The present disclosure relates to the field of wireless communication technologies, and in particular, to a PRACH signal transmission method and device.
The random access is a basic and important process in a Long Term Evolution (LTE) system, and the random access can establish uplink time-frequency synchronization and request a network to allocate uplink resources to terminals. Therefore, the random access can be used not only for initial access, but also for new cell access during handover, access after connection failure of the radio link, and recovery of uplink time-frequency synchronization when there is uplink or downlink data transmission, etc.
In a current mobile communication system, when a UE initially accesses a cell, it needs to perform the downlink cell search and downlink time-frequency synchronization at first, and then send an uplink random access signal to perform the uplink time-frequency synchronization. In the uplink synchronization, since there are UEs competing for access in the uplink access process, it is necessary to distinguish the identifiers of different UEs. Currently, a random access preamble sequence is usually used as a random access signal, i.e., Physical Random Access Channel (PRACH) signal. The PRACH signal can help the base station to estimate the time and frequency deviations of different UEs during random access, and is very important in the uplink synchronization.
In the satellite communication, when a terminal sends a PRACH signal, the terminal needs to autonomously compensate the Timing Advance (TA) for timing control based on the timing of the downlink received signal, and then sends the PRACH signal. At present, when the UE autonomously compensates the TA, the positioning of the UE position and the positioning of the satellite position are relied on, while the positioning of the satellite position is performed based on the estimation of the satellite ephemeris information. If the satellite ephemeris information is not updated in time, the estimation of the satellite position will be inaccurate, which will lead to the inaccurate TA estimation of the UE and thus a time deviation in sending the PRACH signal, and there is interference between the PRACH signal sent by the UE and the uplink signals sent by other UEs, and the error will also occur in the detection of the base station. To sum up, the current PRACH signal transmission method has the problem of interference of the PRACH signal due to the inaccurate TA estimation.
The disclosure provides a PRACH signal transmission method and device, and to solve the problem of interference of the PRACH signal due to the inaccurate TA estimation in the existing PRACH signal transmission method.
Embodiments of the disclosure provides a PRACH signal transmission method, which is applied to a User Equipment (UE). The method includes:
In one embodiment, the delay information for transmitting the PRACH signal includes at least one of:
In one embodiment, the GT adjustment information is: removing a CP part in a PRACH signal format, a length of a newly-added GT, or reserving newly-added guard time required for delayed transmission after the PRACH signal.
In one embodiment, the sending the PRACH signal at the PRACH signal transmission occasion, includes:
In one embodiment, the method further includes:
Embodiments of the disclosure provides a PRACH transmission method, which is applied to a network side device, and the method includes:
In one embodiment, the delay information for transmitting the PRACH signal includes at least one of:
In one embodiment, the GT adjustment information is: removing a CP part in a PRACH signal format, a length of a newly-added GT, or reserving newly-added guard time required for delayed transmission after the PRACH signal.
In one embodiment, the method further includes:
In one embodiment, a size of a guard interval or transmission guard interval for delayed transmission of the PRACH signal is determined according to at least one of:
Embodiments of the disclosure provides a UE, including:
Embodiments of the disclosure provides a network side device, including:
Embodiments of the disclosure provides a UE, including: a memory and a processor; and
In one embodiment, the delay information for transmitting the PRACH signal includes at least one of:
In one embodiment, the GT adjustment information is: removing a CP part in a PRACH signal format, a length of a newly-added GT, or reserving newly-added guard time required for delayed transmission after the PRACH signal.
In one embodiment, the processor is further configured to:
In one embodiment, the processor is further configured to:
Embodiments of the disclosure provides a network side device, including: a memory and a processor; and
In one embodiment, the delay information for transmitting the PRACH signal includes at least one of:
In one embodiment, the GT adjustment information is: removing a CP part in a PRACH signal format, a length of a newly-added GT, or reserving newly-added guard time required for delayed transmission after the PRACH signal.
In one embodiment, the processor is further configured to:
In one embodiment, the processor is configured to determine a size of a guard interval or transmission guard interval for delayed transmission of the PRACH signal according to at least one of:
Embodiments of the disclosure provides a chip, which is coupled to a memory in a device, and the chip invokes program instructions stored in the memory when running, to implement the above various embodiments of the disclosure and any possible method involved in the various embodiments.
The embodiments of the disclosure provides a computer readable storage medium storing program instructions, which, when executed on a computer, cause the computer to perform the embodiments of the disclosure and any possible method involved in the various embodiments.
