi, “Meet Evi: The One Mobile Application that Provides Solutions for your Everyday Problems”, Feb. 2012, 3 pages.
Final Office Action received for U.S. Appl. No. 16/032,487, dated Apr. 16, 2020, 16 pages.
Filipowicz Luke, “How to use the QuickType keyboard in iOS 8”, Aavailable Online at:—<https://www.imore.com/comment/568232>, Oct. 11, 2014, pp. 1-17.
Findlater et al., “Beyond QWERTY: Augmenting Touch-Screen Keyboards with Multi-Touch Gestures for Non-Alphanumeric Input”, CHI '12, Austin, Texas, USA, May 5-10, 2012, 4 pages.
Gannes Liz, “Alfred App Gives Personalized Restaurant Recommendations”, AllThingsD, Jul. 18, 2011, pp. 1-3.
Gruber Tom, “Big Think Small Screen: How Semantic Computing in the Cloud will Revolutionize the Consumer Experience on the Phone”, Keynote presentation at Web 3.0 conference, Jan. 2010, 41 pages.
Guay Matthew, “Location-Driven Productivity with Task Ave”, Available at <http://iphone.appstorm.net/reviews/productivity/location-driven-productivity-with-task-ave/>, Feb. 19, 2011, 7 pages.
Guim Mark, “How to Set a Person-Based Reminder with Cortana”, available at <http://www.wpcentral.com/how-to-person-based-reminder-cortana>, Apr. 26, 2014, 15 pages.
Hardawar Devindra, “Driving App Waze Builds its own Siri for Hands-Free Voice Control”, Available online at:—<http://venturebeat.com/2012/02/09/driving-app-waze-builds-its-own-siri-for-hands-free-voice-control/>, retrieved on Feb. 9, 2012, 4 pages.
Hashimoto Yoshiyuki, “Simple Guide for iPhone Siri, which can be Operated with your Voice”, Shuwa System Co., Ltd., vol. 1, Jul. 5, 2012, pp. 8, 130, 131.
“Headset Button Controller v7.3 APK Full APP Download for Andriod, Blackberry, iPhone”, Available online at: <http://fullappdownload.com/headset-button-controller-v7-3-apk/>, Jan. 27, 2014, 11 pages.
“Hear Voice from Google Translate”, Available on <https://www.youtube.com/watch?v=18AvMhFqD28>, Jan. 28, 2011, 1 page.
“id3v2.4.0-Frames”, available at <http://id3.org/id3v2.4.0-frames?action=print>, retrieved on Jan. 22, 2015, pp. 1-41.
Iowegian International,“FIR Filter Properties”, DSPGuru, Digital Signal Processing Central, Online available at:—<http://www.dspguru.com/dsp/faq/fir/properties> retrieved on Jul. 28, 2010, 6 pages.
Intention to Grant received for Danish Patent Application No. PA201870384, dated Mar. 27, 2019, 2 pages.
“Interactive Voice”, Online available at:—<http://www.helloivee.com/company/>, retrieved on Feb. 10, 2014, 2 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2019/023337, dated Aug. 22, 2019, 20 pages.
Invitation to Pay Addition Fees and Partial International Search Report received for PCT Patent Application No. PCT/US2019/023337, dated Jun. 27, 2019, 14 pages.
Jawaid et al., “Machine Translation with Significant Word Reordering and Rich Target-Side Morphology”. WDS'11 Proceedings of Contributed Papers, Part I, 2011, pp. 161-166.
Jonsson et al., “Proximity-based Reminders Using Bluetooth”, 2014 IEEE International Conference on Pervasive Computing and Communications Demonstrations, 2014, pp. 151-153.
Jouvet et al., “Evaluating Grapheme-to-phoneme Converters in Automatic Speech Recognition Context”, IEEE, 2012, pp. 4821-4824.
Karn Ujjwal, “An Intuitive Explanation of Convolutional Neural Networks”, The Data Science Blog, Aug. 11, 2016, 23 pages.
Kazmucha Allyson, “Howto Send Map Locations Using iMessage”, iMore.com, Online Available at <http://www.imore.com/how-use-imessage-share-your-location-your-iphone>, Aug. 2, 2012, 6 pages.
Kickstarter, “Ivee Sleek: Wi-Fi Voice-Activated Assistant”, Online available at:—<https://www.kickstarter.com/projects/ivee/ivee-sleek-wi-fi-voice-activated-assistant>, retrieved on Feb. 10, 2014, pp. 1-13.
Lewis Cameron, “Task Ave for iPhone Review”, Mac Life, Online Available at:—<http://www.maclife.com/article/reviews/task_ave_iphone_review>, Mar. 3, 2011, 5 pages.
Majerus Wesley, “Cell phone accessibility for your blind child”, Retrieved from the Internet <https://web.archive.org/web/20100210001100/https://nfb.org/images/nfb/publications/fr/fr28/3/fr280314.htm>, 2010, pp. 1-5.
