The invention relates to Raman fiber lasers, and systems containing Raman fiber lasers.
In general, Raman fiber lasers include a pump source coupled to a fiber, such as an optical fiber. Energy emitted from the pump source at a certain wavelength λp, commonly referred to as the pump energy, is coupled into the fiber. As the pump energy interacts with the material from which the fiber is made, one or more Raman Stoke transitions can occur within the fiber, resulting in the formation of energy within the fiber at wavelengths corresponding to the Raman Stoke shifts that occur (e.g., λs1, λs2, λs3, λs4, etc.).
Typically, the fiber is designed so that the energy formed at one or more Raman Stoke shifts is substantially confined within the fiber. This can enhance the formation of energy within the fiber at one or more higher order Raman Stoke shifts. Often, the fiber is also designed so that at least a portion of the energy at wavelengths corresponding to predetermined, higher order Raman Stoke shifts (e.g., λsx, where x is equal to or greater than one) is allowed to exit the fiber. The energy at the wavelengths λsx can be used, for example, to enhance the signal in an optical fiber.
In general, one aspect of the invention features a system including an energy source, two fibers, a WDM and a fiber Bragg grating. The first fiber is coupled to the energy source so that pump energy from the energy source can be transferred to the first fiber. The WDM is capable of transferring the pump energy from the first fiber to the second fiber. The fiber Bragg grating is in the second fiber, and is capable of substantially reflecting energy at a predetermined wavelength. The first fiber is devoid of a fiber Bragg grating capable of substantially reflecting energy at the predetermined wavelength.
In general, another aspect of the invention features a system including an energy source, a fiber coupled to the energy source so that the pump energy can be transferred from the energy source to the fiber, and two fiber Bragg gratings. The fiber having a loop-shaped portion, a first non loop-shaped portion, and a second non loop-shaped portion. The first fiber Bragg grating is in the first non loop-shaped portion of the fiber, and is capable of substantially reflecting the pump energy. The second fiber Bragg grating is in the second non loop-shaped portion of the fiber, and is capable of substantially reflecting energy having a wavelength comprising a Stoke shifted wavelength.
In general, a further aspect of the invention features a system including an energy source, a fiber coupled to the energy source so that the pump energy from the energy source can be transferred to the fiber, and three pairs of fiber Bragg gratings. The gratings within each pair are capable of substantially reflecting energy at a same wavelength. That wavelength corresponds to Stoke shifted energy of a particular order. In some embodiments, for each pair of gratings the order is different. For certain embodiments, for each pair of gratings, the order may be the same, but the wavelength may be different (e.g., if there is a bandwidth associated with a given order). The pairs of gratings are arranged so that at least two of the pairs are in series with respect to each other.
Features, objects, and advantages of the invention are in the description and drawings, and from the claims.
With this design, the pump energy in fiber 140 propagates in both the clockwise and the counter clockwise directions. As the pump energy propagates in fiber 140, it interacts with the fiber material and generates the first Raman Stoke shift λs1 via stimulated Raman scattering process. Energy at wavelength λs1 circulates in fiber 140 both clockwise and counter clockwise, and substantially no energy at wavelength λs1 escapes fiber 140 via WDM 130.
Energy at wavelength λs1 can act as a source for generation of the second order Raman Stoke shift at the wavelength λs2 through the stimulated Raman process. WDM 130 transfers substantially no energy at λs2 from fiber 140 to fiber 120, allowing energy at λs2 to propagate both clockwise and counter clockwise. In some embodiments, Bragg gratings 170 and/or 180 are designed so that they reflect substantially all (e.g., about 100%) energy impinging thereon at λs2. In certain embodiments, gratings 170 and/or 180 are designed so that they have lower (e.g., less than about 100%) reflectivities at λs2. For example, in embodiments, grating 180 can reflect substantially all (e.g., about 100%) energy impinging thereon at λs2, and grating 170 can have a lower (e.g., less than about 100%) reflectivity at λs2. In embodiments, gratings 170 and/or 180 can be substantially (e.g., about 100%) transparent for certain wavelengths (e.g., λp and/or λs1).