Embodiments of the disclosure provides a computer program product which, when running on an electronic device, causes the electronic device to implement the above various embodiments of the disclosure and any possible method involved in the various embodiments.
The PRACH signal transmission method and device provided in the disclosure have the following beneficial effects.
The network side device estimates the error of the TA calculated by the UE and to send the indication information to the UE, and the UE determines the delay information for transmitting the PRACH signal according to the indication information. After receiving the instruction of the network side device, the UE transmits the PRACH signal based on the calculated TA and the delay information for transmitting the PRACH signal determined according to the instruction, and to solve the problem of interference of the PRACH signal due to the inaccurate TA estimation in the existing PRACH signal transmission method.
The embodiments of the disclosure more clearly, the accompanying figures which need to be used in describing the embodiments will be introduced below briefly. The accompanying figures described below are only some embodiments of the disclosure, and other accompanying figures can also be obtained according to these accompanying figures.
Embodiments of the disclosure clearer, the disclosure will be further illustrated below in details with reference to the accompanying figures. The described embodiments are merely a part of the embodiments of the disclosure but not all the embodiments.
For the sake of understanding, the nouns involved in the embodiments of the disclosure will be explained below.
1) Uplink synchronization: it is required that uplink signals from different UEs at different distances can reach the network side device synchronously. In one embodiment, the uplink signals sent by UEs in different positions in the same slot in the same cell reach a receiving antenna of the network side device at the same time, that is, the signals of different UEs in the same slot keep synchronized in reaching the receiving antenna of the network side device. The uplink synchronization can reduce uplink multi-access interference and multi-path interference between UEs in a cell and increase the cell capacity and the cell radius.
2) PRACH: in the LTE or 5G NR system, the UE has established the downlink synchronization after a downlink cell search and time-frequency synchronization process, so the UE can receive downlink data, establish a connection with the network side device through a random access process, and obtain the uplink synchronization; the PRACH acts as a bearer channel of random access information, and its main function is to obtain the uplink synchronization and assign a unique identifier to the UE.
In the existing terrestrial mobile communication system, when a terminal initially accesses a cell, it needs to perform downlink cell search and time-frequency synchronization at first, and then send an uplink random access signal (PRACH signal) to perform uplink time-frequency synchronization. Since there are UEs competing for access in uplink access, it is necessary to distinguish identifiers (IDs) of different UEs, and a Preamble sequence is usually used as a PRACH signal. The PRACH signal can help the network side device to estimate time and frequency deviations of different UEs. Since a cell radius also varies in actual deployment, the PRACH signal is usually a structure of a Cyclic Prefix (CP)+Preamble, where the Preamble signal can adopt a duplication transmission mode, and improving a signal-to-noise ratio of a communication link effectively.
In a satellite communication system, a radius of a cell is generally several hundred kilometers, so a long CP is required according to a traditional PRACH signal structure. In the formulation of satellite standards, an effective design to simplify a PRACH signal format is using a method for obtaining a TA autonomously based on a positioning capability and ephemeris information obtaining capability of a UE. With this method, the UE can perform TA compensation in advance when sending the PRACH signal, without designing a long CP to overcome a propagation delay of a large coverage cell.
The TA compensation includes two methods: partial TA compensation and full TA compensation. In the partial TA compensation method, the user-specific TA is compensated by the UE, and the public TA is compensated by the gateway station. The location of the reference point will affect a relative size of the user-specific TA and the public TA. If the reference point is on the ground, the user-specific TA will be relatively small. If the reference point is on the satellite, the user-specific TA is equal to twice the one-way transmission delay of the user link. As shown in
In the satellite communication, there is also a regenerative communication mode in addition to the elbow communication mode. In the regenerative communication mode, the satellite is equivalent to a network side device, and the transmission link between the terminal and the satellite is the entire link, so the TA compensation only aims at the transmission link between the terminal and the satellite, i.e., the user link. The principle of TA compensation is similar to that in the elbow communication mode, and there may be two methods: partial TA compensation and full TA compensation, which will not be described in detail herein.
In the satellite communication, if the ephemeris information is not updated in time, the errors will occur in the UE's estimation of the satellite orbital position, resulting in the inaccurate TA estimation and thus a time deviation in sending the PRACH signal, and there is interference between the PRACH signal and other uplink signals, and there is also difficulty in the detection of the network side device.