“Meet Ivee”, Your Wi-Fi Voice Activated Assistant, Online available at:—<http://www.helloivee.com/>, retrieved on Feb. 10, 2014, 8 pages.
Mhatre et al., “Donna Interactive Chat-bot acting as a Personal Assistant”, International Journal of Computer Applications (0975-8887), vol. 140, No. 10, Apr. 2016, 6 pages.
Miller Chance, “Google Keyboard Updated with New Personalized Suggestions Feature”, Online available at:—<http://9to5google.com/2014/03/19/google-keyboard-updated-with-new-personalized-suggestions-feature/>, Mar. 19, 2014, 4 pages.
“Minimum Phase”, Wikipedia the free Encyclopedia, Last Modified on Jan. 12, 2010 and retrieved on Jul. 28, 2010, available online at:—<http://en.wikipedia.org/wiki/Minimum_phase>, 8 pages.
Mobile Speech Solutions, Mobile Accessibility, SVOX AG Product Information Sheet, Online available at:—<http://www.svox.com/site/bra840604/con782768/mob965831936.aSQ?osLang=1>, Sep. 27, 2012, 1 page.
Morrison Jonathan, “iPhone 5 Siri Demo”, Online Available at:—<https://www.youtube.com/watch?v=_wHWwG5IhWc>, Sep. 21, 2012, 3 pages.
My Cool Aids, “What's New”, Online Available at:—<http://www.mycoolaids.com/>, 2012, 1 page.
Natural Language Interface Using Constrained Intermediate Dictionary of Results, List of Publications Manually reviewed for the Search of U.S. Pat. No. 7,177,798, Mar. 22, 2013, 1 page.
Nakazawa et al., “Detection and Labeling of Significant Scenes from TV program based on Twitter Analysis”, Proceedings of the 3rd Forum on Data Engineering and Information Management (deim 2011 proceedings), IEICE Data Engineering Technical Group. Available online at http://db-event.jpn.org/deim2011/proceedings/pdf/f5-6.pdf, Feb. 28, 2011, 11 pages.
NDTV, “Sony SmartWatch 2 Launched in India for Rs. 14,990”, Online available at:—21 http://gadgets.ndtv.com/others/news/sony-smartwatch-2-launched-in-india-for-rs-14990-420319>, Sep. 18, 2013, 4 pages.
Non-Final Office Action received for U.S. Appl. No. 16/032,487, dated Feb. 14, 2020, 13 pages.
Notice of Acceptance received for Australian Patent Application No. 2019203209, dated Jun. 5, 2019, 3 pages.
Notice of Acceptance received for Australian Patent Application No. 2019232936, dated Jul. 10, 2020, 3 pages.
Notice of Allowance received for U.S. Appl. No. 16/032,487, dated Aug. 24, 2020, 13 pages.
Nozawa et al., “iPhone 4S Perfect Manual”, vol. 1, First Edition, Nov. 11, 2011, 4 pages.
Office Action received for Australian Patent Application No. 2019232936, dated May 6, 2020, 3 pages.
Office Action received for Chinese Patent Application No. 201910373311.5, dated Feb. 25, 2020, 22 pages.
Office Action received for Chinese Patent Application No. 201910373311.5, dated Jun. 22, 2020, 17 pages.
Office Action received for Chinese Patent Application No. 201910373311.5, dated Sep. 10, 2020, 16 pages.
Office Action received for Danish Patent Application No. PA201870384, dated Oct. 8, 2018, 3 pages.
Office Action received for Danish Patent Application No. PA201970332, dated Jan. 17, 2020, 5 pages.
Office Action received for Danish Patent Application No. PA201970332, dated Sep. 4, 2020, 9 pages.
Office Action received for European Patent Application No. 19171414.6, dated Sep. 18, 2019, 12 pages.
Office Action received for European Patent Application No. 19171414.6, dated Sep. 18, 2020, 6 pages.
Office Action received for German Patent Application No. 112019000018.7, dated Feb. 27, 2020, 12 pages.
Office Action received for Indian Patent Application No. 201914014951, dated Oct. 7, 2020, 6 pages.
Office Action received for Korean Patent Application No. 10-2019-0051414, dated Aug. 25, 2020, 6 pages.
Office Action received for Korean Patent Application No. 10-2019-0051414, dated May 25, 2020, 7 pages.
Office Action received for Korean Patent Application No. 10-2019-0051414, dated Sep. 16, 2019, 16 pages.
Osxdaily, “Get a List of Siri Commands Directly from Siri”, Online Available at:<<http://osxdaily.com/2013/02/05/list-siri-commands/>, Feb. 5, 2013, 15 pages.
