The disclosure relates to the field of Random Access in a communications network, and in particular to Random Access parameters.
In wireless networks, such as Long Term Evolution (LTE), a random access procedure is used to allow a User Equipment (UE) to obtain new or renewed access to the network and to obtain uplink time synchronization. The different purposes for a UE to transmit a random access in LTE are given in Table 1.
The random access procedure takes two distinct and different forms:
The contention based random access (CBRA) procedure, also termed the general random access procedure, uses any of the preamble sequences that are common to all User Equipment (UEs) and thus requires signalling to resolve any contention that may have occurred. The contention free random access (CFRA) procedure, also termed any of dedicated, non-contention based or contention less random access procedure, uses a preamble sequence that is dedicated for one UE to use.
Regardless of whether the CBRA or CFRA procedure is used, the first two steps of the RA process signalling are highlighted in
The random access procedure is used to request an initial access for a UE 1 as part of a handover, or to re-establish uplink synchronization. CBRA and CFRA are provided in, for example, a Long Term Evolution (LTE) network. For CBRA, a random access preamble signature is selected at random. In this case, it is possible that more than one UE chooses the same signature, leading to a requirement for subsequent contention resolution. This procedure is applied in all the cases involving the random access. In CFRA, a base station in a LTE Radio Access Network (RAN) 2 (an eNodeB in this example) has the option of preventing contention by allocating a dedicated signature to a UE 1, resulting in contention-free access. CFRA is faster than CBRA. This is particularly important for handover, which is time critical.
In
When a random access preamble is detected by the LTE RAN 2, the LTE RAN 2 prepares and sends a Random Access Response message (MSG2) back to the UE 1. The Random Access Response message may include a Backoff Indicator subheader. Upon receiving the Random Access Response message, if the Backoff Indicator subheader is present, the UE 1 will set the Backoff Indicator value in the UE 1 as indicated by the BI field of the Backoff Indicator subheader and Table 2, as described in 36321-a10, 3GPP; Technical specification group radio access network; evolved universal terrestrial radio access (E-UTRA); Medium Access Control (MAC); protocol specification (Release 10).
The Backoff Indicator provides a means to control the density of random access occurrences during a certain period of time. When a random access procedure fails due to, for example, too high a network load or a bad radio condition, the UE 1 selects a random backoff time according to a uniform distribution between 0 and the Backoff Indicator Value. The UE 1 delays the subsequent Random Access transmission by the backoff time before proceeding to the next round of the random access procedure. Seo, Leung “Design and Analysis of Backoff Algorithms for Random Access Channels in UMTS-LTE and IEEE 802.16 Systems”, IEEE Trans on Veh Tech, vol. 60, no. 8, October 2011 describes algorithms for Random Access Channels.
MSG3 is sent from the UE 1 to the LTE RAN 2. MSG3 indicates an identity, which is echoed in MSG4 sent from the LTE RAN 2 to the UE 1 for contention resolution. In the case where MSG3 is a RRC request, the UE 1 can, for example, indicate a priority of the initial access (for example, an emergency call can be accorded a higher priority). Alternatively, contention resolution message in MSG4 may be to reject the RRC command received in MSG3 with (extended) waiting time.
The Backoff Indicator is meant to give the UE 1 control over how long it should wait before the next random access procedure can start again in the event that the previous random access procedure fails due to, for example, high Random Access Channel (RACH) load, or a bad radio condition. An improper Backoff Indicator value can result in:
In a similar process, access class barring (ACB) is used to prevent congestion of a random access channel in a communications network. Such congestion may be caused by, for example, many devices attempting to access the network at the same time. In ACB, when a random access procedure is initiated by a UE 1, the base station broadcasts an ACB parameter to UEs that it serves. Each UE 1 also draws a pseudo-random number. If the random number is less than the ACB parameter, then the UE 1 continues with the random access procedure. If the random number is greater than the ACB parameter, then the UE 1 is barred from the random access procedure for a barring time duration (a waiting time). The same problems in setting this duration occur as described above for setting a Backoff Indicator value.
It is an object to improve the setting of values for Backoff Indicator values, waiting times and extended waiting times.
