Information
-
Patent Grant
-
6811374
-
Patent Number
6,811,374
-
Date Filed
Thursday, October 31, 200222 years ago
-
Date Issued
Tuesday, November 2, 200420 years ago
-
Inventors
-
Original Assignees
-
Examiners
Agents
-
CPC
-
US Classifications
Field of Search
US
- 415 1737
- 415 1742
- 415 2161
- 415 231
- 415 1745
- 416 244 R
- 416 244 A
- 416 205
- 416 206
- 277 415
- 277 416
- 277 421
- 277 355
-
International Classifications
-
Abstract
In the diaphragm packing area of a turbine, a raised platform affords an annular sealing surface for contact with a brush seal carried by the diaphragm. The platform includes a plurality of platform sealing segments secured to a locking device carried by the rotor. The locking device includes a pair of raised rims having flanges with teeth projecting axially toward one another and defining slots therebetween. The platform segments each include underlying flanges with axially oppositely directed teeth. By displacing the platform sealing segments radially inwardly and passing the teeth of the locking device and platform segments through the respective slots, the platform segment teeth lie radially inwardly of the locking device teeth. The platform segments are then rotated radially to align the teeth to secure the sealing surface against radial movement. One segment may be staked, welded or screwed to the locking device to preclude circumferential movement during turbine operation.
Description
The present invention relates generally to brush seals for sealing between a turbine rotor and a stationary component about the rotor and particularly relates to a method of attachment for a raised platform sealing surface provided on the rotor for engagement by the tips of the bristles of the brush seal whereby rotor dynamic and thermal constraints on the use of brush seals in diaphragm packing areas of the turbine are overcome.
BACKGROUND OF THE INVENTION
As explained in detail in U.S. Pat. No. 6,168,377B1 of common assignee, it is desirable to employ brush seals for sealing between a turbine rotor, and the stationary rotor casing since brush seals have demonstrably improved sealing characteristics as compared with labyrinth type seals typically used at those seal locations. However, rotor dynamic and thermal constraints inhibit use of brush seals for example in the diaphragm packing area of a steam turbine. Localized rotor heating due to the friction caused by the bristles of the brush seal rubbing on the rotor surface magnifies the effects of rotor vibrations through the first and second critical speeds resulting in unacceptable radial rotor movement. Impulse design steam turbines typically operate above the rotors first bending critical frequency and often near the second bending critical frequency. This sustained rubbing and heat generated thereby can cause thermal bowing of the rotor or exacerbate an existing bowed condition of the rotor. Accordingly, there is a need to minimize or eliminate the rotor dynamic and thermal constraints to the use of brush seals in turbine rotors to enable widespread use of brush seals in turbine seal locations previously constrained from such use.
BRIEF DESCRIPTION OF THE INVENTION
In accordance with the preferred embodiment of the present invention, there is provided an insert for securement on the rotor affording a raised annular continuous sealing surface in contact with the brush seal bristle tips to dissipate frictional heat without affecting rotor vibrational characteristics. Particularly, the rotor is provided with a locking device for locking a plurality of platform sealing segments about the rotor to form and thus locate the annular sealing surface in a position raised radially from the surface of the rotor. In this manner, heat is dissipated outwardly of the rotor surface with minimal or no thermal effect on the rotor. The locking device preferably includes a pair of axially spaced rims each having a flange radially spaced from the rotor surface. The flanges extend axially toward one another and have a plurality of axially extending teeth spaced circumferentially one from the other defining slots therebetween.
A plurality of platform sealing segments are provided for securement to the locking device. Each platform segment has an arcuate sealing surface portion which, when the platform segments are secured to the locking device, form the continuous annular sealing surface about and rotor and engageable by the tips of the brush seal bristles. Each segment preferably includes a circumferentially extending securing element, preferably a pair of elements. Each element has a flange which extends axially away from the flange of the other element and is spaced radially inwardly from the segment body. The platform segment flanges have a plurality of circumferentially spaced teeth separated by slots.