Since the TA value estimated by the terminal may have a positive deviation or a negative deviation, the transmission occasion of the PRACH signal may be advanced or delayed. If the PRACH signal is sent in advance, the interference will occur between the PRACH signal and the previous uplink signals of other UEs. If the PRACH signal is sent by delay, the interference will occur between the PRACH signal and the later uplink signals of other UEs. Therefore, it is necessary to propose an effective method to solve the problem of signal interference caused by the TA estimation error of the UE.
In view of this, the embodiments of the disclosure propose a PRACH signal transmission method and device, which are applied to a scenario where a UE and a network side device establish uplink synchronization. When transmitting the PRACH signal based on the TA estimated by the UE at present, it is delayed or advanced by a time interval to ensure that the GT value of the PRACH signal is within a reasonable range and the PRACH signal will not interfere with the uplink signals of other UEs.
In the embodiments of the disclosure, the UE may specifically refer to an access terminal, a user unit, a user station, a mobile radio station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, a wireless communication device, a user agent, or a user device. The access terminal may be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Assistant (PDA), a handheld device with wireless communication function, a computing device or other processing device connected to a wireless modem, a vehicle-carried device, a wearable device, a mobile station in the 5G network, or a subscription device in the future evolved Public Land Mobile Network (PLMN) network, etc.
The network side device may be a generation Node B (gNB) in the 5G system, or may be a Base Transceiver Station (BTS) in the Global System of Mobile communication (GSM) system or Code Division Multiple Access (CDMA), or may be a NodeB (NB) in the Wideband Code Division Multiple Access (WCDMA) system, or may be an evolutional Node B (eNB or eNodeB) in the LTE system, etc.
For the convenience of description,
An embodiment of the disclosure provides a PRACH signal transmission method, which is applied to a UE. As shown in
S601: determining delay information for transmitting a PRACH signal based on a system agreement or according to an instruction obtained from a network side device.
After the UE is connected to the network side device and establishes downlink synchronization, the UE needs to send a PRACH signal to the network side device to establish uplink synchronization. Before sending the PRACH signal, the UE receives a downlink signal sent by the network side device, obtains a timing starting point of a signal subframe or slot of a downlink received signal as a receiving timing point of a downlink signal based on the detection of the downlink signal, and sends the PRACH signal in advance of TA with the receiving timing point as a reference.
In one embodiment, the UE obtains a UE position based on a satellite navigation signal, obtains a satellite orbit position based on ephemeris information, and calculates the initial TA based on reference point information, which may be predefined by the system or notified by the network side device. At the same time, the delay information for transmitting the PRACH signal is determined based on a system agreement or according to an instruction obtained from the network side device. The system agreement means that a time interval or guard interval by which the PRACH signal needs to be sent by delay is pre-appointed in the standard protocol, including TA adjustment or delayed transmission interval or guard interval, etc. This configuration information is predetermined in the protocol. The terminal obeys these rules when sending the PRACH signal to achieve the desired goal, and there is no need for the network side device to notify the terminal through a signaling message; if the notification from the network side device is adopted, it means that the network side device, such as a base station, can change the indication information for delayed transmission through an air interface message. According to the calculated initial TA and the delay information for transmitting the PRACH signal, the PRACH signal is sent at the transmission occasion of the PRACH signal.
When the UE calculates the initial TA, it is determined by the above method for obtaining the TA autonomously. The specific implementation is the same as the above description in this embodiment, which is not repeated herein.
S602: transmitting the PRACH signal at a PRACH signal transmission occasion according to a calculated initial TA and the delay information.
When sending the PRACH signal after determining the calculated initial TA and the delay information for transmitting the PRACH signal through the above method, the UE subtracts one TA offset value from the initial TA as a final TA value according to the delay information and sends the PRACH signal; or sends the PRACH signal based on a PRACH signal format with a guard interval before a preamble signal or CP and based on a signal time sequence advanced by the initial TA; or adds a transmission guard interval based on a signal advanced by the initial TA, and then sends the PRACH signal. In a specific implementation, there are possible modes for the delay information for transmitting the PRACH signal.
The above-mentioned delay information for transmitting the PRACH signal is used to perform error compensation on the TA calculated by the UE, and the specific indication mode can be selected according to requirements. Embodiments of the delay information for transmitting the PRACH signal are given below.
1) The initial TA minus one TA offset value.
