Examples of several of the various embodiments of the present disclosure are described herein with reference to the drawings.
In the present disclosure, various embodiments are presented as examples of how the disclosed techniques may be implemented and/or how the disclosed techniques may be practiced in environments and scenarios. It will be apparent to persons skilled in the relevant art that various changes in form and detail can be made therein without departing from the scope. In fact, after reading the description, it will be apparent to one skilled in the relevant art how to implement alternative embodiments. The present embodiments should not be limited by any of the described exemplary embodiments. The embodiments of the present disclosure will be described with reference to the accompanying drawings. Limitations, features, and/or elements from the disclosed example embodiments may be combined to create further embodiments within the scope of the disclosure. Any figures which highlight the functionality and advantages, are presented for example purposes only. The disclosed architecture is sufficiently flexible and configurable, such that it may be utilized in ways other than that shown. For example, the actions listed in any flowchart may be re-ordered or only optionally used in some embodiments.
Embodiments may be configured to operate as needed. The disclosed mechanism may be performed when certain criteria are met, for example, in a wireless device, a base station, a radio environment, a network, a combination of the above, and/or the like. Example criteria may be based, at least in part, on for example, wireless device or network node configurations, traffic load, initial system set up, packet sizes, traffic characteristics, a combination of the above, and/or the like. When the one or more criteria are met, various example embodiments may be applied. Therefore, it may be possible to implement example embodiments that selectively implement disclosed protocols.
A base station may communicate with a mix of wireless devices. Wireless devices and/or base stations may support multiple technologies, and/or multiple releases of the same technology. Wireless devices may have some specific capability(ies) depending on wireless device category and/or capability(ies). When this disclosure refers to a base station communicating with a plurality of wireless devices, this disclosure may refer to a subset of the total wireless devices in a coverage area. This disclosure may refer to, for example, a plurality of wireless devices of a given LTE or 5G release with a given capability and in a given sector of the base station. The plurality of wireless devices in this disclosure may refer to a selected plurality of wireless devices, and/or a subset of total wireless devices in a coverage area which perform according to disclosed methods, and/or the like. There may be a plurality of base stations or a plurality of wireless devices in a coverage area that may not comply with the disclosed methods, for example, those wireless devices or base stations may perform based on older releases of LTE or 5G technology.
In this disclosure, “a” and “an” and similar phrases are to be interpreted as “at least one” and “one or more.” Similarly, any term that ends with the suffix “(s)” is to be interpreted as “at least one” and “one or more.” In this disclosure, the term “may” is to be interpreted as “may, for example.” In other words, the term “may” is indicative that the phrase following the term “may” is an example of one of a multitude of suitable possibilities that may, or may not, be employed by one or more of the various embodiments. The terms “comprises” and “consists of”, as used herein, enumerate one or more components of the element being described. The term “comprises” is interchangeable with “includes” and does not exclude unenumerated components from being included in the element being described. By contrast, “consists of” provides a complete enumeration of the one or more components of the element being described. The term “based on”, as used herein, should be interpreted as “based at least in part on” rather than, for example, “based solely on”. The term “and/or” as used herein represents any possible combination of enumerated elements. For example, “A, B, and/or C” may represent A; B; C; A and B; A and C; B and C; or A, B, and C.
If A and B are sets and every element of A is an element of B, A is called a subset of B. In this specification, only non-empty sets and subsets are considered. For example, possible subsets of B={cell1, cell2} are: {cell1}, {cell2}, and {cell1, cell2}. The phrase “based on” (or equally “based at least on”) is indicative that the phrase following the term “based on” is an example of one of a multitude of suitable possibilities that may, or may not, be employed to one or more of the various embodiments. The phrase “in response to” (or equally “in response at least to”) is indicative that the phrase following the phrase “in response to” is an example of one of a multitude of suitable possibilities that may, or may not, be employed to one or more of the various embodiments. The phrase “depending on” (or equally “depending at least to”) is indicative that the phrase following the phrase “depending on” is an example of one of a multitude of suitable possibilities that may, or may not, be employed to one or more of the various embodiments. The phrase “employing/using” (or equally “employing/using at least”) is indicative that the phrase following the phrase “employing/using” is an example of one of a multitude of suitable possibilities that may, or may not, be employed to one or more of the various embodiments.
The term configured may relate to the capacity of a device whether the device is in an operational or non-operational state. Configured may refer to specific settings in a device that effect the operational characteristics of the device whether the device is in an operational or non-operational state. In other words, the hardware, software, firmware, registers, memory values, and/or the like may be “configured” within a device, whether the device is in an operational or nonoperational state, to provide the device with specific characteristics. Terms such as “a control message to cause in a device” may mean that a control message has parameters that may be used to configure specific characteristics or may be used to implement certain actions in the device, whether the device is in an operational or non-operational state.
In this disclosure, parameters (or equally called, fields, or Information elements: IEs) may comprise one or more information objects, and an information object may comprise one or more other objects. For example, if parameter (IE) N comprises parameter (IE) M, and parameter (IE) M comprises parameter (IE) K, and parameter (IE) K comprises parameter (information element) J. Then, for example, N comprises K, and N comprises J. In an example embodiment, when one or more messages comprise a plurality of parameters, it implies that a parameter in the plurality of parameters is in at least one of the one or more messages, but does not have to be in each of the one or more messages.
Many features presented are described as being optional through the use of “may” or the use of parentheses. For the sake of brevity and legibility, the present disclosure does not explicitly recite each and every permutation that may be obtained by choosing from the set of optional features. The present disclosure is to be interpreted as explicitly disclosing all such permutations. For example, a system described as having three optional features may be embodied in seven ways, namely with just one of the three possible features, with any two of the three possible features or with three of the three possible features.