There is provided a method of dynamically allocating a time delay indicator value and/or random access parameters for sending to a mobile terminal during a Random Access procedure. The time delay indicator value indicates a time delay during which the mobile terminal is restricted from attempting a further Random Access procedure. At least one factor relating to monitored network conditions is determined. The time delay indicator value and/or other random access parameters are allocated on the basis of the factor. The time delay indicator value and/or random access parameters are then sent to the mobile terminal. In an exemplary option, this occurs at a base station. Another way to control the load on the random access channel and on the base station is to adapt ACB parameters. An advantage of this is that time delay indicator values can be dynamically adjusted depending on network conditions. For example, when network conditions are poor, the time delay indicator value may be accorded a high value to reduce the frequency of Random Access attempts from each mobile terminal. When network conditions are good, the time delay indicator value may be accorded a low value to increase the frequency of Random Access attempts from each mobile terminal.
Network conditions may be monitored by a monitoring function at the base station or at another node, and subsequently provided to the base station.
A monitoring function and a determining function as well as allocation of time delay indicators and random access parameters can be located in the base station or in other network elements.
As an option, the time delay indicator value may be selected from a Backoff Indicator value in MSG2. Another option is to select ACB parameters and send them to the mobile terminal. As yet another option, a waiting time or extended waiting time can be used in MSG4 to respond with an RRCConnectionReject to an RRC command received in MSG3. Again, this waiting time or extended waiting time can be set according to monitored network conditions.
As an option, the factor is related to any of
As an option, the base station is an eNodeB and the mobile terminal is a UE. However, it will be appreciated that other types of base station and other types of network may also be used. For example, a similar process may be used for setting ACB parameters in a WCDMA access network.
The principle behind the techniques described herein consists of using existing/new measurement results representing any kind of system load aspect in order to adjust time indicator values such as those mentioned above.
The time delay indicator value is optionally allocated on the basis of any of mapping the factor to a time delay indicator value, performing a threshold comparison of the factor against known factor values, and performing a function on the factor to obtain the time delay indicator value.
According to a second aspect, there is provided a node that is provided with a processor arranged to monitor network conditions, determine a factor based on the monitored network conditions, and determine any of a time delay indicator and parameters. A transmitter is also provided for sending the time delay indicator and/or parameters to specific mobile terminals or to all mobile terminals.
As an option, the processor may monitor network conditions and apply rules or mapping tables to determine the time delay indicator and/or random access parameters. Mapping tables and rules are optionally stored in a database that is stored at a computer readable medium in the form of a memory.
In an optional embodiment, the node is provided with a further In/out device, such as a transceiver or a transmitter and receiver, for obtaining information from other network nodes about network conditions that may be relevant in determining a suitable time delay indicator value.
An example of such as node is a base station. However, it will be appreciated that the node may be remote from a base station. In this case it may send the factor or the time delay indicator value to the base station.
In the case where the node is a base station, it is optionally provided with a receiver for receiving a Random Access preamble from one or more mobile terminals.
According to a third aspect, there is provided a computer program, comprising computer readable code means which, when run from a memory in a processor on a base station, causes the base station server to perform the method described above in the first aspect.
According to a fourth aspect, there is provided a computer program product comprising a computer readable medium and a computer program as described above in the third aspect, wherein the computer program is stored on the computer readable medium.
According to a fifth aspect, there is provided the method as described above in the first aspect, when operated on a vessel or vehicle.
According to a sixth aspect, there is provided the node as described above in the second aspect, when applied to a vessel or vehicle.
It has been realised that incorrect setting of the Backoff Indicator, ACB waiting parameters, or other time delay indicator values for radio access can lead to problems in the network.
It has been realised that by dynamically adjusting the Backoff Indicator values and adapting them to prevailing network conditions allows for much better control of the load on the random access channel and the load in the base station. Note that the Backoff Indicator value is sent in a subheader from the eNodeB 2 to the UE 1, and the UE 1 uses the Backoff Indicator value as a backoff parameter.