When the delay information for transmitting the PRACH signal determined by the UE is the initial TA minus one TA offset value, the estimated initial TA value needs to be adjusted. The initial TA value calculated by the terminal may be larger or smaller than the actual TA value. If larger, the PRACH signal may be advanced too much, causing the PRACH signal to interfere with signals of other UEs, so the PRACH signal needs to be delayed for transmission. Since the network side device does not know whether the TA value estimated by the UE is larger or smaller, a simple and effective method is to send the PRACH signal in delay. By taking the receiving timing point of the downlink signal as a reference, the time after the initial TA minus the TA offset value is advanced, and the PRACH signal is sent at the PRACH signal transmission occasion indicated by the network side device. By subtracting an offset value, the actually used TA is made smaller than the estimated initial TA, and to achieve the purpose of delayed transmission.
2) A guard interval configured before a random access preamble or CP in the PRACH signal format.
The delay information for transmitting the PRACH signal determined by the UE is: when a guard interval is configured before the random access preamble in the PRACH signal format, the UE configures a guard interval before the Preamble in the currently-sent PRACH signal format according to the delay information, then advances the initial TA by taking the receiving timing point of the downlink signal as a reference, and sends the PRACH signal at the PRACH signal transmission occasion indicated by the network side device according to the PRACH signal format with the guard interval.
The delay information for transmitting the PRACH signal determined by the UE is:
when a guard interval is configured before the CP in the PRACH signal format, the UE configures a guard interval before the CP in the currently-sent PRACH signal format according to the delay information, then advances the initial TA by taking the receiving timing point of the downlink signal as a reference, and sends the PRACH signal at the PRACH signal transmission occasion indicated by the network side device according to the PRACH signal format with the guard interval.
When receiving the notification from the network side device and determines the above delay information for transmitting the PRACH signal, the UE may receive the guard interval added before the Preamble or CP indicated by the network side device, or may receive the PRACH signal format added with the guard interval indicated by the network side device.
3) A transmission guard interval added before transmitting the PRACH signal.
The delay information for transmitting the PRACH signal determined by the UE is: when the transmission guard interval is added before sending the PRACH signal, the initial TA is advanced by taking the receiving timing point of the downlink signal as a reference, and the PRACH signal is sent with a backward delay after the transmission guard interval is added before sending the PRACH signal within the sending window corresponding to the PRACH signal transmission occasion configured by the network side device.
4) GT adjustment information due to delayed transmission.
The UE determines the GT adjustment information due to delayed transmission according to an instruction from the network side, and sends the PRACH signal after adjusting the PRACH signal.
The GT adjustment information is: removing a CP part in the PRACH signal format, a length of a newly-added GT, or reserving newly-added guard time required for delayed transmission after the PRACH signal.
The delay information for transmitting the PRACH signal determined by the UE is removing the CP part in the PRACH signal format. Then the UE removes the CP in the PRACH signal format as the time interval of the TA offset value, where the TA offset value may be equal to the CP length at most, thus guaranteeing the length of the extended GT. Then, the UE advances the initial TA by taking the receiving timing point of the downlink signal as a reference, and sends the PRACH signal with the CP removed at the PRACH signal transmission occasion indicated by the network side device according to the PRACH signal format with the CP removed.
If the GT adjustment information is the length of the newly-added GT, the UE advances the initial TA and determines the current GT by taking the receiving timing point of the downlink signal as a reference, adjusts the current GT according to the length of the newly-added GT, and sends the PRACH signal at the PRACH signal transmission occasion.
If the GT adjustment information is reserving the newly-added guard time required for delayed transmission after the PRACH signal, the UE reserves the newly-added guard time required for delayed transmission after the PRACH signal according to the adjustment information, determines the moment to start sending the PRACH, and sends the PRACH signal at the PRACH signal transmission occasion indicated by the network side device when the moment to start sending the PRACH is reached.
Further, the UE obtains the configuration information of the PRACH transmission occasion or transmission slot indicated by the network side device to be closed, and stops sending the PRACH signal or PUSCH data in the corresponding PRACH transmission occasion or transmission slot or an adjacent slot according to the configuration information, to avoid interference with other signals.
An embodiment of the disclosure further provides a PRACH signal transmission method, which is applied to a network side device. As shown in
S701: determining the delay information that a PRACH signal is sent by delay according to a system agreement, or determining the delay information that a PRACH signal is sent by delay according to an estimated TA error and indicating the delay information to a UE.
After the UE is connected to the network side device and establishes downlink synchronization, the network side device may perform corresponding configuration for the PRACH signal sent by the UE and then receive the PRACH signal sent by the UE to establish uplink synchronization.