In certain embodiments, gratings 170 and/or 180 have a narrow bandwidth to define the precise position of the wavelength λs2′ within the allowed bandwidth of the second Raznan Stoke shift. In some embodiments, at the wavelength λs2′ Bragg grating 180 has a high reflectivity (e.g., about 100%), whereas grating 170 has a lower reflectivity (e.g., less than about 100%). Energy at wavelength λs2′ can circulate in fiber 140 by reflecting between gratings 170 and 180. In some embodiments, WDM 130 is designed so that substantially no energy at wavelengths λs1 and λs2′ is transferred from fiber 140 to fiber 120. In these embodiments, energy at wavelengths λs1 and λs2′ can repeatedly propagate in fiber 140 in both the clockwise and counter clockwise directions, thereby enhancing the intensity energy at λs1 and λs2′ within fiber 140.
System 100 also includes a WDM 190 between gratings 170 and 180. WDM 190 can transfer some (e.g., about 100% or less) of the energy of the second order Raman shift λs2′ from fiber 140 to fiber 192. In some embodiments, WDM transfers substantially no energy at λp or λs1. In certain embodiments, WDM 190 introduces losses in the bandwidth of the second Raman Stoke shift. Losses introduced by WDM 190 can suppress wavelengths that are not confined with λs2′, allowing selective amplification of the energy intensity at λs2′. In certain embodiments, the position (e.g., the exact position) and/or the bandwidth of the signal at λs2′ are defined by the gratings 170 and 180. In certain embodiments, gratings 170 and/or 180 can be tunable, thereby allowing the spectral properties of the energy at λs2′ to be tunable as well. Gratings 170 and/or 180 can be narrow bandwidth gratings. In some embodiments, grating 170 or 180 is a narrow bandwith grating and the other grating is a broad bandwidth grating. The amount of energy at wavelength λs2′ transferred to the output fiber 192 can be controlled by the reflectivity of gratings 170 and 180, and the coupling efficiency of WDM 190 and can be adjusted as desired.
In some embodiments, such as, for example, when grating 180 has a high (e.g., about 100%) reflectivity, the energy at λs2′ transferred from fiber 140 to fiber 192 through the WDM 190 is predominantly in a direction shown by the arrow in FIG. 1. In embodiments in which grating 180 does not have a high (e.g., about 100%) reflectivity there can be energy transfer from fiber 140 to fiber 192 at λs2′ in the opposite direction via WDM 190. In these embodiments, energy at λs2′ is transferred from fiber 140 to fiber 192 via WDM 190 in both directions. Fiber 192 optionally includes a fiber Bragg grating 194 designed to substantially reflect energy at wavelength λs2′, thereby allowing the majority of the energy at λs2′ transferred to fiber 192 from fiber 140 to ultimately propagate through fiber 192 in one direction.
Although the system shown in
In certain embodiments, the path of pump energy propagation is as follows. After passing device 160, pump energy λp propagates through fiber 120 until it encounters WDM 130, then at least a portion of the pump energy is transferred to loop-shaped fiber 140 and propagates therethrough in the clockwise direction. When the pump energy reaches WDM 130 it can be transferred to fiber 120 and propagate the toward WDM 135. WDM 135 transfers at least a portion of the pump energy from fiber 120 to loop-shaped fiber 145, where the pump energy propagates in the clockwise direction. The pump energy can be transferred from fiber 145 to fiber 120 via WDM 135 and propagate toward the grating 150. Grating 150 substantially reflects the pump energy, resulting in propagation of the pump energy in the opposite direction. This also results in counter clockwise propagation of the pump energy in fibers 145 and 140. The residual pump energy that is not converted into Raman shifted signals can be terminated (e.g., removed from system 200) via device 160.
An advantage of system 200 is that energy at different wavelengths (e.g., λs2′ and λs2″), confined within the bandwidth of the second order Raman shift λs2, can be produced in fibers 140 and 145, respectively, by selecting appropriate gratings (e.g. by selecting gratings 170 and 180 so that they substantially reflect energy at λs2′, and gratings 175 and 185 so that they substantially reflect energy at λs2″).
In some embodiments, fiber 192 optionally includes a fiber Bragg grating 196 that substantially reflects energy at wavelength λs2″. In certain embodiments, the signals at wavelengths λs2′ and λs2″ can be combined in fiber 192 via WDMs 190 and 195 or other types of multiplexing.
An advantage for the system shown in
Although the system shown in
Using a splitting ratio of 50%×50% for coupler 305 results in substantially no energy propagating in fiber 315 transferring to fiber 365. Considering that this requirement may not be achievable in a broad wavelength region and in some other cases, the portion of energy at the pump and/or Raman shifted wavelengths may exit intothe fiber 365 and reach the broadband reflector 150. The reflector 150 reverses direction of energy propagation and reflects it back to the 315 loop-fiber through the fiber 365 and coupler 305. Finally, all energy launched in the fiber 315 is reflected back in the fiber 310.
