Gouveia-Neto, “Modulation Instability and Soliton-Raman Generation in P205 Doped Silica Fiber”, Lightwave Technology, Journal of, vol. 10 Issue. 11, Nov. 1992, pp. 1536-1539.* |
Dianov et al. “CW highly efficient 1.24 mm Raman laser based on low-loss phosphosilicate fiber”, Optical Fiber Communication Conference, 1999, and the International Conference on Integrated optics and Optical Fiber Communication, OFC/IOOC '99, Technical D.* |
Dianov et al., “Medium-Power CW Raman Fiber Lasers”, Selected Topics in Quantum Electronics, IEEE Journal on, vol. 6, Issue 6, Nov.-Dec. 2000, pp. 1022-1028.* |
Dianov et al., “Phosphosilicate fiber: simple high-power cw 1.24- and 1.48- mm Raman lasers”, Lasers and Electro-Optics, 1998, CLEO 98, Technical Digest, Summaries of papers presented at the Conference on, 1998, p. 225.* |
Dianov et al., “High-efficient 1.3 mm Raman fiber amplifier”, Optical Fiber Communication Conference and Exhibit, 1998, OFC '98, Technical Digest, 1998, pp. 33-34.* |
Dianov et al., “CW high power 1.24 mm and 1.48 mm Raman lasers based on low loss phosphosilicate fibre”, Electronics Letters, vol.: 33 Issue: 18, Aug. 28, 1997, pp. 1542-1544.* |
Dianov et al., “New generation of Raman fiber lasers, based on phosphosilicate fibers”, Lasers and Electro-Optics Europe, 2000. Conference Digest. 2000 Conference on , 2000, pp. 17.00 CtuM4.* |
Prabhu et al., “4.11 W Raman fiber laser at 1239 nm using phosphosilicate fiber”, lasers and electro-Optics, 200, CLEO 2000, Conference on 200, p. 544.* |
“Quantum Theory of Stimulated Raman Scattering”; pp. 143-145. |
“Stimulated Raman Scattering” Chapter 8—pp. 218 228. |
“High-power Single-Mode Neodymium Fibre Laser”, by M.Dianov et al, Quantum Electronics 1997, pp. 1-2. |
“The Principle of Non-linear Optics—Stimulated Raman Scattering”, Y. R. Shen; 1984, pp. 141-186 (Ch. 10). |