When configuring the PRACH signal, the network side device determines the compensation information for the TA error according to the estimated TA error, and sends the indication information to the UE, and the UE determines the delay information for transmitting the PRACH signal according to the indication information. In this embodiment, the delay information for transmitting the PRACH signal is as described above, and may be at least one of:
In one embodiment, the size of a guard interval or transmission guard interval for delayed transmission of the PRACH signal is determined according to at least one of:
The UE calculates the TA according to the ephemeris information, and the update time of the ephemeris information is different and the accuracy is also different. In one embodiment, the longer the update time of the ephemeris information is, the lower the accuracy is. Thus, the greater the TA error calculated by the terminal is, the larger the guard interval or transmission guard interval required for delayed transmission of the PRACH signal is. At the same time, when obtaining the ephemeris information and calculating the TA according to the ephemeris information, the UE may be affected by its own capabilities, so the TA values calculated by different types of UEs or UEs with different capabilities are also different. In addition, the ephemeris information determined by different ephemeris algorithms are not completely the same, so the ephemeris algorithm used by the UE to calculate the TA will also affect the accuracy of the TA.
Thus, the network side device may estimate the TA error calculated by the UE according to at least one of the user equipment type, the user equipment capability, the ephemeris algorithm or the accuracy of the ephemeris information, and determine any one of the above delay information for transmitting the PRACH signal and indicate the determined delay information to the terminal.
For example, the errors in TA calculation for different types of UEs may be estimated respectively, and the correspondence between different types of UEs and guard intervals or transmission guard intervals for delayed transmission of PRACH signals may be preset according to the estimation results. When indicating the delay information for transmitting the PRACH signal to the UE, the size of the guard interval or transmission guard interval for delayed transmission of the PRACH signal corresponding to the UE is determined according to the correspondence and then indicated to the corresponding UE.
When the network side device instructs the UE to add a guard interval in the PRACH signal, the network side device may separately indicate the guard interval added before the Preamble or CP, or may indicate the PRACH signal format added with the guard interval.
The network side device uses the determined guard interval or transmission guard interval for delayed transmission of the PRACH signal as the transmission guard interval added before sending the PRACH signal and indicates the determined guard interval or transmission guard interval for delayed transmission of the PRACH signal to the corresponding UE, and the UE advances the initial TA by taking the receiving timing point of the downlink signal as a reference according to the indication, and sends the PRACH signal with a backward delay after the transmission guard interval is added before sending the PRACH signal within the sending window corresponding to the PRACH signal transmission occasion configured by the network side device.
The network side device uses the determined guard interval or transmission guard interval for delayed transmission of the PRACH signal as the GT adjustment information due to delayed transmission and indicates the determined guard interval or transmission guard interval for delayed transmission of the PRACH signal to the corresponding UE, where the GT adjustment information may be: removing a CP part in the PRACH signal format, a length of a newly-added GT, or reserving the newly-added guard time required for delayed transmission after the PRACH signal.
Further, when determining that the signal interference occurs at the UE itself or between UEs due to delayed transmission of the PRACH signal, the network side device instructs the corresponding UE to close a part of continuous PRACH transmission occasions or close transmission slots of a PUSCH adjacent to the PRACH signal transmission occasions, and to ensure that the UE will not interfere with other signals when transmitting the PRACH signal.
Step S702: receiving the PRACH signal sent by the UE at a PRACH signal transmission occasion according to an initial TA and the delay information.
After performing the delayed transmission configuration on the PRACH signal sent by the UE in the above manner and indicating the delayed transmission configuration to the corresponding UE, the network side device determines the detection time of the PRACH signal based on the delayed transmission configuration, and receives the PRACH signal sent by the UE, and further establishing the uplink synchronization.
The possible embodiments of the PRACH signal transmission method performed by the network side device and the UE are given below with reference to the schematic diagrams.
Implementation 1.
After a UE is connected to a network side device and establishes downlink synchronization, the UE receives a downlink signal sent by the network side device, obtains a timing starting point of a signal subframe or slot of a downlink received signal as a receiving timing point of the downlink signal, and sends a PRACH signal in advance of TA with the receiving timing point as a reference.
In this embodiment, when calculating the initial timing advance TA0 based on the reference point information, TA0 is determined by using the above-mentioned method for obtaining the TA autonomously.
As shown in
Since a GT length in the current PRACH signal format is generally equal to the CP length, the PRACH signal is sent with a delay of ½CP when the TA_offset value is set as ½CP, and an effective length of the GT becomes ½CP, so a tolerable TA error is +/−½CP. When the length of the GT is not enough to protect the TA error caused by the relatively large deviation of the ephemeris information, the length of the GT needs to be extended to overcome the error caused by the rather small calculated value of the TA. In one embodiment, any of the following methods can be used.