Pan et al., “Natural Language Aided Visual Query Building for Complex Data Access”, In proceeding of: Proceedings of the Twenty-Second Conference on Innovative Applications of Artificial Intelligence, Jul. 11, 2010, pp. 1821-1826.
Partial European Search Report received for European Patent Application No. 19171414.6, dated Jun. 19, 2019, 14 pages.
Pathak et al., “Privacy-preserving Speech Processing: Cryptographic and String-matching Frameworks Show Promise”, In: IEEE signal processing magazine, retrieved from <http://www.merl.com/publications/docs/TR2013-063.pdf>, Feb. 13, 2013, 16 pages.
Patra et al., “A Kernel-Based Approach for Biomedical Named Entity Recognition”, Scientific World Journal, vol. 2013, 2013, pp. 1-7.
Phoenix Solutions, Inc., “Declaration of Christopher Schmandt Regarding the MIT Galaxy System”, West Interactive Corp., a Delaware Corporation, Document 40, Jul. 2, 2010, 162 pages.
Powell Josh, “Now You See Me . . . Show/Hide Performance”, Online available at <http://www.learningjquery.com/2010/05/now-you-see-me-showhide-performance>, May 4, 2010,.
Rios Mafe, “New Bar Search for Facebook”, YouTube, available at <https://www.youtube.com/watch?v=vwgN1WbvCas>, Jul. 19, 2013, 2 pages.
Routines, “SmartThings Support”, Available online at https://web.archive.org/web/20151207165701/https://support.smartthings.com/hc/en-us/articles/205380034-Routines, 2015, 3 pages.
Sarawagi Sunita, “CRF Package Page”, Online available at:—<http://crf.sourceforge.net/>, retrieved on Apr. 6, 2011, 2 pages.
Search Report and Opinion received for Danish Patent Application No. PA201970332, dated Oct. 23, 2019, 12 pages.
Search Report received for Danish Patent Application No. PA201870384, dated Sep. 10, 2018, 11 pages.
Selfridge et al., “Interact: Tightly-coupling Multimodal Dialog with an Interactive Virtual Assistant”, International Conference on Multimodal Interaction, ACM, Nov. 9, 2015, pp. 381-382.
Simonite Tom, “One Easy Way to Make Siri Smarter”, Technology Review, Oct. 18, 2011, 2 pages.
“SmartThings +Amazon Echo, Smartthings Samsung [online]”, Available online at <https://web.archive.org/web/20160509231428/https://blog.smartthings.com/featured/alexa-turn-on-my-smartthings/>, Aug. 21, 2015, 3 pages.
“Speaker Recognition”, Wikipedia, The Free Encyclopedia, Nov. 2, 2010, pp. 1-4.
Supplemental Notice of Allowance received for U.S. Appl. No. 16/032,487, dated Sep. 28, 2020, 2 pages.
Spivack Nova, “Sneak Preview of Siri—Part Two—Technical Foundations—Interview with Tom Gruber, CTO of Siri I Twine”, Online Available at:—<https://web.archive.org/web/20100114234454/http://www.twine.com/item/12vhy39k4-22m/interview-with-tom-gruber-of-siri>, Jan. 14, 2010, 5 pages.
SRI, “SRI Speech: Products: Software Development Kits: EduSpeak”, Online available at:—<http://web.archive.org/web/20090828084033/http://www.speechatsri.com/products/eduspeak>shtml, retrieved on Jun. 20, 2013, pp. 1-2.
Sullivan Danny, “How Google Instant's Autocomplete Suggestions Work”, Online available at:—<http://searchengineland.com/how-google-instant-autocomplete-suggestions-work-62592>, Apr. 6, 2011, 12 pages.
Sundaram et al., “Latent Perceptual Mapping with Data-Driven Variable-Length Acoustic Units for Template-Based Speech Recognition”, ICASSP 2012, Mar. 2012, pp. 4125-4128.
Sundermeyer et al., “From feedforward to recurrent LSTM neural networks for language modeling.”, IEEE Transactions to Audio, Speech, and Language Processing, vol. 23, No. 3, Mar. 2015, pp. 517-529.
Tanaka Tatsuo, “Next Generation IT Channel Strategy Through “Experience Technology””, Intellectual Resource Creation, Japan, Nomura Research Institute Ltd. vol. 19, No. 1, Dec. 20, 2010, 17 pages.
Textndrive, “Text'nDrive App Demo—Listen and Reply to your Messages by Voice while Driving!”, YouTube Video available at <http://www.youtube.com/watch?v=WaGfzoHsAMw>, Apr. 27, 2010, 1 page.
Tofel et al., “SpeakToit: A Personal Assistant for Older iPhones, iPads”, Apple News, Tips and Reviews, Feb. 9, 2012, 7 pages.
Tucker Joshua, “Too Lazy to Grab Your TV Remote? Use Siri Instead”, Engadget, Nov. 30, 2011, pp. 1-8.