The description below refers to setting a value for a Backoff Indicator by way of example. However, it will be appreciated that other durations for setting a delay period during which a mobile terminal cannot attempt Random Access can be determined in a similar way. For example, where a Backoff Indicator is referred to below, it will be appreciated that similar techniques may apply to obtaining an ACB barring time for an ACB procedure or (extended) waiting time in a MSG4 carrying an RRC Reject in response to an RRC message received in MSG3. A waiting time is set during a connection request procedure when a negative response is sent to the request. Note that a waiting time is set on another Layer (Layer 3) to a Backoff Indicator (Layer 2). Again, this (extended) waiting time can be set according to monitored network conditions. The techniques described below apply to any time delay indicator value indicating a time during which a mobile terminal cannot attempt Random Access.
Certain factors can be used combined or separately as input to obtain a suitable time delay indicator value. The same set of factors can also be used to adjust, for example, access class barring which provides a more coarse and long-term effect for RA load control. Potential limiting factors can be categorized as, but are not limited to:
Note that the above is a non-exhaustive list, and other factors may be included if the are relevant to setting a suitable time delay indicator value. All of these factors may be considered broadly to be related to network conditions in some way, or any kind of rules that represent an order in which the in which the eNB 2 can serve requests.
A network node measures and monitors one or several of the abovementioned factors, and computes a time delay indicator value (such as a Backoff Indicator value and/or AC barring time and/or Waiting Time and/or Extended Waiting Time or random access parameters). The time delay indicator value is used in MSG2 and/or MSG4 shown in
Examples of ways to compute a time delay indicator value include using a mapping table, a threshold comparison or any general function taking these system measures as input to compute time delay indicator value. The computed result provides a time delay indicator value that reflects the network load, radio conditions and other network resource utilizations, as illustrated in
In the example of
S1. Network conditions are monitored, either by the eNodeB 2 or by another node that can send information about the network conditions to the eNodeB 2. Examples of the types of network condition that may be monitored are provided above.
S2. The monitored network conditions are used to determine a network factor, either in the eNodeB 2 or by another node that can send information to the eNodeB 2, which relates to the monitored network conditions.
S3. A time delay indicator value, such as a Backoff Indicator value, an AC barring time or a Waiting Time or an Extended Waiting Time or random access parameter, is determined on the basis of the network factor (or more than one network factor).
S4. The time delay indicator value or random access parameter is sent to the UE 1 as part of a Random Access procedure, typically in message MSG2 or MSG4. Alternatively, this may be sent in a dedicated UE 1 message or in a broadcast message to all UEs.
It will be appreciated that monitoring network conditions allows the time delay indicator value and random access parameters to be allocated dynamically. This makes the time delay indicator value much more suitable for use by the UE 1 depending on prevailing conditions. For example, a time delay indicator value sent to a UE 1 during times of high network congestion may differ significantly from a time delay indicator value sent to the same UE 1 during times of low network congestion.
Referring now to
The base station 2 is provided with a processor 3. A receiver 4 is provided for receiving a Random Access preamble (MSG1) from one or more UEs 1. The processor 3 determines a time delay indicator as described above and sends it to the UE using a transmitter 5. The processor 3 may monitor network conditions and apply rules or mapping tables to determine the time delay indicator. Mapping tables and rules can be stored in a database 6 that is stored at a computer readable medium in the form of a memory 7. The memory 7 may also be used to store a computer program 8 that, when executed by the processor 3, causes the processor 3 to perform the methods described above.
In an optional embodiment, the base station 2 may be provided with a further In/out device 9, such as a transceiver or a transmitter and receiver, for obtaining information from other network nodes about network conditions that may be relevant in determining a suitable time delay indicator value.
The computer program 8 may be initially stored on an external medium 10, and loaded into the memory 7 for execution by the processor 3, or executed directly from the external medium 10.