Many of the elements described in the disclosed embodiments may be implemented as modules. A module is defined here as an element that performs a defined function and has a defined interface to other elements. The modules described in this disclosure may be implemented in hardware, software in combination with hardware, firmware, wetware (e.g. hardware with a biological element) or a combination thereof, which may be behaviorally equivalent. For example, modules may be implemented as a software routine written in a computer language configured to be executed by a hardware machine (such as C, C++, Fortran, Java, Basic, MATLAB or the like) or a modeling/simulation program such as Simulink, Stateflow, GNU Octave, or LabVIEWMathScript. It may be possible to implement modules using physical hardware that incorporates discrete or programmable analog, digital and/or quantum hardware. Examples of programmable hardware comprise: computers, microcontrollers, microprocessors, application-specific integrated circuits (ASICs); field programmable gate arrays (FPGAs); and complex programmable logic devices (CPLDs). Computers, microcontrollers and microprocessors are programmed using languages such as assembly, C, C++ or the like. FPGAs, ASICs and CPLDs are often programmed using hardware description languages (HDL) such as VHSIC hardware description language (VHDL) or Verilog that configure connections between internal hardware modules with lesser functionality on a programmable device. The mentioned technologies are often used in combination to achieve the result of a functional module.
The CN 102 may provide the wireless device 106 with an interface to one or more data networks (DNs), such as public DNS (e.g., the Internet), private DNs, and/or intra-operator DNs. As part of the interface functionality, the CN 102 may set up end-to-end connections between the wireless device 106 and the one or more DNs, authenticate the wireless device 106, and provide charging functionality.
The RAN 104 may connect the CN 102 to the wireless device 106 through radio communications over an air interface. As part of the radio communications, the RAN 104 may provide scheduling, radio resource management, and retransmission protocols. The communication direction from the RAN 104 to the wireless device 106 over the air interface is known as the downlink and the communication direction from the wireless device 106 to the RAN 104 over the air interface is known as the uplink. Downlink transmissions may be separated from uplink transmissions using frequency division duplexing (FDD), time-division duplexing (TDD), and/or some combination of the two duplexing techniques.
The term wireless device may be used throughout this disclosure to refer to and encompass any mobile device or fixed (non-mobile) device for which wireless communication is needed or usable. For example, a wireless device may be a telephone, smart phone, tablet, computer, laptop, sensor, meter, wearable device, Internet of Things (IOT) device, vehicle road side unit (RSU), relay node, automobile, and/or any combination thereof. The term wireless device encompasses other terminology, including user equipment (UE), user terminal (UT), access terminal (AT), mobile station, handset, wireless transmit and receive unit (WTRU), and/or wireless communication device.
The RAN 104 may include one or more base stations (not shown). The term base station may be used throughout this disclosure to refer to and encompass a Node B (associated with UMTS and/or 3G standards), an Evolved Node B (CNB, associated with E-UTRA and/or 4G standards), a remote radio head (RRH), a baseband processing unit coupled to one or more RRHs, a repeater node or relay node used to extend the coverage area of a donor node, a Next Generation Evolved Node B (ng-eNB), a Generation Node B (gNB, associated with NR and/or 5G standards), an access point (AP, associated with, for example, WiFi or any other suitable wireless communication standard), and/or any combination thereof. A base station may comprise at least one gNB Central Unit (gNB-CU) and at least one a gNB Distributed Unit (gNB-DU).
A base station included in the RAN 104 may include one or more sets of antennas for communicating with the wireless device 106 over the air interface. For example, one or more of the base stations may include three sets of antennas to respectively control three cells (or sectors). The size of a cell may be determined by a range at which a receiver (e.g., a base station receiver) can successfully receive the transmissions from a transmitter (e.g., a wireless device transmitter) operating in the cell. Together, the cells of the base stations may provide radio coverage to the wireless device 106 over a wide geographic area to support wireless device mobility.
In addition to three-sector sites, other implementations of base stations are possible. For example, one or more of the base stations in the RAN 104 may be implemented as a sectored site with more or less than three sectors. One or more of the base stations in the RAN 104 may be implemented as an access point, as a baseband processing unit coupled to several remote radio heads (RRHs), and/or as a repeater or relay node used to extend the coverage area of a donor node. A baseband processing unit coupled to RRHs may be part of a centralized or cloud RAN architecture, where the baseband processing unit may be either centralized in a pool of baseband processing units or virtualized. A repeater node may amplify and rebroadcast a radio signal received from a donor node. A relay node may perform the same/similar functions as a repeater node but may decode the radio signal received from the donor node to remove noise before amplifying and rebroadcasting the radio signal.
The RAN 104 may be deployed as a homogenous network of macrocell base stations that have similar antenna patterns and similar high-level transmit powers. The RAN 104 may be deployed as a heterogeneous network. In heterogeneous networks, small cell base stations may be used to provide small coverage areas, for example, coverage areas that overlap with the comparatively larger coverage areas provided by macrocell base stations. The small coverage areas may be provided in areas with high data traffic (or so-called “hotspots”) or in areas with weak macrocell coverage. Examples of small cell base stations include, in order of decreasing coverage area, microcell base stations, picocell base stations, and femtocell base stations or home base stations.
The Third-Generation Partnership Project (3GPP) was formed in 1998 to provide global standardization of specifications for mobile communication networks similar to the mobile communication network 100 in
Embodiments of the present disclosure are described with reference to the RAN of a 3GPP 5G network, referred to as next-generation RAN (NG-RAN). Embodiments may be applicable to RANs of other mobile communication networks, such as the RAN 104 in
The 5G-CN 152 provides the UEs 156 with an interface to one or more DNs, such as public DNS (e.g., the Internet), private DNs, and/or intra-operator DNs. As part of the interface functionality, the 5G-CN 152 may set up end-to-end connections between the UEs 156 and the one or more DNs, authenticate the UEs 156, and provide charging functionality. Compared to the CN of a 3GPP 4G network, the basis of the 5G-CN 152 may be a service-based architecture. This means that the architecture of the nodes making up the 5G-CN 152 may be defined as network functions that offer services via interfaces to other network functions. The network functions of the 5G-CN 152 may be implemented in several ways, including as network elements on dedicated or shared hardware, as software instances running on dedicated or shared hardware, or as virtualized functions instantiated on a platform (e.g., a cloud-based platform).