Tur et al., “The CALO Meeting Assistant System”, IEEE Transactions on Audio, Speech, and Language Processing, vol. 18, No. 6, Aug. 2010, pp. 1601-1611.
Vlingo Lncar, “Distracted Driving Solution with Vlingo InCar”, YouTube Video, Available at <http://www.youtube.com/watch?v=Vqs8XfXxgz4>, Oct. 2010,, 2 pages.
Vodafone Deutschland, “Samsung Galaxy S3 Tastatur Spracheingabe”, Available online at—<https://www.youtube.com/watch?v=6kOd6Gr8uFE>, Aug. 22, 2012, 1 page.
Wikipedia, “Acoustic Model”, available at <http://en.wikipedia.org/wiki/AcousticModel>, retrieved on Sep. 14, 2011, pp. 1-2.
Wikipedia, “Language Model”, available at <http://en.wikipedia.org/wiki/Language_model>, retrieved on Sep. 14, 2011, 4 pages.
Wikipedia, “Speech Recognition”, available at <http://en.wikipedia.org/wiki/Speech_recognition>, retrieved on Sep. 14, 2011, 12 pages.
X.AI, “How it Works”, Available online at https://web.archive.org/web/20160531201426/https://x.ai/how-it-works/, May 31, 2016, 6 pages.
Xiang et al., “Correcting Phoneme Recognition Errors in Learning Word Pronunciation through Speech Interaction”, Speech Communication, vol. 55, No. 1, Jan. 1, 2013, pp. 190-203.
Xu et al., “Policy Optimization of Dialogue Management in Spoken Dialogue System For Out-of-Domain Utterances”, 2016 International Conference on Asian Language Processing (IALP), IEEE, Nov. 21, 2016, pp. 10-13.
Yan et al., “A scalable approach to using DNN-derived features in GMM-HMM based acoustic modeling for LVCSR”, 14th Annual Conference of the International Speech Communication Association, InterSpeech 2013, Aug. 2013, pp. 104-108.
Young et al., “The Hidden Information State model: A practical framework for POMDP-based spoken dialogue management”, Computer Speech & Language, vol. 24, Issue 2., Apr. 2010., pp. 150-174.
Zainab, “Google Input Tools Shows Onscreen Keyboard in Multiple Languages [Chrome]”, available at <http://www.addictivetips.com/internet-tips/google-input-tools-shows-multiple-language-onscreen-keyboards-chrome/>, Jan. 3, 2012, 3 pages.
Zangerle et al., “Recommending #—Tags in Twitter”, proceedings of the Workshop on Semantic Adaptive Socail Web, 2011, pp. 1-12.
Zhang et al., “Research of Text Classification Model Based on Latent Semantic Analysis and Improved HS-SVM”, Intelligent Systems and Applications (ISA), 2010 2nd International Workshop, May 22-23, 2010, 5 pages.
Zhong et al., “JustSpeak: Enabling Universal Voice Control on Android”, W4A'14, Proceedings of the 11th Web for All Conference, No. 36, Apr. 7-9, 2014, 8 pages.
Office Action received for Korean Patent Application No. 10-2020-0123811, dated Oct. 27, 2020, 18 pages (8 pages of English Translation and 10 pages of Official Copy).
Office Action received for Korean Patent Application No. 10-2020-0123817, dated Oct. 27, 2020, 14 pages (6 pages of English Translation and 8 pages of Official Copy).
AAAAPLAY, “Sony Media Remote for iOS and Android”, Online available at: <https://www.youtube.com/watch?v=W8QoeQhlGok>, Feb. 4, 2012, 3 pages.
Android Authority, “How to use Tasker: A Beginner's Guide”, Online available at:—<https://youtube.com/watch?v=rDpdS_YWzFc>, May 1, 2013, 1 page.
Ashbrook, Daniel L., “Enabling Mobile Microinteractions”, May 2010, 186 pages.
Ashingtondctech & Gaming, “SwipeStatusBar—Reveal the Status Bar in a Fullscreen App”, Online Available at: <https://www.youtube.com/watch?v=wA_tT9IAreQ>, Jul. 1, 2013, 3 pages.
Automate Your Life, “How to Setup Google Home Routines—A Google Home Routines Walkthrough”, Online Available at: <https://www.youtube.com/watch?v=pXokZHP9kZg>, Aug. 12, 2018, 1 page.
Bell, Jason, “Machine Learning Hands-On for Developers and Technical Professionals”, Wiley, 2014, 82 pages.
Bellegarda, Jeromer, “Chapter 1: Spoken Language Understanding for Natural Interaction: The Siri Experience”, Natural Interaction with Robots, Knowbots and Smartphones, 2014, pp. 3-14.