1) Close a part of PRACH signal transmission occasions or close a transmission slot corresponding to PUSCH.
When there is a continuous PRACH signal transmission configuration in the existing PRACH signal transmission configurations, the network side device closes a part of the continuous PRACH signal transmission occasions, or when there is no continuous PRACH signal transmission configuration in the existing PRACH signal transmission configurations, the network side device closes the slot corresponding to the intermediate PUSCH scheduling opportunity, and indicates a transmission occasion to the corresponding UE. The UE sends the PRACH signal in the above manner through the transmission occasion indicated by the network side device. The specific embodiment is the same as the description in Implementation 3 below, and will not be repeated herein.
2) Remove a CP part in the PRACH signal format as a time interval of the TA offset value TA_offset.
The network side device instructs the UE to remove the CP part in the PRACH signal format when sending the PRACH signal, and indicates the set value of the TA offset value TA_offset to the UE. The UE removes the CP part in the PRACH signal format according to the instruction from the network side device, and delays the time interval of TA_offset on the basis of the above TA0, that is, sends the PRACH signal with the CP removed in advance of TA1=TA0−TA_offset by taking the receiving timing point as a reference, where the TA offset value indicated by the network side device may be equal to the CP length at most, and ensuring that the effective length of the GT in the PRACH signal format will not be reduced or the effective length of the GT can be increased. Therefore, when the PRACH signal is sent with a delay of the TA offset value to protect the error caused by the rather large TA calculation, the protection of the GT for the error caused by the rather small TA calculation will not be affected.
Implementation 2.
After a UE is connected to a network side device and establishes downlink synchronization, the UE receives a downlink signal sent by the network side device, obtains the timing starting point of the signal subframe or slot of the downlink received signal as the receiving timing point of the downlink signal, and sends a PRACH signal in advance of TA with the receiving timing point as a reference.
In one embodiment, the UE calculates the initial TA=TA0 by using the same method as the above Implementation 1, which will not be repeated herein.
The value of the above TA_Gap is determined by the network side device and indicated to the UE. When sending the PRACH signal, the UE sends the PRACH signal with the above guard interval TA_Gap added in advance of TA0 by taking the receiving timing point as a reference. In the above method, the guard interval is directly added in the PRACH signal format by considering the TA error in the PRACH signal format, and the added guard interval becomes a part of the PRACH signal, so there is no need to modify the existing TA calculation method.
Implementation 3.
For example, if a transmission slot corresponding to a PRACH signal includes 6 PRACH signal transmission occasions, and if 3 PRACH signal transmission occasions are closed at intervals, and there are 3 PRACH signal transmission occasions in one transmission slot, and thus the PRACH signal transmission occasions may be more sparse. The slot corresponding to the closed PRACH signal transmission occasion is used as a guard slot, increasing the guard interval of the GT indirectly and avoiding interference between the PRACH signal and the following signals.
Implementation 4.
After a UE is connected to a network side device and establishes downlink synchronization, the UE receives a downlink signal sent by the network side device, obtains the timing starting point of the signal subframe or slot of the downlink received signal as the receiving timing point of the downlink signal, and sends a PRACH signal in advance of TA with the receiving timing point as a reference. When the determined TA is smaller than the actual TA value and the length of the GT is not enough to protect the larger TA error, the length of the GT needs to be extended.
In one embodiment, the GT adjustment information due to delayed transmission may be sent by the network side device to the UE, and the GT adjustment information may be: removing a CP part in the PRACH signal format, a length of a newly-added GT, or reserving the newly-added guard time required for delayed transmission after the PRACH signal.
For example, the network side device instructs the UE to remove the CP part in the PRACH signal format or add the length of the GT newly when sending the PRACH signal, and the effective length of the GT part in the PRACH signal format can be increased. The UE sends the PRACH signal in the PRACH signal format with the CP removed or with the newly-added GT length, and ensuring that the GT in the PRACH signal has a sufficient length to protect the error caused by the calculated value of the TA smaller than the actual value. In one embodiment, the network side device instructs the UE to reserve the newly-added guard time required for delayed transmission after the PRACH signal, and the effective length of the GT is indirectly extended through the newly-added guard time. The UE reserves the newly-added guard time required for delayed transmission after the PRACH signal according to the instruction of the adjustment information, determines the moment to start sending the PRACH, and sends the PRACH signal at the PRACH signal transmission occasion indicated by the network side device when the moment to start sending the PRACH is reached, which can also ensure the protection of the GT against the error caused by the calculated value of the TA smaller than the actual value.