To install the platform sealing segments, the teeth of the platform segments are aligned with the slots between the teeth of the locking device. When aligned, the segments are displaced radially inwardly to locate the teeth of the segments inwardly of the teeth of the locking device. It will be appreciated that when the segments are located in this manner, a continuous annular sealing surface is formed about the segments. To secure the segments to the locking device, the segments are rotated as a unit in a circumferential direction about the rotor axis to locate the platform sealing segment teeth radially inwardly of and in engagement with the overlying teeth of the locking device. Each segment is rotated to a positive tooth stop integral to the platform, the direction of assembly being counter to the direction of rotor rotation. By locking one segment to the locking device, for example by employing one or more grub screws or by staking or welding the segment in place, circumferential rotation of the annular sealing platform relative to the rotor is precluded. It will be appreciated that the contact between the brush seal and the platform is located radially outwardly of the adjacent rotor surfaces thus dissipating the frictional heat outwardly of the rotor surface. Additionally, the platform sealing segment surfaces and locking device can be used on single and opposed flow steam turbines during retrofit.
In a preferred embodiment according to the present invention, there is provided a turbine comprising a rotor and a non-rotatable component about the rotor, a brush seal carried by the non-rotatable component, an arcuate sealing platform interposed between the brush seal and the rotor and having an arcuate seal surface radially outwardly of an outer surface of the rotor, a locking device carried by the rotor, the locking device and the sealing platform having interengageable elements responsive to circumferential movement of the locking device and the platform relative to one another for locking the platform against radial outward movement relative to the rotor, the interchangeable elements including locking teeth carried by the locking device at axial spaced locations along the rotor and facing axially toward one another, the interchangeable elements including locking teeth carried by the platform at axially spaced locations therealong and facing in respective opposite axial directions away from one another, the teeth carried by the platform lying radially inwardly of the teeth of the locking device when the platform and locking device are locked to one another and the brush seal being engageable with the arcuate seal surface to seal between the rotor and the non-rotatable component.
In a further preferred embodiment according to the present invention, there is provided a steam turbine comprising a rotor having adjacent rotor stages each including a plurality of buckets and a diaphragm about the rotor straddled by the buckets, a brush seal carried by the diaphragm, an arcuate sealing platform interposed between the brush seal and the rotor, the platform having an arcuate seal surface raised radially outwardly of a rotor surface between the bucket stages, a locking device carried by the rotor for locking the platform against radial outward movement relative to the rotor, the locking device including a pair of axially spaced rims about the rotor and the platform includes a plurality of arcuate platform sealing segments having discrete seal surface portions forming the seal surface, the seal surface being continuous and annular about the rotor, a plurality of locking teeth carried by the rims facing axially toward one another and spaced radially outwardly of the rotor and between the bucket stages, a plurality of locking teeth carried by each of the platform sealing segments and extending in axially opposite directions away from one another, the teeth carried by the platform sealing segments lying radially inwardly of the teeth of the locking device when the platform and locking device are locked to one another, the brush seal being engageable with the arcuate seal surface to seal between the rotor and the diaphragm outwardly of the rotor surface enabling dissipation of frictionally generated heat by contact between the brush seal and the platform with minimal, if any, thermal effect on the rotor.
In a further preferred embodiment according to the present invention, there is provided in a steam turbine having a rotor and a non-rotatable component about the rotor carrying a brush seal for sealing between the rotor and the non-rotatable component, a method of installing a sealing platform on the rotor to afford a sealing surface for the brush seal comprising the steps of (a) providing a locking device at a predetermined axial position on the rotor including forming a first plurality of teeth at axially spaced locations along the rotor and extending in axial directions toward one another and at radial locations outwardly of adjacent surface portions of the rotor, the first teeth being spaced one from the other to form slots therebetween, b) providing platform segments having sealing surface portions at circumferential locations about the rotor substantially in radial registration with the locking device, including forming each segment with a plurality of second teeth at axially spaced locations therealong and extending in axial directions opposite to one another, the second teeth of each segment being spaced from one another to form slots therebetween and (c) securing the segments to the rotor by engaging the segments with the locking device including passing the second teeth of the platform segments through the slots between the first teeth, passing the first teeth of the locking device through the slots between the second teeth and rotating the platform segments and the locking device relative to one another to locate the second teeth between the first teeth and the rotor surface and enabling the sealing surface portions of the platform segments to form a continuous uninterrupted annular sealing surface about the rotor for engagement with the brush seal.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1
is a fragmentary cross-sectional view of a diaphragm packing area of a steam turbine illustrating a brush seal in engagement with a raised platform sealing surface according to a preferred embodiment of the present invention;
FIG. 2
is a fragmentary perspective view of the steam turbine rotor illustrating a locking device for locking the platform segments about the rotor;
FIG. 3
is a perspective view as viewed from the underside of a portion of the locking device illustrating the locking device about the rotor;
FIG. 4
is a perspective view of a platform sealing segment as viewed from its radially inner side
FIG. 5
is a schematic axial view through the turbine rotor illustrating the platform segments about the locking device prior to completing the installation of the segments onto the rotor;
FIG. 6
is a fragmentary perspective view of the rotor, locking device and a platform segment with the platform secured to the locking device against relative circumferential displacement; and
FIG. 7
is a view similar to
FIG. 2
with the platform sealing segments secured to the locking device.