A further exemplary embodiment is illustrated in
As described above, there are many different factors that can be used to compute a suitable time delay indicator value and random access parameters, and so some examples are given below by way of illustration:
In this example, the following random access related factors will be examined and used as input for backoff indicator adjustment:
RA MSG2:
During a measurement period, the number of RA MSG2 scheduled to different UEs can be collected for each Transmission Time Interval (TTI). Two possible load metrics L1 and L2 can be defined for this factor:
L1 represents the number of scheduled RA MSG2s compared with the maximum RA MSG2 scheduling capacity, while L2 indicates the percentage of TTIs where max RA MSG2 scheduling capacity is used versus the total number of TTIs during a measurement period. During a measurement period, a performance counter can be incremented at each TTI when the number of scheduled RA MSG2 is equal to the maximum number of scheduled RA MSG2 allowed by the system. At the end of the measurement period this counter can be compared against the total number of TTIs in this measurement period and get a value for L2. These two metrics combined together give a good picture of the overall RA MSG2 load as well as the “burstiness” of RA MSG2 scheduling. When one or both metrics exceed/drop below predefined threshold values, an adjustment to the Backoff Indicator may be needed to slow down or speed up the number of UEs attempting random access.
Preamble Used:
The number of preambles can be defined as Np and are used during a measurement period to indicate RA resource utilization. When Np exceeds a threshold, an action may be needed, but typically this factor should be combined with e.g. RA MSG2 or other factors instead of being used alone for Backoff Indicator adjustment.
RA Success Rate:
RA success rate SRA can be defined as the number of successful random access versus the total number of RA attempts. A low RA success rate can either be caused by too many UEs trying to attempt random access at the same time, or a number of UEs with bad radio conditions attempting constantly without a success. The RA success rate combined with RA MSG2 can distinguish network load situation from bad radio condition, e.g. high RA MSG2 utilization plus low RA success rate indicates high RA load, while low RA MSG2 utilization plus low RA success rate indicates bad radio conditions for a number of UEs.
Measure results from the abovementioned factors can be calibrated further by e.g. weight based calculation, such as:
The output of the calibration can be used as input for adaptive Backoff Indicator adjustment.
As admission control has the objective of keeping the system load at a level that the system can handle, the behaviour of admission control may also be used as an indicator that shows if the system could benefit from decreasing the load on the random access channel.
For instance, if a very large percentage of initial access attempts are blocked by admission control due to lack of system resources it may be wise to increase the time delay indicator value to reduce the load at an even earlier stage.
Another application is to relate the time delay indicator value to eNB-initiated release frequency (the frequency with which the eNB 2 releases a UE), since it is likely that these released UEs can be expected to attempt RA a further time.
Referring now to
In order to implement the adaptive Backoff Indicator and ACB barring parameters and Waiting Time and Extended Waiting Time adjustments, certain factors must be considered. Some impacting factors for adaptive Backoff Indicator and ACB barring parameters and Waiting Time and Extended Waiting Time adjustment are based on existing measurements, such as RA success rate, number of preambles used, resources used for SRBs, etc, while others need new performance counters to collect the necessary information. From an implementation perspective, it is a matter of using the existing/new measurement results representing any kind of system load aspect in a new way, i.e. to adjust Backoff Indicator. After the Backoff Indicator value is changed, it will be included in the next RA MSG2.
Adaptive Backoff Indicator adjustment provides a means to adjust the Backoff Indicator value based on network load and radio condition, which in turn controls the resource request behaviour. It smoothes out the load on the resource by instructing a mobile terminal such as a UE to wait for a longer time before making further requests during high load, while when the situation improves it can encourage requests to occur with shorter time interval, which improves and optimizes network resource utilization.
It will be appreciated by the person of skill in the art that various modifications may be made to the above described embodiment without departing from the scope of the present disclosure. For example, the functions of the network node are described as being embodied at a single node, but it will be appreciated that different functions may be provided at different network nodes. Furthermore, the description above assumes a UE and an eNB are the mobile terminal and the base station, but it will be appreciated that the same techniques can be used in any type of communications access network.
The following acronyms have been used in the above description:
ACB access class barring
CBRA contention based random access
CFRA contention free random access
DL downlink
DRB Data Radio Bearers
eNB eNodeB
LTE Long Term Evolution
PRACH Physical Random Access Channel
RA Random Access
RACH Random Access Channel
RAN Radio Access Network
RRC Radio resource Control
SRB Signalling Radio Bearer
TTI Transmission Time Interval
UE User Equipment
UL uplink
WCDMA Wideband Code Division Multiple Access
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2012/072800 | 11/15/2012 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
61660067 | Jun 2012 | US |