As illustrated in
The AMF 158A may perform functions such as Non-Access Stratum (NAS) signaling termination, NAS signaling security, Access Stratum (AS) security control, inter-CN node signaling for mobility between 3GPP access networks, idle mode UE reachability (e.g., control and execution of paging retransmission), registration area management, intra-system and inter-system mobility support, access authentication, access authorization including checking of roaming rights, mobility management control (subscription and policies), network slicing support, and/or session management function (SMF) selection. NAS may refer to the functionality operating between a CN and a UE, and AS may refer to the functionality operating between the UE and a RAN.
The 5G-CN 152 may include one or more additional network functions that are not shown in
The NG-RAN 154 may connect the 5G-CN 152 to the UEs 156 through radio communications over the air interface. The NG-RAN 154 may include one or more gNBs, illustrated as gNB 160A and gNB 160B (collectively gNBs 160) and/or one or more ng-eNBs, illustrated as ng-eNB 162A and ng-eNB 162B (collectively ng-eNBs 162). The gNBs 160 and ng-eNBs 162 may be more generically referred to as base stations. The gNBs 160 and ng-eNBs 162 may include one or more sets of antennas for communicating with the UEs 156 over an air interface. For example, one or more of the gNBs 160 and/or one or more of the ng-eNBs 162 may include three sets of antennas to respectively control three cells (or sectors). Together, the cells of the gNBs 160 and the ng-eNBs 162 may provide radio coverage to the UEs 156 over a wide geographic area to support UE mobility.
As shown in
The gNBs 160 and/or the ng-eNBs 162 may be connected to one or more AMF/UPF functions of the 5G-CN 152, such as the AMF/UPF 158, by means of one or more NG interfaces. For example, the gNB 160A may be connected to the UPF 158B of the AMF/UPF 158 by means of an NG-User plane (NG-U) interface. The NG-U interface may provide delivery (e.g., non-guaranteed delivery) of user plane PDUs between the gNB 160A and the UPF 158B. The gNB 160A may be connected to the AMF 158A by means of an NG-Control plane (NG-C) interface. The NG-C interface may provide, for example, NG interface management, UE context management, UE mobility management, transport of NAS messages, paging, PDU session management, and configuration transfer and/or warning message transmission.
The gNBs 160 may provide NR user plane and control plane protocol terminations towards the UEs 156 over the Uu interface. For example, the gNB 160A may provide NR user plane and control plane protocol terminations toward the UE 156A over a Uu interface associated with a first protocol stack. The ng-eNBs 162 may provide Evolved UMTS Terrestrial Radio Access (E-UTRA) user plane and control plane protocol terminations towards the UEs 156 over a Uu interface, where E-UTRA refers to the 3GPP 4G radio-access technology. For example, the ng-eNB 162B may provide E-UTRA user plane and control plane protocol terminations towards the UE 156B over a Uu interface associated with a second protocol stack.
The 5G-CN 152 was described as being configured to handle NR and 4G radio accesses. It will be appreciated by one of ordinary skill in the art that it may be possible for NR to connect to a 4G core network in a mode known as “non-standalone operation.” In non-standalone operation, a 4G core network is used to provide (or at least support) control-plane functionality (e.g., initial access, mobility, and paging). Although only one AMF/UPF 158 is shown in
As discussed, an interface (e.g., Uu, Xn, and NG interfaces) between the network elements in
The PDCPs 214 and 224 may perform header compression/decompression to reduce the amount of data that needs to be transmitted over the air interface, ciphering/deciphering to prevent unauthorized decoding of data transmitted over the air interface, and integrity protection (to ensure control messages originate from intended sources. The PDCPs 214 and 224 may perform retransmissions of undelivered packets, in-sequence delivery and reordering of packets, and removal of packets received in duplicate due to, for example, an intra-gNB handover. The PDCPs 214 and 224 may perform packet duplication to improve the likelihood of the packet being received and, at the receiver, remove any duplicate packets. Packet duplication may be useful for services that require high reliability.
Although not shown in
The RLCs 213 and 223 may perform segmentation, retransmission through Automatic Repeat Request (ARQ), and removal of duplicate data units received from MACs 212 and 222, respectively. The RLCs 213 and 223 may support three transmission modes: transparent mode (TM); unacknowledged mode (UM); and acknowledged mode (AM). Based on the transmission mode an RLC is operating, the RLC may perform one or more of the noted functions. The RLC configuration may be per logical channel with no dependency on numerologies and/or Transmission Time Interval (TTI) durations. As shown in
The MACs 212 and 222 may perform multiplexing/demultiplexing of logical channels and/or mapping between logical channels and transport channels. The multiplexing/demultiplexing may include multiplexing/demultiplexing of data units, belonging to the one or more logical channels, into/from Transport Blocks (TBs) delivered to/from the PHYs 211 and 221. The MAC 222 may be configured to perform scheduling, scheduling information reporting, and priority handling between UEs by means of dynamic scheduling. Scheduling may be performed in the gNB 220 (at the MAC 222) for downlink and uplink. The MACs 212 and 222 may be configured to perform error correction through Hybrid Automatic Repeat Request (HARQ) (e.g., one HARQ entity per carrier in case of Carrier Aggregation (CA)), priority handling between logical channels of the UE 210 by means of logical channel prioritization, and/or padding. The MACs 212 and 222 may support one or more numerologies and/or transmission timings. In an example, mapping restrictions in a logical channel prioritization may control which numerology and/or transmission timing a logical channel may use. As shown in
The PHYs 211 and 221 may perform mapping of transport channels to physical channels and digital and analog signal processing functions for sending and receiving information over the air interface. These digital and analog signal processing functions may include, for example, coding/decoding and modulation/demodulation. The PHYs 211 and 221 may perform multi-antenna mapping. As shown in
The downlink data flow of
The remaining protocol layers in
Before describing the NR control plane protocol stack, logical channels, transport channels, and physical channels are first described as well as a mapping between the channel types. One or more of the channels may be used to carry out functions associated with the NR control plane protocol stack described later below.
