Rakan's adjustable glaucoma valve and shunt with intraocular pressure indicator and Rasha's posterior - anterior chamber shunt

Information

  • Patent Application
  • 20180271700
  • Publication Number
    20180271700
  • Date Filed
    March 21, 2017
    7 years ago
  • Date Published
    September 27, 2018
    5 years ago
Abstract
The present invention is a device that is used for glaucoma management by using an adjustable shunt that drains the aqueous humour from inside the eye in a precise way. This new device has a valve that prevents back flow of the drained fluid and that decreases the risk of hypotony, and also this device has an intraocular pressure indicator. In addition to the main device, there is a small device that is implanted throughout the iris, in order to shunt aqueous humour from posterior chamber to anterior chamber of the eye.
Description
CROSS-REFERENCES TO RELATED APPLICATIONS

Not Applicable


STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT

Not Applicable


NAME OF THE INVENTOR

Rakan Elias Jamil Alhourani


STATEMENT REGARDING PRIOR DISCLOSURES BY THE INVENTOR OR A JOINT INVENTOR

Not Applicable


FIELD OF THE INVENTION

The present invention generally relates to a device that shunts aqueous humour from inside the eye/anterior chamber to outside the eye/sub tenon's space. In this device, the amount and rate of fluid shunted is adjustable and it has a valve and an intraocular pressure indicator (IOP). In addition to the main device, there is a small device to shunt aqueous humour from posterior chamber to anterior chamber of the eye.


BACKGROUND OF THE INVENTION

Rakan's adjustable glaucoma valve and shunt with an IOP indicator has an application in managing many glaucoma types, this new device can adjust the TOP in a precise way with a valve that prevents back flow of the shunted aqueous humour and it prevents unwanted “decrease in TOP”/“hypotony”, by blocking drainage when the TOP is abnormally low. And this new device has an indicator that helps the patient to know the TOP status or even to know the exact measurement of the TOP with just checking the indicator, which helps manage any early increase in the TOP by seeking doctor's help immediately.


So Rakan's adjustable glaucoma valve and shunt with an TOP indicator will allow us to control TOP accurately with the ability to readjust the flow rate/TOP and prevents hypotony, and will allow the patient to self monitor his/her TOP.


Rasha's posterior-anterior chamber shunt is a new small device that shunts aqueous humour from the posterior chamber to the anterior chamber of the eye, by using a small tube with a special design that stabilizes the device and that prevents the light to pass through it.


SUMMARY OF THE INVENTION

The present invention is a device that manages glaucoma by draining aqueous humour using an adjustable shunt to precisely control IOP. This new device also has a valve that prevents back flow of the drained fluid and that decreases the risk of hypotony, in addition to that this device has an intraocular pressure indicator.


In addition to the main device, there is a small device that is implanted through the iris, to shunt aqueous humour from posterior chamber to anterior chamber of the eye.





BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS


FIG. 1: General view of Rakan's adjustable glaucoma valve and shunt with intraocular pressure indicator.



FIG. 2: The cylindrical adjustable shunt with one inlet tube and four outlet tubes, the straight arrows illustrate the direction of fluid movement, and the curved arrows illustrate the rotatory directions.



FIG. 3: The outer cylindrical piece of the cylindrical adjustable shunt with one inlet tube and four outlet tubes.



FIG. 4: The inner cylindrical piece of the cylindrical adjustable shunt with the covered area situated toward the front.



FIG. 5: The inner cylindrical piece of the cylindrical adjustable shunt with the covered area situated toward the back.



FIG. 6: The cylindrical adjustable shunt (the inner piece is elevated for illustration)—the covered area is situated against the outlet openings. Straight arrows show the direction of fluid movement, and curved arrows show the rotatory directions.



FIG. 7: The cylindrical adjustable shunt (the inner piece is elevated for illustration)—the covered area is situated away from the outlet openings. Straight arrows show the direction of fluid movement, and curved arrows show the rotatory directions.



