Claims
- 1. A flexible, continuous abrasive sheet disk comprising a flexible backing sheet with an annular band of spaced, shaped, raised abrasive island foundation structures where an inner annular band radius is greater than 30% of an outer annular band radius, the abrasive island foundation structures comprising islands of a first structural material having a raised island top surface and a raised island side wall or walls, the raised island top surface having at least a monolayer of abrasive particles supported in a polymeric resin, the height of all islands measured perpendicularly from the top surface of the raised island top surface to a proximal island structure where the side or sides intersect the backing is less than 1.5 mm, and a total thickness of the abrasive sheet at all island locations measured perpendicularly from the top surface of the at least monolayer of abrasive particles to a back-side surface of the backing sheet has a standard deviation in thickness of less than 80% of the average diameter of the abrasive particles.
- 2. The disk of claim 1 where the polymeric resin is applied to the raised island top surfaces by spin-coating an annular layer of resin onto a transfer sheet and the coated transfer sheet is pressed into conformation in contact areas with the nominally flat top surfaces of the array band of raised islands until the resin wets a top surface on each island, after which wetting the coated transfer sheet is removed, leaving at least 5% of the resin within the contact areas attached as a uniform layer on the island top surfaces.
- 3. The disk of claim 1 where the polymeric resin is applied to the raised island top surfaces by roll coating an annular layer of resin onto a transfer sheet and the coated transfer sheet is pressed into conformation in contact areas with the nominally flat top surfaces of the array band of raised islands until the resin wets a top surface on each island, after which wetting the coated transfer sheet is removed, leaving at least 5% of the resin within the contact areas attached as a uniform layer on the island top surfaces.
- 4. The disk of claim 1 where the polymeric resin is applied to the raised island top surfaces by coating an annular layer of resin on a printing plate and the coated printing plate is pressed into conformation in contact with the nominally flat top surfaces of the array band of raised islands until the resin wets a top surface on each island, after which wetting the coated web transfer sheet is removed, leaving at least 5% of the resin within areas of contact between the adhesive and the raised islands attached as a uniform layer on the island top surfaces.
- 5. The disk of claim 1 where the abrasive particles are applied to the raised island top surfaces by coating an annular band of individually spaced microdot island areas of silicone rubber attached to a metal backing printing plate, with each individual rubber microdot area containing less than 10 abrasive particles, and pressing the printing plate into pressurized contact with the island top surfaces to transfer the abrasive particles into the wet resin coating on the top of each raised abrasive island.
- 6. The disk of claim 5 where each individual rubber microdot area on the metal backed printing plate contains one abrasive particle.
- 7. The disk of claim 1 where the total abrasive sheet thickness measured perpendicularly from the top surface of the abrasives to the back-side support surface of the backing has a standard deviation in thickness of less than 30% of the average diameter of the abrasive particles.
- 8. The abrasive disk of claim 1 where the annular array of raised island structures is made up of circular cross-section shapes.
- 9. The abrasive disk of claim 1 where the annular band of raised abrasive island structures has a configuration selected from the group consisting of narrow serpentine shapes extending radially outward, chevron-bar shapes, and diamond shapes.
- 10. A thin flexible abrasive sheet disk with an annular band of raised abrasive top-surface coated island structures which are positioned with less than 0.5 cm gap spacing between the top edges of islands measured in a tangential direction, the islands positioned at least around the outer periphery of the disk, wherein the annular band of islands is made up of single island shapes that are arranged with varying gap spacing between individual islands with regard tangential spacing.
- 11. The disk of claim 1 where spacing gaps between islands varies among at least 10% of islands on a tangential path by at least 10% of average spacing between island edges on that tangential path.
- 12. The abrasive disk of claim 1 where the single island shape configuration is used but at least 10% of the island shapes are at least 10% of average surface area smaller in size than others.
- 13. A flexible, continuous abrasive sheet disk comprising a flexible backing sheet with an array of annular band of spaced, shaped, raised abrasive island foundation structures where an inner annular band radius is greater than 30% of an outer annular band radius, the abrasive island structures comprising islands of a first structural material having a raised island top surface and a raised island side wall or walls, the top surface having at least a monolayer of abrasive particles supported in a polymeric resin with a disk outer peripheral border area being free of the raised island array and with the array of islands extending to within 0.2 cm to 3.0 cm of the outer radius of the disk, leaving an outer annular border ring free of abrasive islands.