Transport channels are used between the MAC and PHY layers and may be defined by how the information they carry is transmitted over the air interface. The set of transport channels defined by NR include, for example:
The PHY may use physical channels to pass information between processing levels of the PHY. A physical channel may have an associated set of time-frequency resources for carrying the information of one or more transport channels. The PHY may generate control information to support the low-level operation of the PHY and provide the control information to the lower levels of the PHY via physical control channels, known as L1/L2 control channels. The set of physical channels and physical control channels defined by NR include, for example:
Similar to the physical control channels, the physical layer generates physical signals to support the low-level operation of the physical layer. As shown in
The NAS protocols 217 and 237 may provide control plane functionality between the UE 210 and the AMF 230 (e.g., the AMF 158A) or, more generally, between the UE 210 and the CN. The NAS protocols 217 and 237 may provide control plane functionality between the UE 210 and the AMF 230 via signaling messages, referred to as NAS messages. There is no direct path between the UE 210 and the AMF 230 through which the NAS messages can be transported. The NAS messages may be transported using the AS of the Uu and NG interfaces. NAS protocols 217 and 237 may provide control plane functionality such as authentication, security, connection setup, mobility management, and session management.
The RRCs 216 and 226 may provide control plane functionality between the UE 210 and the gNB 220 or, more generally, between the UE 210 and the RAN. The RRCs 216 and 226 may provide control plane functionality between the UE 210 and the gNB 220 via signaling messages, referred to as RRC messages. RRC messages may be transmitted between the UE 210 and the RAN using signaling radio bearers and the same/similar PDCP, RLC, MAC, and PHY protocol layers. The MAC may multiplex control-plane and user-plane data into the same transport block (TB). The RRCs 216 and 226 may provide control plane functionality such as: broadcast of system information related to AS and NAS; paging initiated by the CN or the RAN; establishment, maintenance and release of an RRC connection between the UE 210 and the RAN; security functions including key management; establishment, configuration, maintenance and release of signaling radio bearers and data radio bearers; mobility functions; QoS management functions; the UE measurement reporting and control of the reporting; detection of and recovery from radio link failure (RLF); and/or NAS message transfer. As part of establishing an RRC connection, RRCs 216 and 226 may establish an RRC context, which may involve configuring parameters for communication between the UE 210 and the RAN.
In RRC connected 602, the UE has an established RRC context and may have at least one RRC connection with a base station. The base station may be similar to one of the one or more base stations included in the RAN 104 depicted in
In RRC idle 604, an RRC context may not be established for the UE. In RRC idle 604, the UE may not have an RRC connection with the base station. While in RRC idle 604, the UE may be in a sleep state for the majority of the time (e.g., to conserve battery power). The UE may wake up periodically (e.g., once in every discontinuous reception cycle) to monitor for paging messages from the RAN. Mobility of the UE may be managed by the UE through a procedure known as cell reselection. The RRC state may transition from RRC idle 604 to RRC connected 602 through a connection establishment procedure 612, which may involve a random access procedure as discussed in greater detail below.
In RRC inactive 606, the RRC context previously established is maintained in the UE and the base station. This allows for a fast transition to RRC connected 602 with reduced signaling overhead as compared to the transition from RRC idle 604 to RRC connected 602. While in RRC inactive 606, the UE may be in a sleep state and mobility of the UE may be managed by the UE through cell reselection. The RRC state may transition from RRC inactive 606 to RRC connected 602 through a connection resume procedure 614 or to RRC idle 604 though a connection release procedure 616 that may be the same as or similar to connection release procedure 608.
An RRC state may be associated with a mobility management mechanism. In RRC idle 604 and RRC inactive 606, mobility is managed by the UE through cell reselection. The purpose of mobility management in RRC idle 604 and RRC inactive 606 is to allow the network to be able to notify the UE of an event via a paging message without having to broadcast the paging message over the entire mobile communications network. The mobility management mechanism used in RRC idle 604 and RRC inactive 606 may allow the network to track the UE on a cell-group level so that the paging message may be broadcast over the cells of the cell group that the UE currently resides within instead of the entire mobile communication network. The mobility management mechanisms for RRC idle 604 and RRC inactive 606 track the UE on a cell-group level. They may do so using different granularities of grouping. For example, there may be three levels of cell-grouping granularity: individual cells; cells within a RAN area identified by a RAN area identifier (RAI); and cells within a group of RAN areas, referred to as a tracking area and identified by a tracking area identifier (TAI).
Tracking areas may be used to track the UE at the CN level. The CN (e.g., the CN 102 or the 5G-CN 152) may provide the UE with a list of TAIs associated with a UE registration area. If the UE moves, through cell reselection, to a cell associated with a TAI not included in the list of TAIs associated with the UE registration area, the UE may perform a registration update with the CN to allow the CN to update the UE's location and provide the UE with a new the UE registration area.
RAN areas may be used to track the UE at the RAN level. For a UE in RRC inactive 606 state, the UE may be assigned a RAN notification area. A RAN notification area may comprise one or more cell identities, a list of RAIs, or a list of TAIs. In an example, a base station may belong to one or more RAN notification areas. In an example, a cell may belong to one or more RAN notification areas. If the UE moves, through cell reselection, to a cell not included in the RAN notification area assigned to the UE, the UE may perform a notification area update with the RAN to update the UE's RAN notification area.
A base station storing an RRC context for a UE or a last serving base station of the UE may be referred to as an anchor base station. An anchor base station may maintain an RRC context for the UE at least during a period of time that the UE stays in a RAN notification area of the anchor base station and/or during a period of time that the UE stays in RRC inactive 606.