In the above PRACH signal transmission method provided in the embodiment of the disclosure, the network side device estimates the error of the TA calculated by the UE to and determine the size of the guard interval or transmission guard interval for delayed transmission of the PRACH signal, and to provide the indication information to the UE, and the UE determines the delay information for transmitting the PRACH signal according to the indication information. After receiving the indication from the network side device, the UE adjusts the time for transmitting the PRACH signal or the format of the PRACH signal according to the indication information, and transmits the PRACH signal based on the calculated TA, solving the problem of interference of the PRACH signal in the case when the TA estimation is inaccurate in the existing PRACH signal transmission method.
The PRACH signal transmission method in the disclosure has been described above, and a device for executing the above PRACH signal transmission method will be described below.
In one embodiment, the delay information for transmitting the PRACH signal is at least one of:
In one embodiment, the GT adjustment information is: removing a CP part in the PRACH signal format, a length of a newly-added GT, or reserving newly-added guard time required for delayed transmission after the PRACH signal.
In one embodiment, when sending the PRACH signal at the PRACH signal transmission occasion, the signal transmission device is configured to:
In one embodiment, the UE further includes a stop sending device 1303, which is specifically configured to:
The above UE provided by the embodiment of the disclosure and the PRACH signal transmission method applied to the UE provided by the above Embodiment 1 of the disclosure, and various implementations applied to the UE provided in the above Embodiment 1 may be applied to the UE in this embodiment for implementation, which will not be repeated herein.
Referring to
In one embodiment, the delay information for transmitting the PRACH signal includes at least one of:
In one embodiment, the GT adjustment information is: removing a CP part in the PRACH signal format, a length of a newly-added GT, or reserving newly-added guard time required for delayed transmission after the PRACH signal.
In one embodiment, the network side device further includes an opportunity closing device 1403, which is specifically configured to:
In one embodiment, the instruction transmission device is configured to determine a size of a guard interval or transmission guard interval for delayed transmission of the PRACH signal according to at least one of:
The above network side device provided by the embodiment of the disclosure and the PRACH signal transmission method applied to the network side device provided by the above Embodiment 1 of the disclosure, and various implementations applied to the network side device provided in the above Embodiment 1 may be applied to the network side device in this embodiment for implementation, which will not be repeated here.
The UE and the network side device in the embodiment of the disclosure have been described above from the perspective of modular functional entity, and the UE and the network side device in the embodiment of the disclosure will be described below from the perspective of hardware processing.
Referring to
The device 1500 may further include one or more power supplies 1510, one or more wired or wireless network interfaces 1507, one or more input/output interfaces 1508, and/or one or more operating systems 1505, such as Windows Server, Mac OS X, Unix, Linux, FreeBSD, etc.
In one embodiment, the delay information for transmitting the PRACH signal inludes at least one of:
In one embodiment, the GT adjustment information is: removing a CP part in the PRACH signal format, a length of a newly-added GT, or reserving newly-added guard time required for delayed transmission after the PRACH signal.
In one embodiment, the processor 1501 is specifically configured to:
In one embodiment, the processor 1501 is further configured to:
The above UE provided by the embodiment of the disclosure and the UE provided by the above Embodiment 2 of the disclosure, and various implementations applied to the UE provided in the above Embodiment 2 may be applied to the UE in this embodiment for implementation, which will not be repeated herein.
Referring to
The device 1600 may further include one or more power supplies 1610, one or more wired or wireless network interfaces 1607, one or more input/output interfaces 1608, and/or one or more operating systems 1605, such as Windows Server, Mac OS X, Unix, Linux, FreeBSD, etc.
In one embodiment, the delay information for transmitting the PRACH signal includes at least one of:
In one embodiment, the GT adjustment information is: removing a CP part in the PRACH signal format, a length of a newly-added GT, or reserving newly-added guard time required for delayed transmission after the PRACH signal.
In one embodiment, the processor 1601 is further configured to:
In one embodiment, the processor 1601 is configured to determine a size of a guard interval or transmission guard interval for delayed transmission of the PRACH signal according to at least one of:
The above network side device provided by the embodiment of the disclosure and the network side device provided by the above Embodiment 2 of the disclosure, and various implementations applied to the network side device provided in the above Embodiment 2 may be applied to the network side device in this embodiment for implementation, which will not be repeated herein.