DETAILED DESCRIPTION OF THE INVENTION
Referring now to the drawings, particularly to
FIG. 1
there is illustrated a portion of a steam turbine generally designated
10
including a rotor
12
mounting a plurality of circumferentially spaced steam turbine buckets
14
at axially spaced positions along the rotor and straddling a portion of a fixed turbine component, i.e., a diaphragm
16
. It will be appreciated that the diaphragm
16
includes a plurality of partitions
18
forming nozzles for the steam turbine. Diaphragm
16
also includes an inner web
19
carrying a diaphragm packing seal generally designated
20
. While the invention is preferably directed to a steam turbine, it has applicability to turbines in general.
Packing seal
20
includes a plurality of circumferentially aligned packing ring segments
22
each having a neck
24
, a pair of axially extending flanges
26
and an inner arcuate seal
27
comprised of axially extending flanges
28
mounting a plurality of radially inwardly directed arcuate labyrinth seal teeth
30
. The seal segment
22
is carried in an arcuate generally complementary dovetail shaped groove
32
in the diaphragm
16
. Packing ring segments
22
each mount a brush seal
34
. Each brush seal
34
includes a plurality of, preferably metal, bristles
36
disposed between a pair of backing plates
38
. It will be appreciated that brush seal
34
is disposed in an arcuate shaped groove in the packing ring segment
22
and that the brush seals are generally coextensive in a circumferential direction with the packing ring segment
22
carrying the brush seal.
As illustrated in
FIG. 1
, the bristles
36
of the brush seal
34
have tips in contact with a continuous annular sealing surface
39
formed on outer surface portions of a platform
37
formed of a plurality of platform seal segments
40
. Platform segments
40
are secured to a locking device
42
carried on the rotor
12
between the rotor dovetail rims
41
mounting the buckets
14
. As illustrated in
FIGS. 2 and 3
, the locking device
42
includes preferably a pair of radially outwardly projecting, axially spaced arcuate rims
44
formed circumferentially about the rotor between the wheels. The rims
44
terminate in axially facing flanges
46
(
FIG. 3
) spaced radially outwardly of the adjoining surfaces of the rotor
12
. Circumferentially spaced axially extending teeth
48
are formed in the flanges
46
and define axially facing opening slots
50
between teeth
48
. The locking device
42
can be formed integrally with the rotor as illustrated or as separate parts comprising the rims and flanges for retrofitting on existing rotors, for example by welding the rims
44
to existing rotors. Locking device
42
may also be provided as part of an original equipment rotor with the locking device welded thereto. From a review of
FIG. 2
it will be appreciated that the locking device
42
extends about the rotor for a full 360° with the teeth of the respective flanges
48
extending axially toward one another. The locking device
42
serves as a mounting for the plurality of platform sealing segments
40
.
Referring now to
FIGS. 1 and 4
, each platform sealing segment
40
includes a generally arcuate body
54
including a base
56
having a sealing surface portion
57
along its outer surface including sealing surface
39
, a pair of radially inwardly depending arcuate securing elements
58
including flanges
60
directed axially away from one another. Flanges
60
have a plurality of teeth
62
circumferentially spaced one from the other and separated one from the other by slots
64
. Each flange
60
includes a positive stop or tooth
63
at the end of the flange in the direction of rotation of the rotor, opposite to the direction of assembly as noted below. A plurality of segments
40
are provided for example four 90° segments or six segments of 60° each or any other suitable number of segments which will form the continuous annular sealing surface
39
when the segments
40
are secured about the rotor and surface portions
57
combine to form the annular sealing surface
39
. It will be appreciated that the outer surface portions
57
of the base
56
of each segment
40
thus serve as the contact surface for the bristle tips of the brush seal. The outer surface portions
57
of the platform segments also include raised ridges
59
which cooperate with the labyrinth seal teeth
30
in final assembly for enhanced labyrinth sealing.