Bellegarda, Jeromer, “Spoken Language Understanding for Natural Interaction: The Siri Experience”, Slideshow retrieved from : <https://www.uni-ulm.de/fileadmin/website_uni_ulm/iui.iwsds2012/files/Bellegarda.pdf>, International Workshop on Spoken Dialog Systems (IWSDS), May 2012, pp. 1-43.
beointegration.com, “BeoLink Gateway—Programming Example”, Online Available at: <https://www.youtube.com/watch?v=TXDaJFm5UH4>, Mar. 4, 2015, 3 pages.
Burgess, Brian, “Amazon Echo Tip: Enable the Wake Up Sound”, Online available at:—<https://www.groovypost.com/howto/amazon-echo-tip-enable-wake-up-sound/>, Jun. 30, 2015, 4 pages.
Chang et al., “Monaural Multi-Talker Speech Recognition with Attention Mechanism and Gated Convolutional Networks”, Interspeech 2018, Sep. 2-6, 2018, pp. 1586-1590.
Chen, Yi, “Multimedia Siri Finds and Plays Whatever You Ask For”, PSFK Report, Feb. 9, 2012, pp. 1-9.
Conneau et al., “Supervised Learning of Universal Sentence Representations from Natural Language Inference Data”, Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, Copenhagen, Denmark, Sep. 7-11, 2017, pp. 670-680.
Coulouris et al., “Distributed Systems: Concepts and Design (Fifth Edition)”, Addison-Wesley, 2012, 391 pages.
Czech Lucas, “A System for Recognizing Natural Spelling of English Words”, Diploma Thesis, Karlsruhe Institute of Technology, May 7, 2014, 107 pages.
Delcroix et al., “Context Adaptive Deep Neural Networks For Fast Acoustic Model Adaptation”, ICASSP, 2015, pp. 4535-4539.
Delcroix et al., “Context Adaptive Neural Network for Rapid Adaptation of Deep CNN Based Acoustic Models”, Interspeech 2016, Sep. 8-12, 2016, pp. 1573-1577.
Derrick, Amanda, “How to Set Up Google Home for Multiple Users”, Lifewire, Online available at:—<https://www.lifewire.com/set-up-google-home-multiple-users-4685691>, Jun. 8, 2020, 9 pages.
Detroitborg, “Apple Remote App (iPhone & iPod Touch): Tutorial and Demo”, Online Available at:—<https://www.youtube.com/watch?v=M_jzeEevKql>, Oct. 13, 2010, 4 pages.
Dihelson, “How Can I Use Voice or Phrases as Triggers to Macrodroid?”, Macrodroid Forums, Online Available at:—<https://www.tapatalk.com/groups/macrodroid/how-can-i-use-voice-or-phrases-as-triggers-to-macr-t4845.html>, May 9, 2018, 5 pages.
Earthling1984, “Samsung Galaxy Smart Stay Feature Explained”, Online available at:—<https://www.youtube.com/watch?v=RpjBNtSjupl>, May 29, 2013, 1 page.
Eder et al., “At the Lower End of Language—Exploring the Vulgar and Obscene Side of German”, Proceedings of the Third Workshop on Abusive Language Online, Florence, Italy, Aug. 1, 2019, pp. 119-128.
Gadget Hacks, “Tasker Too Complicated? Give MacroDroid a Try [How-To]”, Online available at: <https://www.youtube.com/watch?v=8YL9cWCykKc>, May 27, 2016, 1 page.
“Galaxy S7: How to Adjust Screen Timeout & Lock Screen Timeout”, Online available at:—<https://www.youtube.com/watch?v=n6e1WKUS2ww>, Jun. 9, 2016, 1 page.
Gasic et al., “Effective Handling of Dialogue State in the Hidden Information State POMDP-based Dialogue Manager”, ACM Transactions on Speech and Language Processing, May 2011, pp. 1-25.
Ghauth et al., “Text Censoring System for Filtering Malicious Content Using Approximate String Matching and Bayesian Filtering”, Proc. 4th INNS Symposia Series on Computational Intelligence in Information Systems, Bandar Seri Begawan, Brunei, 2015, pp. 149-158.
Google Developers,“Voice search in your app”, Online available at:—<https://www.youtube.com/watch?v=PS1FbB5qWEI>, Nov. 12, 2014, 1 page.
Gupta et al., “I-vector-based Speaker Adaptation of Deep Neural Networks For French Broadcast Audio Transcription”, ICASSP, 2014, 2014, pp. 6334-6338.
Gupta, Naresh, “Inside Bluetooth Low Energy”, Artech House, 2013, 274 pages.
Hershey et al., “Deep Clustering: Discriminative Embeddings For Segmentation and Separation”, Proc. ICASSP, Mar. 2016, 6 pages.
“Hey Google: How to Create a Shopping List with Your Google Assistant”, Online available at:—<https://www.youtube.com/watch?v=w9NCsElax1Y>, May 25, 2018, 1 page.