FIG. 8: Illustration view for the relation between the curved covered area and the outlet openings.



FIG. 9: An adjustable shunt using a straight cover slide. Straight arrows show the direction of fluid movement.



FIG. 10: Illustration view for the relation between the straight cover slide and the outlet openings. The arrow shows the direction of movement.



FIG. 11: Rakan's adjustable spring valve. Straight arrows show the direction of fluid movement.



FIG. 12: The first part of Rakan's adjustable spring valve—the adjustable structure.



FIG. 13: The second part of Rakan's adjustable spring valve—the spring.



FIG. 14: The third part of Rakan's adjustable spring valve—the movable seal.



FIG. 15: Rakan's spring valve with two outlets in different directions. Straight arrows show the direction of fluid movement.



FIG. 16: Rakan's adjustable spring valve with multiple smaller outlets. Straight arrows show the direction of fluid movement.



FIG. 17: Rakan's intraocular pressure indicator.



FIG. 18: The first part of Rakan's intraocular pressure indicator—the adjustable structure.



FIG. 19: The second part of Rakan's intraocular pressure indicator—the spring.



FIG. 20: The third part of Rakan's intraocular pressure indicator—the movable seal.



FIG. 21: The fourth part of Rakan's intraocular pressure indicator—the container: showing the transparent window (rectangular shaped) and the adjustable cylinder top opening (circular shaped).



FIG. 22: Illustration view showing the iris cut with both designs for Rasha's posterior—anterior chamber shunt implanted.



FIG. 23: Rasha's posterior—anterior chamber shunt—straight tubule design with a cap.



FIG. 24: The cap of Rasha's posterior—anterior chamber shunt—straight tubule design.



FIG. 25: The male buckle member structure of Rasha's posterior—anterior chamber shunt—straight tubule design.



FIG. 26: A side slice/cut of Rasha's posterior—anterior chamber shunt—straight tubule design.



FIG. 27: Top view of Rasha's posterior—anterior chamber shunt—straight tubule design.



FIG. 28: Side view with side cut and intact cap of Rasha's posterior—anterior chamber shunt—straight tubule design.



FIG. 29: Rasha's posterior—anterior chamber shunt—curved tubule design.





DETAILED DESCRIPTION OF THE INVENTION

Rakan's adjustable glaucoma valve and shunt with intraocular pressure indicator FIG. 1 consists of three parts: shunt, valve and indicator, and it uses the same material used in the ordinary glaucoma shunts or valves. The first part FIG. 2: the adjustable shunt comprises two pieces; The outer piece FIG. 3 is cylindrical in shape, fixed not movable, its side wall (curved surface) is entirely covered except for multiple openings that connect the shunt with one or more bigger tubules (inlet openings) and with multiple smaller tubules (outlet openings), the flat base surface is covered and the top of the outer cylindrical piece is uncovered (open).


The inner piece of the adjustable shunt FIG. 4/FIG. 5 is cylindrical in shape and fits/settles inside the outer piece, it is rotatory not fixed, its flat circular base is covered, its curved side surface is partially covered with almost one third to one half of the area covered only, this covered area obstructs and closes the outlet openings of the outer piece when is placed against them FIG. 6 and when the covered area is rotated away, the outlets are opened FIG. 7, so we can control how many openings are closed or opened, by rotating the covered part of the inner cylindrical piece curved side surface FIG. 8, and this eventually will control the drainage rate of the shunt which after all determines the intraocular pressure (IOP), the circular flat top of the inner piece is covered and contains a handle by which we can rotate the whole structure of the inner cylindrical piece of the shunt so we can control the location of the covered area of the curved side surface FIG. 4/FIG. 5 which will determine the number of closed and opened outlet openings.