A gNB, such as gNBs 160 in
In NR, the physical signals and physical channels (discussed with respect to
The duration of a slot may depend on the numerology used for the OFDM symbols of the slot. In NR, a flexible numerology is supported to accommodate different cell deployments (e.g., cells with carrier frequencies below 1 GHz up to cells with carrier frequencies in the mm-wave range). A numerology may be defined in terms of subcarrier spacing and cyclic prefix duration. For a numerology in NR, subcarrier spacings may be scaled up by powers of two from a baseline subcarrier spacing of 15 kHz, and cyclic prefix durations may be scaled down by powers of two from a baseline cyclic prefix duration of 4.7 us. For example, NR defines numerologies with the following subcarrier spacing/cyclic prefix duration combinations: 15 kHz/4.7 us; 30 kHz/2.3 us; 60 kHz/1.2 us; 120 kHz/0.59 us; and 240 kHz/0.29 us.
A slot may have a fixed number of OFDM symbols (e.g., 14 OFDM symbols). A numerology with a higher subcarrier spacing has a shorter slot duration and, correspondingly, more slots per subframe.
NR may support wide carrier bandwidths (e.g., up to 400 MHZ for a subcarrier spacing of 120 kHz). Not all UEs may be able to receive the full carrier bandwidth (e.g., due to hardware limitations). Also, receiving the full carrier bandwidth may be prohibitive in terms of UE power consumption. In an example, to reduce power consumption and/or for other purposes, a UE may adapt the size of the UE's receive bandwidth based on the amount of traffic the UE is scheduled to receive. This is referred to as bandwidth adaptation.
NR defines bandwidth parts (BWPs) to support UEs not capable of receiving the full carrier bandwidth and to support bandwidth adaptation. In an example, a BWP may be defined by a subset of contiguous RBs on a carrier. A UE may be configured (e.g., via RRC layer) with one or more downlink BWPs and one or more uplink BWPs per serving cell (e.g., up to four downlink BWPs and up to four uplink BWPs per serving cell). At a given time, one or more of the configured BWPs for a serving cell may be active. These one or more BWPs may be referred to as active BWPs of the serving cell. When a serving cell is configured with a secondary uplink carrier, the serving cell may have one or more first active BWPs in the uplink carrier and one or more second active BWPs in the secondary uplink carrier.
For unpaired spectra, a downlink BWP from a set of configured downlink BWPs may be linked with an uplink BWP from a set of configured uplink BWPs if a downlink BWP index of the downlink BWP and an uplink BWP index of the uplink BWP are the same. For unpaired spectra, a UE may expect that a center frequency for a downlink BWP is the same as a center frequency for an uplink BWP.
For a downlink BWP in a set of configured downlink BWPs on a primary cell (PCell), a base station may configure a UE with one or more control resource sets (CORESETs) for at least one search space. A search space is a set of locations in the time and frequency domains where the UE may find control information. The search space may be a UE-specific search space or a common search space (potentially usable by a plurality of UEs). For example, a base station may configure a UE with a common search space, on a PCell or on a primary secondary cell (PSCell), in an active downlink BWP.
For an uplink BWP in a set of configured uplink BWPs, a BS may configure a UE with one or more resource sets for one or more PUCCH transmissions. A UE may receive downlink receptions (e.g., PDCCH or PDSCH) in a downlink BWP according to a configured numerology (e.g., subcarrier spacing and cyclic prefix duration) for the downlink BWP. The UE may transmit uplink transmissions (e.g., PUCCH or PUSCH) in an uplink BWP according to a configured numerology (e.g., subcarrier spacing and cyclic prefix length for the uplink BWP).
One or more BWP indicator fields may be provided in Downlink Control Information (DCI). A value of a BWP indicator field may indicate which BWP in a set of configured BWPs is an active downlink BWP for one or more downlink receptions. The value of the one or more BWP indicator fields may indicate an active uplink BWP for one or more uplink transmissions.
A base station may semi-statically configure a UE with a default downlink BWP within a set of configured downlink BWPs associated with a PCell. If the base station does not provide the default downlink BWP to the UE, the default downlink BWP may be an initial active downlink BWP. The UE may determine which BWP is the initial active downlink BWP based on a CORESET configuration obtained using the PBCH.
A base station may configure a UE with a BWP inactivity timer value for a PCell. The UE may start or restart a BWP inactivity timer at any appropriate time. For example, the UE may start or restart the BWP inactivity timer (a) when the UE detects a DCI indicating an active downlink BWP other than a default downlink BWP for a paired spectra operation; or (b) when a UE detects a DCI indicating an active downlink BWP or active uplink BWP other than a default downlink BWP or uplink BWP for an unpaired spectra operation. If the UE does not detect DCI during an interval of time (e.g., 1 ms or 0.5 ms), the UE may run the BWP inactivity timer toward expiration (for example, increment from zero to the BWP inactivity timer value, or decrement from the BWP inactivity timer value to zero). When the BWP inactivity timer expires, the UE may switch from the active downlink BWP to the default downlink BWP.
In an example, a base station may semi-statically configure a UE with one or more BWPs. A UE may switch an active BWP from a first BWP to a second BWP in response to receiving a DCI indicating the second BWP as an active BWP and/or in response to an expiry of the BWP inactivity timer (e.g., if the second BWP is the default BWP).
Downlink and uplink BWP switching (where BWP switching refers to switching from a currently active BWP to a not currently active BWP) may be performed independently in paired spectra. In unpaired spectra, downlink and uplink BWP switching may be performed simultaneously. Switching between configured BWPs may occur based on RRC signaling, DCI, expiration of a BWP inactivity timer, and/or an initiation of random access.
If a UE is configured for a secondary cell with a default downlink BWP in a set of configured downlink BWPs and a timer value, UE procedures for switching BWPs on a secondary cell may be the same/similar as those on a primary cell. For example, the UE may use the timer value and the default downlink BWP for the secondary cell in the same/similar manner as the UE would use these values for a primary cell.
To provide for greater data rates, two or more carriers can be aggregated and simultaneously transmitted to/from the same UE using carrier aggregation (CA). The aggregated carriers in CA may be referred to as component carriers (CCs). When CA is used, there are a number of serving cells for the UE, one for a CC. The CCs may have three configurations in the frequency domain.