- 14. The abrasive disk of claim 1 where the islands have top surface widths measured in a tangential direction ranging from 0.5 mm to 12 mm.
- 15. The abrasive disk of claim 8 where the islands have top surface diameters ranging from 0.5 mm to 12 mm.
- 16. The disk of claim 1 where gaps measured in a tangential direction between top edges of the island surfaces of adjacent raised islands is between 0.2 mm to 4.0 mm.
- 17. The disk of claim 1 wherein a plateau height of a local group of from one to five islands measured perpendicular from the plateau formed by the one to five islands' exposed abrasive surfaces to an area between the islands on an exposed proximal upper surface of the backing is from 0.1 mm to 2.0 mm.
- 18. The disk of claim 17 where the measured plateau height of the abrasive coated island local group is from 0.2 mm to 0.8 mm.
- 19. The flexible abrasive disk of claim 1 where the backing sheet is made of a metal, cloth, composite material, or polymeric material.
- 20. A process of making a flexible metal disk backing having non-abrasive particle coated raised island foundations continuous over its fall diameter comprising:
a) chemically machining or chemically etching of raised islands onto the backing; b) forming a disk backing with an annular ring distribution of islands having flat top surfaces, leaving an annular array of islands raised above the backing surface; or c) machining the top surface of each island to generate a island thickness measured perpendicular from the top surface of a raised island to the backside support surface of the backing to a standard deviation in thickness of less than 10 micrometers.
- 21. The process of claim 20 with process steps comprising:
a) coating the raised island side of the metal disk backing, including both the raised island surfaces and the exposed surface of the metal backing in areas between the islands with a non-electrical conducting coating of resin; b) bare metal is exposed at the top surface of the islands by removing, with solvent or by other means, the resin prior to curing of the resin; or, the resin is cured, after which the top surface of the surfaces of the raised islands are machined or ground to expose the bare metal at the raised island surfaces;and c) abrasive particles are attached to the top surface of the bare metal islands by electroplating.
- 22. The process of claim 20 where the machined island top surfaces of each island are transfer coated with a layer of polymeric resin and depositing at least a monolayer of abrasive particles supported in the polymeric resin.
- 23. The process of claim 1 wherein vertical edges of the raised island foundation structure walls are tapered at a positive angle of less than 20 degrees so that the top surface of islands are smaller than a base of the island at a location where an island base joins with the backing.
- 24. The process of claim 1 wherein non-abrasive particle coated raised island foundation structures have a flat surface where disk thickness, measured perpendicularly from the top surface of an island to the backside of the support, has a standard deviation in thickness of less than 0.02 mm.
- 25. The process of claim 1 where a continuous sheet web manufacturing process is used wherein top exposed surfaces of the island foundations are resin-coated by a web transfer coating processin where a coated transfer web is pressed into areas of conformation with a nominally flat top surface of an array of raised islands until the resin wets a top surface on each island, after which wetting the coated web transfer sheet is removed, leaving at least 5% of the resin in the areas of conformation attached as a uniform layer on the island top surfaces.
- 26. The process of claim 25 where the coated resin transfer sheet web is manufactured by printing press, knife coating, gravure coating, or roll coating.
- 27. The abrasive disk of claim 1 where an outer annular array of raised island shapes are top coated with a monolayer of abrasive particles or abrasive agglomerates at least 7 up to 400 micrometers in average particle diameter.
- 28. The abrasive disk of claim 1 where the annular band of islands has each island base foundation top surface coated with a layer of diamond or other hard abrasive particles that are have number average diameters smaller than 10 micrometers, and where the abrasive particles are stacked into a single coated layer that is from 10 to 20 micrometers thick.
- 29. The process of claim 25 where the hard abrasive particles are attached to the island base foundation top flat surfaces by drop coating onto or electrostatically coating abrasive particles on a wetted resin coating surface, followed by a size coat coated over and surrounding the abrasive particles attached to the resin make coat.
- 30. The process of claim 29 where the size coat is applied by a transfer coat process or a spin coat process or a spray coat process.