In addition to the cylindrical shaped designs, other designs can be used for Rakan's adjustable shunt, such as using a straight cover slide FIG. 9 rather than a curved one. This design generally comprises three pieces: first piece—the container, is fixed (not movable), its base is covered, its side walls are covered except for the outlet and inlet openings and its top has an opening for the top surface of the rotatory toothed adjustable small cylinder. Second piece—the sliding cover, it is movable so it can cover or uncover the outlet openings FIG. 10, it has a flat surface which faces the outlet openings and a toothed surface which engages with the rotatory toothed adjustable small cylinder. Third piece—the rotatory toothed adjustable small cylinder, it is rotatory, its curved side surface which is toothed engages with and moves the second piece, and its circular top surface contains a handle by which we can rotate the whole cylinder.


The second part: the adjustable spring valve FIG. 11 comprises three parts; the first part—the adjustable structure FIG. 12: contains a rotatory toothed adjustable small cylinder that is engaged with a toothed shaft, this shaft is connected to the second part (the spring) and it moves forward and backward according to the direction of the cylinder rotation, the rotatory cylinder has a handle on its circular flat top surface that can be rotated and adjusted. The second part—the spring FIG. 13: its compressing or squeezing amount is proportional to the IOP. The third part—the movable seal FIG. 14: the seal is placed between the inlet tube that receives aqueous humour from the eye and the outlet tube.


When the pressure in the inlet tube is high enough it will push the seal away squeezing the spring, and as the seal is moved the outlet opening is unsealed or uncovered by the seal partially or completely, so the fluid can pass through the valve to the outlet tube and the aqueous humour will be drained out of the eye which will decrease the IOP, the adjustable structure will adjust the position of the spring and the seal, so it will determine the pressure needed to move the seal away from the outlet opening, the more the pressure the more the seal movement (displacement) and eventually more area of the outlet opens and more drainage. When the pressure is low the spring will push the seal back and close the outlet opening which prevents back flow and prevents excess drainage associated with hypotony.


The valve may have one or more outlet openings FIG. 15 or may have multiple smaller outlets FIG. 16 which will help in more control of drainage; as the seal is displaced more and more caused by a high inlet aqueous pressure, more outlets openings will be uncovered and more drainage occurs.


The third part: the intraocular pressure indicator FIG. 17 comprises four parts; the first part—the adjustable structure FIG. 18: contains a rotatory toothed adjustable small cylinder that is engaged with a toothed shaft, this shaft is connected to the second part (the spring) and it moves forward and backward according to the direction of the cylinder rotation, the rotatory cylinder has a handle on its circular flat top surface that can be rotated and adjusted, its function is to recalibrate the indicator. The second part—the spring FIG. 19: its compressing or squeezing amount is proportional to the IOP. The third part—the movable seal FIG. 20: the amount of the seal displacement is proportional to the amount of pressure in the indicator connecting tube which connects the indicator to the inside of the eye, the seal has a range of different colors that can be checked through the transparent window of the fourth part (the container) and each color indicates a pressure measurement, so when the pressure is too high the seal will be displaced further away toward the spring and the color appears through the indicator's window is dark red for an example, and when the pressure is too low the spring will push the seal further away in the other direction and the color appears through the indicator's window is light blue for an example, in addition to the colors, the seal can be marked with a range of numbers which imply the pressure measurement, the fourth part—the container FIG. 21: it contains the other three parts and has a transparent window through which we can see the color or the number indicated on the movable seal, and the container part has an opening for the circular flat top surface of the cylinder.


Rasha's posterior—anterior chamber shunt FIG. 22 is a trans iris small tubule designed in a way that prevents any light rays to pass through, the color of the shunt is preferred to be dark or same as the iris color, and the shunt can be placed in already existing peripheral iridotomy or iridectomy or in any needed place.


It could be a straight tubule design FIG. 23/FIG. 26/FIG. 27/FIG. 28, with a cap FIG. 24 covering its anterior chamber end and with a male buckle member structure FIG. 25 at its posterior chamber end, to prevent shunt displacement. And it could be a curved tubule design FIG. 29.