In an example, up to 32 CCs may be aggregated. The aggregated CCs may have the same or different bandwidths, subcarrier spacing, and/or duplexing schemes (TDD or FDD). A serving cell for a UE using CA may have a downlink CC. For FDD, one or more uplink CCs may be optionally configured for a serving cell. The ability to aggregate more downlink carriers than uplink carriers may be useful, for example, when the UE has more data traffic in the downlink than in the uplink.
When CA is used, one of the aggregated cells for a UE may be referred to as a primary cell (PCell). The PCell may be the serving cell that the UE initially connects to at RRC connection establishment, reestablishment, and/or handover. The PCell may provide the UE with NAS mobility information and the security input. UEs may have different PCells. In the downlink, the carrier corresponding to the PCell may be referred to as the downlink primary CC (DL PCC). In the uplink, the carrier corresponding to the PCell may be referred to as the uplink primary CC (UL PCC). The other aggregated cells for the UE may be referred to as secondary cells (SCells). In an example, the SCells may be configured after the PCell is configured for the UE. For example, an SCell may be configured through an RRC Connection Reconfiguration procedure. In the downlink, the carrier corresponding to an SCell may be referred to as a downlink secondary CC (DL SCC). In the uplink, the carrier corresponding to the SCell may be referred to as the uplink secondary CC (UL SCC).
Configured SCells for a UE may be activated and deactivated based on, for example, traffic and channel conditions. Deactivation of an SCell may mean that PDCCH and PDSCH reception on the SCell is stopped and PUSCH, SRS, and CQI transmissions on the SCell are stopped. Configured SCells may be activated and deactivated using a MAC CE with respect to
Downlink control information, such as scheduling assignments and scheduling grants, for a cell may be transmitted on the cell corresponding to the assignments and grants, which is known as self-scheduling. The DCI for the cell may be transmitted on another cell, which is known as cross-carrier scheduling. Uplink control information (e.g., HARQ acknowledgments and channel state feedback, such as CQI, PMI, and/or RI) for aggregated cells may be transmitted on the PUCCH of the PCell. For a larger number of aggregated downlink CCs, the PUCCH of the PCell may become overloaded. Cells may be divided into multiple PUCCH groups.
A cell, comprising a downlink carrier and optionally an uplink carrier, may be assigned with a physical cell ID and a cell index. The physical cell ID or the cell index may identify a downlink carrier and/or an uplink carrier of the cell, for example, depending on the context in which the physical cell ID is used. A physical cell ID may be determined using a synchronization signal transmitted on a downlink component carrier. A cell index may be determined using RRC messages. In the disclosure, a physical cell ID may be referred to as a carrier ID, and a cell index may be referred to as a carrier index. For example, when the disclosure refers to a first physical cell ID for a first downlink carrier, the disclosure may mean the first physical cell ID is for a cell comprising the first downlink carrier. The same/similar concept may apply to, for example, a carrier activation. When the disclosure indicates that a first carrier is activated, the specification may mean that a cell comprising the first carrier is activated.
In CA, a multi-carrier nature of a PHY may be exposed to a MAC. In an example, a HARQ entity may operate on a serving cell. A transport block may be generated per assignment/grant per serving cell. A transport block and potential HARQ retransmissions of the transport block may be mapped to a serving cell.
In the downlink, a base station may transmit (e.g., unicast, multicast, and/or broadcast) one or more Reference Signals (RSs) to a UE (e.g., PSS, SSS, CSI-RS, DMRS, and/or PT-RS, as shown in
The SS/PBCH block may span one or more OFDM symbols in the time domain (e.g., 4 OFDM symbols, as shown in the example of
The location of the SS/PBCH block in the time and frequency domains may not be known to the UE (e.g., if the UE is searching for the cell). To find and select the cell, the UE may monitor a carrier for the PSS. For example, the UE may monitor a frequency location within the carrier. If the PSS is not found after a certain duration (e.g., 20 ms), the UE may search for the PSS at a different frequency location within the carrier, as indicated by a synchronization raster. If the PSS is found at a location in the time and frequency domains, the UE may determine, based on a known structure of the SS/PBCH block, the locations of the SSS and the PBCH, respectively. The SS/PBCH block may be a cell-defining SS block (CD-SSB).
In an example, a primary cell may be associated with a CD-SSB. The CD-SSB may be located on a synchronization raster. In an example, a cell selection/search and/or reselection may be based on the CD-SSB.
The SS/PBCH block may be used by the UE to determine one or more parameters of the cell. For example, the UE may determine a physical cell identifier (PCI) of the cell based on the sequences of the PSS and the SSS, respectively. The UE may determine a location of a frame boundary of the cell based on the location of the SS/PBCH block. For example, the SS/PBCH block may indicate that it has been transmitted in accordance with a transmission pattern, wherein a SS/PBCH block in the transmission pattern is a known distance from the frame boundary.
The PBCH may use a QPSK modulation and may use forward error correction (FEC). The FEC may use polar coding. One or more symbols spanned by the PBCH may carry one or more DMRSs for demodulation of the PBCH. The PBCH may include an indication of a current system frame number (SFN) of the cell and/or a SS/PBCH block timing index. These parameters may facilitate time synchronization of the UE to the base station. The PBCH may include a master information block (MIB) used to provide the UE with one or more parameters. The MIB may be used by the UE to locate remaining minimum system information (RMSI) associated with the cell. The RMSI may include a System Information Block Type 1 (SIB1). The SIB1 may contain information needed by the UE to access the cell. The UE may use one or more parameters of the MIB to monitor PDCCH, which may be used to schedule PDSCH. The PDSCH may include the SIB1. The SIB1 may be decoded using parameters provided in the MIB. The PBCH may indicate an absence of SIB1. Based on the PBCH indicating the absence of SIB1, the UE may be pointed to a frequency. The UE may search for an SS/PBCH block at the frequency to which the UE is pointed.
The UE may assume that one or more SS/PBCH blocks transmitted with a same SS/PBCH block index are quasi co-located (QCLed) (e.g., having the same/similar Doppler spread, Doppler shift, average gain, average delay, and/or spatial Rx parameters). The UE may not assume QCL for SS/PBCH block transmissions having different SS/PBCH block indices.