Referring to
FIGS. 5-7
, there is illustrated a procedure for assembling the platform segments
40
onto the locking device
42
to provide the sealing interaction between the brush seal bristle tips and the platform sealing surface
39
at locations spaced radially outwardly of the rotor. To accomplish this, the platform sealing segments
40
are arrayed in radial opposition to the locking device
42
as illustrated in FIG.
5
. By displacing the platform segments
40
radially inwardly with the teeth
62
thereof in registration with the slots
50
between the teeth
48
of the locking device, the flanges
60
of the platform segments can be located below, i.e. radially inwardly of the flanges
46
of the locking device
42
. That is, the teeth
62
of the platform segments
40
pass through the slots
50
of the locking device and likewise the teeth
48
of the locking device
42
pass through the slots
64
of the platform segments
40
as the segments in the directions of the arrows in FIG.
5
. With the flanges
60
registering below the flanges
46
of the locking device, the platform segments
40
can be rotated as a unit in a like circumferential direction to register the teeth
62
of the platform segments
40
radially inwardly of the teeth
48
of the locking device
42
as illustrated in FIG.
6
. The direction of rotation of segments
40
upon installation is opposite to the direction of rotation of the rotor. Thus, stops
63
engage the ends of teeth
48
of the locking device
42
. The teeth
48
and
62
thus form interengaging elements for securing the platform segments and the locking device to one another. The extent of the circumferential displacement of the platform segments
40
preferably corresponds to the width of a tooth less the extent of stop
63
.
It will be appreciated that stops
63
engaging teeth
48
preclude relative rotation of the rotor and platform during turbine operation. However, it is preferable to secure the platform segments
40
to the rotor
12
thereby to positively prevent relative circumferential rotation of the rotor and platform segments. To accomplish this, at least one of the platform segments is secured to the rotor and preferably to the locking device. For example, grub screws
67
(
FIG. 7
) may be applied through one platform segment into the locking device. Alternatively, the platform segment can be staked or welded to the locking device. For example, spot welds
69
are illustrated in FIG.
1
. In
FIG. 6
, the platform
37
is staked at
71
to the rim
44
of the locking device
42
.
It will be appreciated that when finally installed, the surfaces
57
of the platform segments
40
combine to extend continuously about the rotor to form the annular sealing surface
39
engageable by the tips of the bristles of the brush seal. Consequently, the heat generated by the frictional contact between the brush seal bristle tips and the platform segments is located radially outwardly of the adjacent surface of the rotor. Additionally, as illustrated in
FIG. 1
, the segments have a central recess
61
along their undersurfaces and between rims
44
to form a gap between the platform segments and the locking device. This gap further insulates the heat generated by the frictional contact of the bristles and the platform segment. It will also be appreciated that because the locking device itself projects from the rotor surface, thermal expansion or contraction of the rims
44
of the locking device per se do not have an effect on the rotor, i.e., do not tend to bow the rotor due to differential heat being applied about the rotor. It will thus be appreciated that by providing platform sealing segments as described, the segments afford a raised platform and continuous sealing surface for sealing contact between the brush bristles and the rotor which enables dissipation of the generated frictional heat without affecting rotor vibrational characteristics while simultaneously enabling application and placement of brush seals in turbine locations which result in superior sealing performance as compared with labyrinth-type packing seals which affords significant improvement in turbine performance.
While the invention has been described in connection with what is presently considered to be the most practical and preferred embodiment, it is to be understood that the invention is not to be limited to the disclosed embodiment, but on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims.
Claims
- 1. A turbine comprising:a rotor and a non-rotatable component about said rotor; a brush seal carried by the non-rotatable component; an arcuate sealing platform interposed between said brush seal and said rotor and having an arcuate seal surface radially outwardly of an outer surface of the rotor; a locking device carried by said rotor; said locking device and said sealing platform having interengagable elements responsive to circumferential movement of said locking device and said platform relative to one another for locking said platform against radial outward movement relative to said rotor, said interchangeable elements including a plurality of first locking teeth carried by said locking device at each of axial spaced locations along the rotor and facing axially toward one another, said first locking teeth having slots circumferentially spaced between the first teeth, said interchangeable elements including a plurality of second locking teeth carried by said platform at each of axially spaced locations therealong and facing in respective opposite axial directions away from one another, said second locking teeth having slots circumferentially spaced between the second teeth, the second teeth carried by said platform lying radially inwardly of the first teeth of the locking device and the slots defined thereby lying at least in partial registration with one another when the platform and locking device are locked to one another; a stop carried by a tooth of one of said locking device and said platform engageable against a tooth of another of said locking device and said platform to preclude relative rotation of said rotor and said platform in one direction; and said brush seal being engageable with said arcuate seal surface to seal between said rotor and said non-rotatable component.