An embodiment of the disclosure further provides a computer readable storage medium including instructions, which, when executed on a computer, cause the computer to execute the PRACH signal transmission method provided by the above-mentioned embodiments.
deviceIn the several embodiments provided by the disclosure, it should be understood that the disclosed system, devices and methods may be implemented in other manners. For example, the device embodiments described above are only schematic, for example, the division of the devices is merely a logical function division. In an actual implementation, there may be other division manners, for example, devices or components may be combined or integrated to another system, or some features may be ignored or not performed. In addition, the displayed or discussed mutual coupling or direct coupling or communication connection may be implemented through the indirect coupling or communication connection between some interfaces, devices or devices, and may be in the electrical or other forms.
The devices described as separate components may or may not be physically separated, and the components displayed as devices may or may not be physical devices, that is, may be located in one place or may be distributed onto multiple network devices. Some or all of the devices may be selected according to the actual needs to achieve the embodiments.
In addition, the functional devices in each embodiment of the disclosure may be integrated into one processing device, or each device may exist alone physically, or two or more devices may be integrated into one device. The above-mentioned integrated devices can be implemented in the form of hardware, or can be implemented in the form of software functional devices. When the integrated device is implemented in the form of software functional device and sold or used as an independent product, it may be stored in a computer readable storage medium.
The above embodiments may be implemented in whole or in part by software, hardware, firmware or any combination thereof. When implemented by software, they may be implemented in the form of a computer program product in whole or in part.
The computer program product includes one or more computer instructions. When the computer program instructions are loaded and executed on a computer, the processes or functions described in the embodiments of the disclosure are generated in whole or in part. The computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices. The computer instructions may be stored in a computer readable storage medium or transmitted from a computer readable storage medium to another computer readable storage medium. For example, the computer instructions may be transmitted from a website, computer, server or data center to another website, computer, server or data center in a wired (e.g., coaxial cable, optical fiber, Digital Subscriber Line (DSL)) or wireless (e.g., infrared, wireless, microwave, etc.) way. The computer readable storage medium may be any available medium that can be stored by a computer, or a data storage device such as server or data center that is integrated with one or more available media. The available medium may be a magnetic medium (for example, floppy disk, hard disk, magnetic tape), an optical medium (for example, DVD), or a semiconductor medium (for example, Solid State Disk (SSD)), etc.
The embodiments of the disclosure can be provided as methods, systems and computer program products. Thus, the disclosure can take the form of hardware embodiments alone, software embodiments alone, or embodiments combining the software and hardware aspects. Also, the disclosure can take the form of computer program products implemented on one or more computer usable storage mediums (including but not limited to magnetic disk memories, CD-ROMs, optical memories and the like) containing computer usable program codes therein.
The disclosure is described by reference to the flow charts and/or the block diagrams of the methods, the devices (systems) and the computer program products according to the disclosure. It should be understood that each process and/or block in the flow charts and/or the block diagrams, and a combination of processes and/or blocks in the flow charts and/or the block diagrams can be implemented by the computer program instructions. These computer program instructions can be provided to a general-purpose computer, a dedicated computer, an embedded processor, or a processor of another programmable data processing device to produce a machine, and an apparatus for implementing the functions specified in one or more processes of the flow charts and/or one or more blocks of the block diagrams is produced by the instructions executed by the computer or the processor of another programmable data processing device.
These computer program instructions can also be stored in a computer readable memory which is capable of guiding the computer or another programmable data processing device to operate in a particular way, and the instructions stored in the computer readable memory produce a manufacture including the instruction apparatus which implements the functions specified in one or more processes of the flow charts and/or one or more blocks of the block diagrams.
These computer program instructions can also be loaded onto the computer or another programmable data processing device, and a series of operation steps are performed on the computer or another programmable device to produce the computer-implemented processing. Thus the instructions executed on the computer or another programmable device provide steps for implementing the functions specified in one or more processes of the flow charts and/or one or more blocks of the block diagrams.
Number | Date | Country | Kind |
---|---|---|---|
202010154339.2 | Mar 2020 | CN | national |
The present application is a National Stage of International Application No. PCT/CN2020/134596 filed Dec. 8, 2020, which claims the priority from Chinese Patent Application No. 202010154339.2, filed with the Chinese Patent Office on Mar. 7, 2020 and entitled “Random Access Channel (PRACH) Signal Transmission Method and Device”, which is hereby incorporated by reference in its entirety.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CN2020/134596 | 12/8/2020 | WO |