“How To Enable Google Assistant on Galaxy S7 and Other Android Phones (No Root)”, Online available at:—<https://www.youtube.com/watch?v=HeklQbWyksE>, Mar. 20, 2017, 1 page.
“Howto Use Ok Google Assistant Even Phone is Locked”, Online available at:—<https://www.youtube.com/watch?v=9B_gP4j_SP8>, Mar. 12, 2018, 1 page.
Hutsko et al., “iPhone All-in-One For Dummies”, 3rd Edition, 2013, 98 pages.
Ikeda, Masaru, “beGLOBAL Seoul 2015 Startup Battle: Talkey”, YouTube Publisher, Online Available at:—<https://www.youtube.com/watch?v=4Wkp7sAAIdg>, May 14, 2015, 1 page.
Inews and Tech,“How To Use The QuickType Keyboard In IOS 8”, Online available at:—<http://www.inewsandtech.com/how-to-use-the-quicktype-keyboard-in-ios-8/>, Sep. 17, 2014, 6 pages.
Internet Services and Social Net, “How to Search for Similar Websites”, Online availabe at:—<https://www.youtube.com/watch?v=nLf2uirpt5s>, see from 0:17 to 1:06, Jul. 4, 2013, 1 page.
“iPhone 6 Smart Guide Full Version for SoftBank”, Gijutsu-Hyohron Co., Ltd., vol. 1, Dec. 1, 2014, 4 pages (Official Copy Only). {See communication under 37 CFR§ 1.98(a) (3)}.
Isik et al., “Single-Channel Multi-Speaker Separation using Deep Clustering”, Interspeech 2016, Sep. 8-12, 2016, pp. 545-549.
Kastrenakes, Jacob, “Siri's creators will unveil their new AI bot on Monday”, The Verge, Online available at:—<https://web.archive.org/web/20160505090418/https://www.theverge.com/2016/5/4/11593564/viv-labs-unveiling-monday-new-ai-from-siri-creators>, May 4, 2016, 3 pages.
King et al., “Robust Speech Recognition Via Anchor Word Representations”, Interspeech 2017, Aug. 20-24, 2017, pp. 2471-2475.
Lee, Sungjin, “Structured Discriminative Model For Dialog State Tracking”, Proceedings of the SIGDIAL 2013 Conference, Aug. 22-24, 2013, pp. 442-451.
“Link Your Voice to Your Devices with Voice Match, Google Assistant Help”, Online available at:—<https://support.google.com/assistant/answer/9071681?co=GENIE.Platform%3DAndroid&hl=en>, Retrieved on Jul. 1, 2020, 2 pages.
Liou et al., “Autoencoder for Words”, Neurocomputing, vol. 139, Sep. 2014, pp. 84-96.
Liu et al., “Accurate Endpointing with Expected Pause Duration”, Sep. 6-10, 2015, pp. 2912-2916.
Loukides et al., “What is the Internet of Things?”, O'Reilly Media, Inc., Online Available at: <https://www.oreilly.com/library/view/what-is-the/9781491975633/>, 2015, 31 pages.
Luo et al., “Speaker-Independent Speech Separation With Deep Attractor Network”, IEEE/ACM Transactions On Audio, Speech, and Language Processing, vol. 26, No. 4, Apr. 2018, pp. 787-796.
Malcangi Mario, “Text-driven Avatars Based on Artificial Neural Networks and Fuzzy Logic”, International Journal of Computers, vol. 4, No. 2, Dec. 31, 2010, pp. 61-69.
Marketing Land,“Amazon Echo: Play music”, Online Available at:—<https://www.youtube.com/watch?v=A7V5NPbsXi4>, Apr. 27, 2015, 3 pages.
Mikolov et al., “Linguistic Regularities in Continuous Space Word Representations”, Proceedings of NAACL-HLT, Jun. 9-14, 2013, pp. 746-751.
Modern Techies,“Braina-Artificial Personal Assistant for PC(like Cortana,Siri)!!!!”, Online available at: <https://www.youtube.com/watch?v=_Coo2P8ilqQ>, Feb. 24, 2017, 3 pages.
Nakamura et al., “Realization of a Browser to Filter Spoilers Dynamically”, vol. No. 67, 2010, 8 pages (Official Copy Only). {See communication under 37 CFR § 1.98(a)(3)}.
Nakamura et al., “Study of Information Clouding Methods to Prevent Spoilers of Sports Match”, Proceedings of the International Working Conference on Advanced Visual Interfaces (AVI' 12), ISBN: 978-1-4503-1287-5, May 2012, pp. 661-664.
Nakamura et al., “Study of Methods to Diminish Spoilers of Sports Match: Potential of a Novel Concept “Information Clouding””, vol. 54, No. 4, ISSN: 1882-7764. Online available at: <https://ipsj.ixsq.nii.ac.jp/ej/index.php?active_action=repository_view_main_item_detail&page_id=13&block_id=8&item_id=91589&item_no=1>, Apr. 2013, pp. 1402-1412 (Official Copy Only). {See communication under 37 CFR § 1.98(a) (3)}.