Claims
  • 1. An adjustable shunt device that contains two pieces: The first piece is the outer piece; it is cylindrical in shape, fixed, not movable, its flat circular base surface is covered (closed), its curved side surface is covered (closed) except for the openings of outlets and inlets tubes, and its circular top is not covered (open).The second piece is the inner piece; it is cylindrical in shape, not fixed, movable in a rotatory manner, its flat circular base surface is covered (closed), its curved side surface is partially covered (closed)—meaning that a whole segment (area) between the base and the top is covered (closed) but the other area left is uncovered (open)—, the covered segment (area) faces and touches the inner aspect of the outer piece curved side surface, and when the covered segment (area) is facing any of the outlet openings it will close and seal them, its flat circular top surface is covered (closed) and has a handle by which we can rotate the whole structure of the inner piece, which means rotating of the covered segment (area), the inner piece is hollow and it settles inside the outer piece with the inner piece's top surface covers and seals the top of the outer piece.
  • 2. A device as set forth in claim 1, with variable inlet and outlet openings shapes, numbers and sizes.
  • 3. A device as set forth in claim 1, with variable sizes.
  • 4. An adjustable shunt device that contains three pieces: The first piece is the container, it contains the other two pieces, it is cuboid in shape, fixed, not movable, its flat rectangular base surface is covered (closed), its side surfaces are covered (closed) except for the openings of outlets and inlets tubes, and its flat rectangular top is covered (closed) except for a circular opening for the circular top of the rotatory toothed adjustable small cylinder.The second piece is the sliding cover, it is rectangular in shape, it faces and touches the surface where the outlet openings exist, it is movable so it can cover (seal) or uncover (unseal) the outlet openings, and it has a flat surface which faces the outlet openings side and a toothed surface which engages with the rotatory toothed adjustable small cylinder.The third piece is the rotatory toothed adjustable small cylinder, it is rotatory, and its curved side surface which is toothed engages with and moves the second piece, and its circular top surface contains a handle by which we can rotate the whole cylinder.
  • 5. A device as set forth in claim 4, with variable shapes of the first piece (the container) but uses the same principle and relation between the second piece, the third piece, and the outlet openings.
  • 6. A device as set forth in claim 4, with variable inlet and outlet openings shapes, numbers and sizes.
  • 7. A device as set forth in claim 4, with variable sizes.
  • 8. An adjustable spring valve device that contains three parts: The first part is the adjustable structure: contains a rotatory toothed adjustable small cylinder that is engaged with a toothed shaft, which is connected to the second part (the spring) and it moves forward and backward according to the direction of the cylinder rotation, the rotatory cylinder has a handle on its circular flat top surface that can be rotated and adjusted.The second part is the spring, and it is situated between the first part and the third part.The third part is the movable seal: the seal is placed between the inlet tube and the opening of the outlet tube.
  • 9. A device as set forth in claim 8, with variable shapes, numbers and sizes of outlet tube openings.
  • 10. A device as set forth in claim 8, with variable sizes.
  • 11. A pressure indicator device which contains four parts: The first part is the adjustable structure: contains a rotatory toothed adjustable small cylinder that is engaged with a toothed shaft, which is connected to the second part (the spring) and it moves forward and backward according to the direction of the cylinder rotation, the rotatory cylinder has a handle on its circular flat top surface that can be rotated and adjusted.The second part is the spring, and it is situated between the first part and the third part.The third part is the movable seal: it is scaled with different colors, numbers or both that can be checked through the transparent window's part of the fourth part (the container).The fourth part is the container: it contains the other three parts and has a transparent window through which we can see the color or the number indicated on the seal, the container is open from the seal side end and the container part has a circular opening for the circular flat top surface of the rotatory toothed adjustable small cylinder.
  • 12. A shunt device that connects between the posterior chamber and the anterior chamber of the eye, this device contains: a small straight tubule that is implanted throughout the iris, and a cap placed at its anterior chamber end which is not closing the tube, and a male buckle member structure at its posterior chamber end.
  • 13. A shunt device that connects between the posterior chamber and the anterior chamber of the eye, this device contains a small curved tubule that is implanted through out the iris.