SS/PBCH blocks (e.g., those within a half-frame) may be transmitted in spatial directions (e.g., using different beams that span a coverage area of the cell). In an example, a first SS/PBCH block may be transmitted in a first spatial direction using a first beam, and a second SS/PBCH block may be transmitted in a second spatial direction using a second beam.
In an example, within a frequency span of a carrier, a base station may transmit a plurality of SS/PBCH blocks. In an example, a first PCI of a first SS/PBCH block of the plurality of SS/PBCH blocks may be different from a second PCI of a second SS/PBCH block of the plurality of SS/PBCH blocks. The PCIs of SS/PBCH blocks transmitted in different frequency locations may be different or the same.
The CSI-RS may be transmitted by the base station and used by the UE to acquire channel state information (CSI). The base station may configure the UE with one or more CSI-RSs for channel estimation or any other suitable purpose. The base station may configure a UE with one or more of the same/similar CSI-RSs. The UE may measure the one or more CSI-RSs. The UE may estimate a downlink channel state and/or generate a CSI report based on the measuring of the one or more downlink CSI-RSs. The UE may provide the CSI report to the base station. The base station may use feedback provided by the UE (e.g., the estimated downlink channel state) to perform link adaptation.
The base station may semi-statically configure the UE with one or more CSI-RS resource sets. A CSI-RS resource may be associated with a location in the time and frequency domains and a periodicity. The base station may selectively activate and/or deactivate a CSI-RS resource. The base station may indicate to the UE that a CSI-RS resource in the CSI-RS resource set is activated and/or deactivated.
The base station may configure the UE to report CSI measurements. The base station may configure the UE to provide CSI reports periodically, aperiodically, or semi-persistently. For periodic CSI reporting, the UE may be configured with a timing and/or periodicity of a plurality of CSI reports. For aperiodic CSI reporting, the base station may request a CSI report. For example, the base station may command the UE to measure a configured CSI-RS resource and provide a CSI report relating to the measurements. For semi-persistent CSI reporting, the base station may configure the UE to transmit periodically, and selectively activate or deactivate the periodic reporting. The base station may configure the UE with a CSI-RS resource set and CSI reports using RRC signaling.
The CSI-RS configuration may comprise one or more parameters indicating, for example, up to 32 antenna ports. The UE may be configured to employ the same OFDM symbols for a downlink CSI-RS and a control resource set (CORESET) when the downlink CSI-RS and CORESET are spatially QCLed and resource elements associated with the downlink CSI-RS are outside of the physical resource blocks (PRBs) configured for the CORESET. The UE may be configured to employ the same OFDM symbols for downlink CSI-RS and SS/PBCH blocks when the downlink CSI-RS and SS/PBCH blocks are spatially QCLed and resource elements associated with the downlink CSI-RS are outside of PRBs configured for the SS/PBCH blocks.
Downlink DMRSs may be transmitted by a base station and used by a UE for channel estimation. For example, the downlink DMRS may be used for coherent demodulation of one or more downlink physical channels (e.g., PDSCH). An NR network may support one or more variable and/or configurable DMRS patterns for data demodulation. At least one downlink DMRS configuration may support a front-loaded DMRS pattern. A front-loaded DMRS may be mapped over one or more OFDM symbols (e.g., one or two adjacent OFDM symbols). A base station may semi-statically configure the UE with a number (e.g. a maximum number) of front-loaded DMRS symbols for PDSCH. A DMRS configuration may support one or more DMRS ports. For example, for single user-MIMO, a DMRS configuration may support up to eight orthogonal downlink DMRS ports per UE. For multiuser-MIMO, a DMRS configuration may support up to 4 orthogonal downlink DMRS ports per UE. A radio network may support (e.g., at least for CP-OFDM) a common DMRS structure for downlink and uplink, wherein a DMRS location, a DMRS pattern, and/or a scrambling sequence may be the same or different. The base station may transmit a downlink DMRS and a corresponding PDSCH using the same precoding matrix. The UE may use the one or more downlink DMRSs for coherent demodulation/channel estimation of the PDSCH.
In an example, a transmitter (e.g., a base station) may use a precoder matrices for a part of a transmission bandwidth. For example, the transmitter may use a first precoder matrix for a first bandwidth and a second precoder matrix for a second bandwidth. The first precoder matrix and the second precoder matrix may be different based on the first bandwidth being different from the second bandwidth. The UE may assume that a same precoding matrix is used across a set of PRBs. The set of PRBs may be denoted as a precoding resource block group (PRG).
A PDSCH may comprise one or more layers. The UE may assume that at least one symbol with DMRS is present on a layer of the one or more layers of the PDSCH. A higher layer may configure up to 3 DMRSs for the PDSCH.
Downlink PT-RS may be transmitted by a base station and used by a UE for phase-noise compensation. Whether a downlink PT-RS is present or not may depend on an RRC configuration. The presence and/or pattern of the downlink PT-RS may be configured on a UE-specific basis using a combination of RRC signaling and/or an association with one or more parameters employed for other purposes (e.g., modulation and coding scheme (MCS)), which may be indicated by DCI. When configured, a dynamic presence of a downlink PT-RS may be associated with one or more DCI parameters comprising at least MCS. An NR network may support a plurality of PT-RS densities defined in the time and/or frequency domains. When present, a frequency domain density may be associated with at least one configuration of a scheduled bandwidth. The UE may assume a same precoding for a DMRS port and a PT-RS port. A number of PT-RS ports may be fewer than a number of DMRS ports in a scheduled resource. Downlink PT-RS may be confined in the scheduled time/frequency duration for the UE. Downlink PT-RS may be transmitted on symbols to facilitate phase tracking at the receiver.