Nakamura Satoshi, “Antispoiler: An Web Browser to Filter Spoiler”, vol. 2010-HCL-139 No. 17, Online available at:—<https://ipsj.ixsq.nii.ac.jp/ej/index.php?active_action=repository_view_main_item_detail&page_id=13&block_id=8&item_id=70067&item_no=1>, Jul. 31, 2010, 8 pages (Official Copy Only). {See communication under 37 CFR § 1.98(a) (3)}.
Pak, Gamerz, “Braina: Artificially Intelligent Assistant Software for Windows PC in (urdu / hindhi)”, Online available at: <https://www.youtube.com/watch?v=JH_rMjw8lqc>, Jul. 24, 2018, 3 pages.
PC MAG, “How to Voice Train Your Google Home Smart Speaker”, Online available at: <https://in.pcmag.com/google-home/126520/how-to-voice-train-your-google-home-smart-speaker>, Oct. 25, 2018, 12 pages.
Pennington et al., “GloVe: Global Vectors for Word Representation”, Proceedings of the Conference on Empirical Methods Natural Language Processing (EMNLP), Doha, Qatar, Oct. 25-29, 2014, pp. 1532-1543.
Perlow, Jason, “Alexa Loop Mode with Playlist for Sleep Noise”, Online Available at: <https://www.youtube.com/watch7v=nSkSuXziJSg>, Apr. 11, 2016, 3 pages.
“Phoenix Solutions, Inc. v. West Interactive Corp.”, Document 40, Declaration of Christopher Schmandt Regarding the MIT Galaxy System, Jul. 2, 2010, 162 pages.
pocketables.com,“AutoRemote example profile”, Online available at https://www.youtube.com/watch?v=kC_zhUnNZj8, Jun. 25, 2013, 1 page.
Qian et al., “Single-channel Multi-talker Speech Recognition With Permutation Invariant Training”, Speech Communication, Issue 104, 2018, pp. 1-11.
“Quick Type Keyboard on iOS 8 Makes Typing Easier”, Online available at:—<https://www.youtube.com/watch?v=0CldLR4fhVU>, Jun. 3, 2014, 3 pages.
Rasch, Katharina, “Smart Assistants for Smart Homes”, Doctoral Thesis in Electronic and Computer Systems, 2013, 150 pages.
Ritchie, Rene, “QuickType keyboard in iOS 8: Explained”, Online Available at:—<https://www.imore.com/quicktype-keyboards-ios-8-explained>, Jun. 21, 2014, pp. 1-19.
Rowland et al., “Designing Connected Products: UX for the Consumer Internet of Things”, O'Reilly, May 2015, 452 pages.
Samsung Support, “Create a Quick Command in Bixby to Launch Custom Settings by at Your Command”, Online Available at:—<https://www.facebook.com/samsungsupport/videos/10154746303151213>, Nov. 13, 2017, 1 page.
Santos et al., “Fighting Offensive Language on Social Media with Unsupervised Text Style Transfer”, Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (vol. 2: Short Papers), May 20, 2018, 6 pages.
Seehafer Brent, “Activate Google Assistant on Galaxy S7 with Screen off”, Online available at:—<https://productforums.google.com/forum/#!topic/websearch/lp3qlGBHLVI>, Mar. 8, 2017, 4 pages.
Senior et al., “Improving DNN Speaker Independence With I-Vector Inputs”, ICASSP, 2014, pp. 225-229.
Seroter et al., “SOA Patterns with BizTalk Server 2013 and Microsoft Azure”, Packt Publishing, Jun. 2015, 454 pages.
Settle et al., “End-to-End Multi-Speaker Speech Recognition”, Proc. ICASSP, Apr. 2018, 6 pages.
Shen et al., “Style Transfer from Non-Parallel Text by Cross-Alignment”, 31st Conference on Neural Information Processing Systems (NIPS 2017), 2017, 12 pages.
Siou, Serge, “How To Control Apple TV 3rd Generation Using Remote app”, Online available at: <https://www.youtube.com/watch?v=PhyKftZ0S9M>, May 12, 2014, 3 pages.
“Skilled at Playing my iPhone 5”, Beijing Hope Electronic Press, Jan. 2013, 6 pages (Official Copy Only). {See communication under 37 CFR § 1.98(a) (3)}.
Smith, Jake, “Amazon Alexa Calling: How to Set it up and Use it on Your Echo”, iGeneration, May 30, 2017, 5 pages.
Sundermeyer et al., “LSTM Neural Networks for Language Modeling”, Interspeech 2012, Sep. 9-13, 2012, pp. 194-197.
Tan et al., “Knowledge Transfer In Permutation Invariant Training For Single-channel Multi-talker Speech Recognition”, ICASSP 2018, 2018, pp. 5714-5718.