Fiber 310 includes fiber Bragg gratings 320 and 330 designed to substantially reflect the direction of propagation of energy propagating in fiber 310 at wavelengths λs1 and λs2 corresponding to the first and second order Raman Stoke shifts, respectively, for the material from which fiber 315 is formed. This results in energy generation at wavelengths λs1 and λs2 propagating in the loop-fiber 315 in both the clockwise and the counter clockwise directions. Grating 320 has a high (e.g., about 100%) reflectivity at λs1. Grating 330 is designed so that only a portion of the energy at λs2 is reflected therefrom, allowing some of the energy at this wavelength to be transferred from fiber 310 via coupler 360. For example, coupler 360 can transfer energy at λs2 to an output optical fiber. In some embodiments, the intensity of an output Raman signal can be controlled by the reflectivity of Bragg grating 330 and coupling efficiency of WDM 360. The sequence of gratings 320 and 330 can be as shown in
Although one configuration of system 300 is shown in
Grating pairs 420/425, 430/435, 440/445, 450/455 (tandem grating pairs) are disposed between (nested between) grating pair 410/415 (nesting grating pair). Grating pairs 420/425, 430/435 etc. are disposed in fiber 120 in tandem and the wavelengths of maximum reflectivity corresponding to individual grating pairs are, for example, located in the bandwidth of the second order Raman stoke shift λs2 and denoted as λs2′, λs2″, λs2′″, λs2″″ respectively. In certain embodiments, the reflectivity of gratings 425, 435, 445 and 455 at wavelengths λs2′, λs2″, λs2′″, λs2″″ is less than 100%. In these embodiments, energy at these wavelengths can pass through these gratings and propagate along fiber 120 toward terminal grating 150, which is substantially transparent for these wavelengths. The energy output contains a set of wavelengths λs2′, λs2″, λs2′″, λs2″″. The intensities of these Raman signals can be regulated by a proper selection of Bragg grating parameters as well as parameters of fiber 120 material.
Although system 400 is shown as having four tandem pairs of gratings (420/425, 430/435, 440/445 and 450/455), embodiments having greater or fewer tandem pairs of gratings are contemplated. System 400 can have, for example, one, two, three, five, six, seven, eight, nine, 10, or more tandem pairs of gratings. Each pair of tandem gratings can be designed to have maximum reflectivity corresponding to an energy level (e.g, λs2′, λs2″, λs2′″, λs2″″, λs2′″″, etc.) within the bandwidth of a given Raman stoke shift (e.g. λs2).
Moreover, although system 400 is shown as having only one nesting grating pair, other embodiments are contemplated. For example, system 400 can include an additional nesting grating pair with one of the gratings disposed between device 160 and grating 410, and the other grating disposed between gratings 415 and 150. Alternatively or additionally, system 400 can have a nesting grating pair with one of the gratings disposed between gratings 410 and 420, and the other grating disposed between gratings 455 and 415. In general, the gratings within a particular nesting grating pair are designed to have maximum reflectivity corresponding to energy at a particular Raman stoke shift (e.g., λs3, λs4, λs5, λs6, λs7, λs8, λs9, λs10, etc.).
An advantage of the arrangement of system 400 is that it can result in reduced intensity sharing and cross-talk between energy propagating in fiber 120 at different wavelengths because the energy at these different wavelengths is confined to different regions of fiber 120. This can allow for improved control of the intensity distribution in fiber 120 as a function of wavelength. In some embodiments, the intensity distribution can be substantially the same for predetermined wavelengths, such as certain wavelengths of interest.
The WDMs in system 500 are not limited to being disposed only between matching Bragg gratings 420/425, 430/435, 440/445, 450/455 as shown in FIG. 6. The WDMs can also be placed between grating pairs, e.g., in space between 425 and 430 etc., or in any combinations of the above.
Although certain embodiments have been described herein, the invention is not limited to these embodiments. For example, in some embodiments, multiple pump sources can be used. For example, a multiple pump source (e.g., with wavelengths λp1, λp2, λp3 etc.) can be used to assist in providing a predetermined Raman gain spectrum (e.g., a relatively flat Raman gain spectrum). Moreover, while systems have been described as including WDMs, other appropriate couplers may also be used. Other embodiments are in the claims.