- 2. A turbine according to claim 1 wherein said platform comprises a plurality of arcuate platform sealing segments about said rotor.
- 3. A turbine according to claim 1 wherein the respective teeth of the locking device and said platform are separated by a plurality of slots, the teeth of one of said locking device and said platform being receivable through the slots of another of said locking device and said platform, said teeth being engageable with one another in response to movement of said platform relative to said locking device in a circumferential direction to preclude radial outward movement of said platform relative to said rotor.
- 4. A turbine comprising:a rotor and a non-rotatable component about said rotor; a brush seal carried by the non-rotatable component; an arcuate sealing platform interposed between said brush seal and said rotor and having an arcuate seal surface radially outwardly of an outer surface of the rotor; a locking device carried by said rotor; said locking device and said sealing platform having interengagable elements responsive to circumferential movement of said locking device and said platform relative to one another for locking said platform against radial outward movement relative to said rotor, said interchangeable elements including locking teeth carried by said locking device at axial spaced locations along the rotor and facing axially toward one another, said interchangeable elements including locking teeth carried by said platform at axially spaced locations therealong and facing in respective opposite axial directions away from one another, the teeth carried by said platform lying radially inwardly of the teeth of the locking device when the platform and locking device are locked to one another; and said brush seal being engageable with said arcuate seal surface to seal between said rotor and said non-rotatable component; wherein the respective teeth of the locking device and said platform are separated by a plurality of slots, the teeth of one of said locking device and said platform being receivable through the slots of another of said locking device and said platform, said teeth being engageable with one another in response to movement of said platform relative to said locking device in a circumferential direction to preclude radial outward movement of said platform relative to said rotor; and including a weld between said rotor and said platform in said locked position of said platform for preventing relative circumferential movement of said rotor and said platform; and a stop carried by a tooth of one of said locking device and said platform engageable against a tooth of another of said locking device and said platform to preclude relative rotation of said rotor and said platform in one direction.
- 5. A turbine comprising:a rotor and a non-rotatable component about said rotor; a brush seal can-led by the non-rotatable component; an arcuate sealing platform interposed between said brush seal and said rotor and having an arcuate seal surface radially outwardly of an outer surface of the rotor; a locking device carried by said rotor; said locking device and said sealing platform having interengagable elements responsive to circumferential movement of said locking device and said platform relative to one another for locking said platform against radial outward movement relative to said rotor, said interchangeable elements including a plurality of first locking teeth carried by said locking device at each of axial spaced locations along the rotor and facing axially toward one another, said first locking teeth having slots circumferentially spaced between the first teeth, said interchangeable elements including a plurality of second locking teeth carried by said platform at each of axially spaced locations therealong and facing in respective opposite axial directions away from one another, said second locking teeth having slots circumferentially spaced between the second teeth, the second teeth carried by said platform lying radially inwardly of the first teeth of the locking device and the slots defined thereby lying at least in partial registration with one another when the platform and locking device are locked to one another; said brush seal being engageable with said arcuate seal surface to seal between said rotor and said non-rotatable component; wherein the respective teeth of the locking device and said platform are separated by a plurality of slots, the teeth of one of said locking device and said platform being receivable through the slots of another of said locking device and said platform, said teeth being engageable with one another in response to movement of said platform relative to said locking device in a circumferential direction to preclude radial outward movement of said platform relative to said rotor; and wherein said rotor and said platform are staked to one another in said locked position thereof for preventing relative circumferential movement of said rotor and said platform.