Vaswani et al., “Attention Is All You Need”, 31st Conference on Neural Information Processing Systems (NIPS 2017), 2017, pp. 1-11.
Mllemure et al., “The Dragon Drive Innovation Showcase: Advancing the State-of-the-art in Automotive Assistants”, 2018, 7 pages.
Wang et al., “End-to-end Anchored Speech Recognition”, Proc. ICASSP2019, May 12-17, 2019, 5 pages.
Weng et al., “Deep Neural Networks for Single-Channel Multi-Talker Speech Recognition”, IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol. 23, No. 10, Oct. 2015, pp. 1670-1679.
Wikipedia, “Home Automation”, Online Available at:—<https://en.wikipedia.org/w/index.php?title=Home_automation&oldid=686569068>, Oct. 19, 2015, 9 pages.
Wikipedia, “Siri”, Online Available at:—>https://en.wikipedia.org/w/index.php?title=Siri&oldid=689697795>, Nov. 8, 2015, 13 Pages.
Wikipedia, “Virtual Assistant”, Wikipedia, Online Available at:—<https://en.wikipedia.org/w/index.php?title=Virtual_assistant&oldid=679330666>, Sep. 3, 2015, 4 pages.
Yang Astor, “Control Android TV via Mobile Phone APP RKRemoteControl”, Online Available at: <https://www.youtube.com/watch?v=zpmUeOX_xro>, Mar. 31, 2015, 4 pages.
Yates Michaelc., “How Can I Exit Google Assistant After I'm Finished with it”, Online available at:—<https://productforums.google.com/forum/#!msg/phone-by-google/faECnR2RJwA/gKNtOkQgAQAJ>, Jan. 11, 2016, 2 pages.
Ye et al., “iPhone 4S Native Secret”, Jun. 30, 2012, 1 page (Official Copy Only). {See communication under 37 CFR § 1.98(a) (3)}.
Yeh Jui-Feng, “Speech Act Identification Using Semantic Dependency Graphs With Probabilistic Context-free Grammars”, ACM Transactions on Asian and Low-Resource Language Information Processing, vol. 15, No. 1, Dec. 2015, pp. 5.1-5.28.
Yousef, Zulfikara., “Braina (A.I) Artificial Intelligence Virtual Personal Assistant”, Online available at:—<https://www.youtube.com/watch?v=2h6xpB8bPSA>, Feb. 7, 2017, 3 pages.
Yu et al., “Permutation Invariant Training of Deep Models For Speaker-Independent Multi-talker Speech Separation”, Proc. ICASSP, 2017, 5 pages.
Yu et al., “Recognizing Multi-talker Speech with Permutation Invariant Training”, Interspeech 2017, Aug. 20-24, 2017, pp. 2456-2460.
Zhan et al., “Play with Android Phones”, Feb. 29, 2012, 1 page (Official Copy Only). {See communication under 37 CFR § 1.98(a) (3)}.
Zmolikova et al., “Speaker-Aware Neural Network Based Beamformer For Speaker Extraction In Speech Mixtures”, Interspeech 2017, Aug. 20-24, 2017, pp. 2655-2659.
Office Action received for Korean Patent Application No. 10-2020-0123817, dated Feb. 25, 2021, 5 pages (2 pages of English Translation and 3 pages of Official Copy).
Office Action received for Korean Patent Application No. 10-2020-0123817, dated May 20, 2021, 7 pages (3 pages of English Translation and 4 pages of Official Copy).
Office Action received for Korean Patent Application No. 10-2020-0123811, dated Apr. 26, 2021, 6 pages (3 pages of English Translation and 3 pages of Official Copy).
Board Opinion received for Chinese Patent Application No. 201910373311.5, dated Mar. 26, 2021, 19 pages (9 pages of English Translation and 10 pages of Official Copy).
Office Action received for Chinese Patent Application No. 202011041038.5, dated Feb. 26, 2021, 25 pages (11 pages of English Translation and 14 pages of Official Copy).
Office Action received for Korean Patent Application No. 10-2020-0123811, dated Jul. 21, 2021, 9 pages (4 pages of English Translation and 5 pages of Official Copy).
Board Decision received for Chinese Patent Application No. 201910373311.5, dated Jul. 28, 2021, 18 pages (2 pages of English Translation and 16 pages of Official Copy).
Office Action received for Chinese Patent Application No. 202011041038.5, dated Sep. 1, 2021, 19 pages (7 pages of English Translation and 12 pages of Official Copy).
Related Publications (1)
Number Date Country
20210011557 A1 Jan 2021 US
Provisional Applications (2)
Number Date Country
62679798 Jun 2018 US
62668154 May 2018 US
Continuations (1)
Number Date Country
Parent 16032487 Jul 2018 US
Child 17033349 US