- 31. The process of claim 29 wherein a supersize coat is applied by spin coating or by transfer sheet coating or a spin coat process or a spray coat process.
- 32. The abrasive disk of claim 1 where the raised island foundation structure material comprises a particle filled resin or a non-particle filled resin.
- 33. A process of making a island cavity flexible silicone rubber mold comprising:
a.) a metal master mold plate having a precision flat and smooth circular shape with a thickness of 3 cm or less; b.) the master mold plate having through island pin holes of 10 mm or less, the pin holes arranged in an array pattern forming an annular ring with the inside diameter of the annular ring greater than 30% of the diameter of the circular master plate; c.) circular island pins of the precise diameter of the master plate pin holes, the individual island shape pins inserted into the master mold plate pin holes with precise control of the height of the end of each pin protruding above the master mold plate surface, the height measured from the free exposed end of the pin to the proximal surface of the master plate, where the height is less than 10 mm with a standard deviation in height of each pin less than 0.5 mm; d.) a mold dam annular ring member having a ring height of 2 cm or less mounted to the outer diameter of the master plate working surface to provide a liquid silicone rubber fluid dam at the outer edge of the master plate with a fluid dam height equal to the dam ring height comprising a fluid receptacle inner flat area of the mold plate encompassing the annular patterned array ring of the island pins; e.) a room temperature cure two part catalyst activated liquid silicone rubber poured into the fluid receptacle open area of the master plate with the silicone rubber added in sufficient quantity to fill the central dammed area of the master mold plate with a thickness of silicone rubber equal to the height of the outer dam ring; f.) after curing and solidifying, the silicone rubber forms a flexible island cavity mold plate, when the solid rubber mold plate is removed from the metal mold plate by separating the rubber from the raised island pins which project up into the rubber from the surface of the metal mold plate, forming a annular array of raised island cavities in the surface face of the rubber mold plate which has a flat and smooth cylindrical surface; g.) the rubber island mold plate is positioned on a flat work surface with the rubber mold plate cavities surface, having open pin shaped island annular array of cavities exposed upward, the raised island shaped cavities are filled with a fluid island foundation structure resin filler material where each of the resin filled cavities are leveled to the flat surface of the rubber mold; h.) an annular shaped flexible backing sheet is pressed into flat surface contact where each of the island resin foundation bases are in wetted adhesive contact with the backing sheets, the island foundation structure material resin is partially or fully solidified after which the backing sheet with the integrally bonded raised island foundations is separated from the silicone rubber island mold.
- 34. The process of 33 where the backing sheet having the integral raised attached island foundations is thickness machined by a cutting machine tool or grinder that removes material from the top surface of each island foundation structure to precisely control the height of each island foundation surface measured from the top surface of the structure perpendicular to the distal bottom support surface of the backing to a standard deviation in thickness of less than 30 micrometers, or where the raised island shapes are chevron-bar shapes or radial bar or diamond-configuration shapes with the raised island shapes attached to the metal mold plate by pins, welding or adhesively bonding the shapes to the metal mold plate, or wherein the exposed surface portion of each island shape pin is precisely machined to a flat end area surface and the exposed vertical wall portion of each pin machined to establish the protruded height of each pin measured from the pin raised surface area perpendicular to the proximal surface of the flat mold plate within a height standard deviation of less than 10 micrometers;or where vacuum may be applied to the mold assembly to remove air from the mixed liquid silicone rubber after the rubber has been poured onto the master mold plate island pin surface to encourage the liquid rubber to fully wet and capture all the mold details of the raised island pin members and the master mold plate surfaces, or where the island shapes have a positive wall mold release draft angle of 20 degrees or less where the upper surface area of a mold island is smaller than the distal base island surface area, where the island is attached to the backing; or where 60 to 25,000 cycles per second vibration is applied to the rubber mold assembly during the time when the flexible backing sheet is joined to the rubber cavity mold to encourage the liquid resin to fully wet and capture all the mold details of the raised island cavity shapes and to reduce entrained air within the island structure resin mixture; where 7 to 70 cm mercury vacuum is applied to the rubber mold assembly during the time when the flexible backing sheet is joined to the rubber cavity mold to encourage the liquid resin to fully wet and capture all the mold details of the raised island cavity shapes and to reduce entrained air within the island structure resin mixture.