- 6. A turbine comprising:a rotor and a non-rotatable component about said rotor; a brush seal carried by the non-rotatable component; an arcuate sealing platform interposed between said brush seal and said rotor and having an arcuate seal surface radially outwardly of an outer surface of the rotor; a locking device carried by said rotor; said locking device and said sealing platform having interengagable elements responsive to circumferential movement of said locking device and said platform relative to one another for locking said platform against radial outward movement relative to said rotor, said interchangeable elements including a plurality of first locking teeth carried by said locking device at each of axial spaced locations along the rotor and facing axially toward one another, said first locking teeth having slots circumferentially spaced between the first teeth, said interchangeable elements including a plurality of second locking teeth carried by said platform at each of axially spaced locations there along and facing in respective opposite axial directions away from one another, said second locking teeth having slots circumferentially spaced between the second teeth, the second teeth carried by said platform lying radially inwardly of the first teeth of the locking device and the slots defined thereby lying at least in partial registration with one another when the platform and locking device are locked to one another; said brush seal being engageable with said arcuate seal surface to seal between said rotor and said non-rotatable component; and a stop carried by a tooth of one of said locking device and said platform engageable against a tooth of another of said locking device and said platform to preclude relative rotation of said rotor and said platform in one direction.
- 7. A turbine comprising:a rotor having adjacent rotor stages each including a plurality of buckets and a diaphragm about said rotor straddled by said buckets; a brush seal carried by said diaphragm; an arcuate sealing platform interposed between said brush seal and said rotor, said platform having an arcuate seal surface raised radially outwardly of a rotor surface between said bucket stages; a locking device carried by said rotor for locking said platform against radial outward movement relative to said rotor; said locking device including a pair of axially spaced rims about said rotor and said platform includes a plurality of arcuate platform sealing segments having discrete seal surface portions forming said seal surface, said seal surface being continuous and annular about the rotor, a plurality of locking teeth carried by each of said rims facing axially toward one another and spaced radially outwardly of the rotor and between said bucket stages, a plurality of locking teeth carried by each of said platform sealing segments and extending in axially opposite directions away from one another, the teeth carried by said platform sealing segments lying radially inwardly of the teeth of the locking device when the platform and locking device are locked to one another; said brush seal being engageable with said arcuate seal surface to seal between said rotor and said diaphragm outwardly of said rotor surface enabling dissipation of frictionally generated heat by contact between said brush seal and said platform with minimal, if any, thermal effect on said rotor; and a stop carried by a tooth of one of said locking device and said platform engageable against a tooth of another of said locking device and said platform to preclude relative rotation of said rotor and said platform in one direction.
- 8. In a turbine having a rotor and a non-rotatable component about the rotor carrying a brush seal for sealing between the rotor and the non-rotatable component, a method of installing a sealing platform on the rotor to afford a sealing surface for the brush seal comprising the steps of:(a) providing a locking device at a predetermined axial position on said rotor including forming a first plurality of teeth at each of axially spaced locations along the rotor and extending in axial directions toward one another and at radial locations outwardly of adjacent surface portions of the rotor, the first teeth being spaced one from the other to form slots therebetween; (b) providing platform segments having sealing surface portions at circumferential locations about the rotor substantially in radial registration with the locking device, including forming each segment with a plurality of second teeth at each of axially spaced locations therealong and extending in axial directions opposite to one another, the second teeth of each segment being spaced from one another to form slots therebetween; and (c) securing said segments to said rotor by engaging the segments with the locking device including passing the second teeth of said platform segments through the slots between said first teeth, passing the first teeth of the locking device through the slots between said second teeth and rotating the platform segments and the locking device relative to one another to locate the second teeth between the first teeth and the rotor surface and enabling said sealing surface portions of said platform segments to form a continuous uninterrupted annular sealing surface about the rotor for engagement with the brush seal; wherein step (c) includes staking at least one segment and the rotor to one another to retain the platform segments on the rotor.
- 9. A method according to claim 8 including providing arcuate segments and substantially simultaneously passing the second teeth of the platform segments and the first teeth of the locking device through the slots between the first teeth and the second teeth, respectively.
US Referenced Citations (6)
Number |
Name |
Date |
Kind |
4897021 |
Chaplin et al. |
Jan 1990 |
A |
6139264 |
Schilling |
Oct 2000 |
A |
6168377 |
Wolfe et al. |
Jan 2001 |
B1 |
6290232 |
Reluzco et al. |
Sep 2001 |
B1 |
6558118 |
Brisson et al. |
May 2003 |
B1 |
6692228 |
Turnquist et al. |
Feb 2004 |
B2 |