This application claims priority under 35 USC §119(e) to U.S. Provisional Patent Application Ser. No. 60/267,252, filed on Feb. 7, 2001, and entitled “Raman Fiber Laser”, the entire contents of which are hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
4063106 | Ashkin et al. | Dec 1977 | A |
4616898 | Hicks, Jr. | Oct 1986 | A |
4699452 | Mollenauer et al. | Oct 1987 | A |
4794598 | Desurvire et al. | Dec 1988 | A |
4881790 | Mollenauer | Nov 1989 | A |
5225925 | Grubb et al. | Jul 1993 | A |
5323404 | Grubb | Jun 1994 | A |
5406411 | Button et al. | Apr 1995 | A |
5659644 | DiGiovanni et al. | Aug 1997 | A |
5673280 | Grubb et al. | Sep 1997 | A |
5721636 | Erdogan et al. | Feb 1998 | A |
5778014 | Islam | Jul 1998 | A |
5815518 | Reed et al. | Sep 1998 | A |
5838700 | Dianov et al. | Nov 1998 | A |
5959750 | Eskildsen et al. | Sep 1999 | A |
5966480 | LeGrange et al. | Oct 1999 | A |
5982791 | Sorin et al. | Nov 1999 | A |
6052393 | Islam | Apr 2000 | A |
6081366 | Kidorf et al. | Jun 2000 | A |
6088152 | Berger et al. | Jul 2000 | A |
6147794 | Stentz | Nov 2000 | A |
6151160 | Ma et al. | Nov 2000 | A |
6163396 | Webb | Dec 2000 | A |
6163552 | Engelberth et al. | Dec 2000 | A |
6163554 | Chang et al. | Dec 2000 | A |
6163636 | Stenz et al. | Dec 2000 | A |
6181464 | Kidorf et al. | Jan 2001 | B1 |
6191877 | Chraplyvy et al. | Feb 2001 | B1 |
6292288 | Akasaka et al. | Sep 2001 | B1 |
6310899 | Jacobovitz-Veselka | Oct 2001 | B1 |
6344925 | Grubb et al. | Feb 2002 | B1 |
6374006 | Islam et al. | Apr 2002 | B1 |
6407855 | MacCormack et al. | Jun 2002 | B1 |
6426965 | Chang et al. | Jul 2002 | B1 |
6433920 | Welch et al. | Aug 2002 | B1 |
6549329 | Vail et al. | Apr 2003 | B2 |
6594288 | Putnam et al. | Jul 2003 | B1 |
6603593 | Fidric et al. | Aug 2003 | B2 |
6603595 | Welch et al. | Aug 2003 | B2 |
6606337 | King | Aug 2003 | B1 |
6621835 | Fidric | Sep 2003 | B1 |
6700696 | Dominic et al. | Mar 2004 | B2 |
20020001125 | Chang et al. | Jan 2002 | A1 |
20020024722 | Tsuzaki et al. | Feb 2002 | A1 |
20020191277 | Chen et al. | Dec 2002 | A1 |
20030021302 | Grudinin et al. | Jan 2003 | A1 |
20030076577 | Dominic et al. | Apr 2003 | A1 |
20040156588 | Demidov et al. | Aug 2004 | A1 |
20040179797 | Po et al. | Sep 2004 | A1 |
Number | Date | Country |
---|---|---|
0 954 072 | Nov 1999 | EP |
1 018 666 | Jul 2000 | EP |
1 124 295 | Aug 2001 | EP |
1 225 666 | Jul 2002 | EP |
1 257 023 | Nov 2002 | EP |
1 309 113 | May 2003 | EP |
58121694 | Jul 1983 | JP |
59165488 | Sep 1984 | JP |
63202085 | Aug 1988 | JP |
1196189 | Aug 1989 | JP |
WO 9637936 | Nov 1996 | WO |
WO 9950941 | Oct 1999 | WO |
WO 0133285 | May 2001 | WO |
WO 0133285 | May 2001 | WO |
WO 02093704 | Nov 2002 | WO |
WO 03005068 | Jan 2003 | WO |
WO 03014771 | Feb 2003 | WO |
WO 02063728 | Mar 2003 | WO |
WO 03005068 | Apr 2003 | WO |
WO 02063728 | May 2003 | WO |
WO 03014771 | Aug 2004 | WO |
Number | Date | Country | |
---|---|---|---|
20020126714 A1 | Sep 2002 | US |
Number | Date | Country | |
---|---|---|---|
60267252 | Feb 2001 | US |