- 35. A flexible, continuous abrasive sheet disk comprising a flexible backing sheet with an annular band of gap-spaced, shaped, raised abrasive island foundation structures with an inner radius and an outer radius where the inner annular band radius is greater than 30% of the outer annular band radius, the abrasive island structures comprising islands of a first structural material having a raised island top surface and a raised island side wall or walls, the top surface having at least a monolayer of abrasive particles supported in a polymeric resin, where a resilient pad from 0.1 mm to 4 mm thickness is bonded to a backside of the raised island backing sheet to form a raised island disk with a resilient backing.
- 36. A flexible, continuous abrasive sheet disk comprising a flexible, backing sheet with an annular band of gap-spaced, shaped, resilient, raised abrasive island foundation structures, the annular band having an inner radius and an outer radius, where the inner annular band radius is greater than 30% of the outer annular band radius, the abrasive island structures comprising islands of a first structural material having a raised island top surface and a raised island side wall or walls, where each raised island structure comprises a polymeric resin coated resilient island from 0.1 mm to 4 mm thickness which has a layer of abrasive particles supported in the resin.
- 37. A process where a continuous web backing has arrays of raised island shapes formed into patterns where the islands are attached to the backing, the process comprising:
a.) a cavity roll where open island cavity shapes are formed at the surface of the roll in array patterns; b.) a smooth surfaced driven nip roll is pressed into contact along the length of the adjacent cavity roll to form a nip contact line area and the ends of both the cavity roll and nip roll are sealed to form a open pocket at the top common surface of both the nip and cavity rolls which have the same horizontal elevation; c.) a flexible web material of less width than the cavity roll and nip roll is routed over the top surface of the nip roll into the nip area where the nip roll is pressed in axial contact with the cavity roll and the web exits the nip area as the web is routed along the bottom surface of the cavity roll in conformal contact with the cavity roll as the nip roll and cavity roll are mutually rotated together; d.) polymeric resin is introduced to the open pocket area formed at the top surface of the nip roll and the cavity roll to create a fluid resin bank volume where resin contacts one surface of the web and resin also fills the open mold cavities which enter the resin bank as the cavity roll is rotated; e.) nip pressure between the nip roll and the cavity roll squeeze resin off the smooth surface of the web in the areas between the island cavities as the nip roll and cavity roll rotate when pressed in nipped contact; f.) web having three dimensional volumes of resin at each island cavity site is transferred by the rotating nip roll and cavity roll to a energy source zone downstream of the roll nip area where energy including heat is applied to the web to effect solidification of the resin contained in each island cavity and to bond the array of island shaped structures to the web surface while the web is held in conformal contact with the cavity roll surface; g.) the web having integral raised island structures is separated from the cavity roll.
- 38. A process for forming a continuous web having arrays of raised island shapes on a surface of the backing comprising:
a.) depositing hardenable composition in a cavity chill cooling roll into open island cavity shapes formed in the surface of the roll as the cavity roll is rotated; b.) pressing a smooth surfaced driven nip roll into contact with the cavity chill roll to form a nip contact line area; c.) feeding a flexible web material of less width than the cavity chill roll and nip roll routed over a top surface of the nip roll into the nip area so that the nip roll is pressed into axial contact with the cavity roll and d.) compressing the web with nip pressure between the nip roll and the cavity roll, compressing the surface of the web backing into direct intimate contact with the molten resin contained in the island cavities on the surface of the chill roll as the nip roll and cavity roll rotate when pressed in nipped contact; d) withdrawing the flexible web from the nip area with material from the cavities in the chill roll deposited on the web; e.) the web having solidified integral raised island structures. 39. The process of claim 38 wherein the hardenable material is molten and is extruded into cavities on the chill roll.
CROSS REFERENCE TO RELATED APPLICATION
[0001] This invention is a continuation-in-part of U.S. patent application number 09/715,448, filed Nov. 17, 2000 which is incorporated herein by reference.
Continuation in Parts (1)
|
Number |
Date |
Country |
Parent |
09715448 |
Nov 2000 |
US |
Child |
10015478 |
Dec 2001 |
US |