The UE may transmit an uplink DMRS to a base station for channel estimation. For example, the base station may use the uplink DMRS for coherent demodulation of one or more uplink physical channels. For example, the UE may transmit an uplink DMRS with a PUSCH and/or a PUCCH. The uplink DM-RS may span a range of frequencies that is similar to a range of frequencies associated with the corresponding physical channel. The base station may configure the UE with one or more uplink DMRS configurations. At least one DMRS configuration may support a front-loaded DMRS pattern. The front-loaded DMRS may be mapped over one or more OFDM symbols (e.g., one or two adjacent OFDM symbols). One or more uplink DMRSs may be configured to transmit at one or more symbols of a PUSCH and/or a PUCCH. The base station may semi-statically configure the UE with a number (e.g. maximum number) of front-loaded DMRS symbols for the PUSCH and/or the PUCCH, which the UE may use to schedule a single-symbol DMRS and/or a double-symbol DMRS. An NR network may support (e.g., for cyclic prefix orthogonal frequency division multiplexing (CP-OFDM)) a common DMRS structure for downlink and uplink, wherein a DMRS location, a DMRS pattern, and/or a scrambling sequence for the DMRS may be the same or different.
A PUSCH may comprise one or more layers, and the UE may transmit at least one symbol with DMRS present on a layer of the one or more layers of the PUSCH. In an example, a higher layer may configure up to three DMRSs for the PUSCH.
Uplink PT-RS (which may be used by a base station for phase tracking and/or phase-noise compensation) may or may not be present depending on an RRC configuration of the UE. The presence and/or pattern of uplink PT-RS may be configured on a UE-specific basis by a combination of RRC signaling and/or one or more parameters employed for other purposes (e.g., Modulation and Coding Scheme (MCS)), which may be indicated by DCI. When configured, a dynamic presence of uplink PT-RS may be associated with one or more DCI parameters comprising at least MCS. A radio network may support a plurality of uplink PT-RS densities defined in time/frequency domain. When present, a frequency domain density may be associated with at least one configuration of a scheduled bandwidth. The UE may assume a same precoding for a DMRS port and a PT-RS port. A number of PT-RS ports may be fewer than a number of DMRS ports in a scheduled resource. For example, uplink PT-RS may be confined in the scheduled time/frequency duration for the UE.
SRS may be transmitted by a UE to a base station for channel state estimation to support uplink channel dependent scheduling and/or link adaptation. SRS transmitted by the UE may allow a base station to estimate an uplink channel state at one or more frequencies. A scheduler at the base station may employ the estimated uplink channel state to assign one or more resource blocks for an uplink PUSCH transmission from the UE. The base station may semi-statically configure the UE with one or more SRS resource sets. For an SRS resource set, the base station may configure the UE with one or more SRS resources. An SRS resource set applicability may be configured by a higher layer (e.g., RRC) parameter. For example, when a higher layer parameter indicates beam management, an SRS resource in a SRS resource set of the one or more SRS resource sets (e.g., with the same/similar time domain behavior, periodic, aperiodic, and/or the like) may be transmitted at a time instant (e.g., simultaneously). The UE may transmit one or more SRS resources in SRS resource sets. An NR network may support aperiodic, periodic and/or semi-persistent SRS transmissions. The UE may transmit SRS resources based on one or more trigger types, wherein the one or more trigger types may comprise higher layer signaling (e.g., RRC) and/or one or more DCI formats. In an example, at least one DCI format may be employed for the UE to select at least one of one or more configured SRS resource sets. An SRS trigger type 0 may refer to an SRS triggered based on a higher layer signaling. An SRS trigger type 1 may refer to an SRS triggered based on one or more DCI formats. In an example, when PUSCH and SRS are transmitted in a same slot, the UE may be configured to transmit SRS after a transmission of a PUSCH and a corresponding uplink DMRS.
The base station may semi-statically configure the UE with one or more SRS configuration parameters indicating at least one of following: a SRS resource configuration identifier; a number of SRS ports; time domain behavior of an SRS resource configuration (e.g., an indication of periodic, semi-persistent, or aperiodic SRS); slot, mini-slot, and/or subframe level periodicity; offset for a periodic and/or an aperiodic SRS resource; a number of OFDM symbols in an SRS resource; a starting OFDM symbol of an SRS resource; an SRS bandwidth; a frequency hopping bandwidth; a cyclic shift; and/or an SRS sequence ID.
An antenna port is defined such that the channel over which a symbol on the antenna port is conveyed can be inferred from the channel over which another symbol on the same antenna port is conveyed. If a first symbol and a second symbol are transmitted on the same antenna port, the receiver may infer the channel (e.g., fading gain, multipath delay, and/or the like) for conveying the second symbol on the antenna port, from the channel for conveying the first symbol on the antenna port. A first antenna port and a second antenna port may be referred to as quasi co-located (QCLed) if one or more large-scale properties of the channel over which a first symbol on the first antenna port is conveyed may be inferred from the channel over which a second symbol on a second antenna port is conveyed. The one or more large-scale properties may comprise at least one of: a delay spread; a Doppler spread; a Doppler shift; an average gain; an average delay; and/or spatial Receiving (Rx) parameters.
Channels that use beamforming require beam management. Beam management may comprise beam measurement, beam selection, and beam indication. A beam may be associated with one or more reference signals. For example, a beam may be identified by one or more beamformed reference signals. The UE may perform downlink beam measurement based on downlink reference signals (e.g., a channel state information reference signal (CSI-RS)) and generate a beam measurement report. The UE may perform the downlink beam measurement procedure after an RRC connection is set up with a base station.
The three beams illustrated in
CSI-RSs such as those illustrated in
In a beam management procedure, a UE may assess (e.g., measure) a channel quality of one or more beam pair links, a beam pair link comprising a transmitting beam transmitted by a base station and a receiving beam received by the UE. Based on the assessment, the UE may transmit a beam measurement report indicating one or more beam pair quality parameters comprising, e.g., one or more beam identifications (e.g., a beam index, a reference signal index, or the like), RSRP, a precoding matrix indicator (PMI), a channel quality indicator (CQI), and/or a rank indicator (RI).
A UE may initiate a beam failure recovery (BFR) procedure based on detecting a beam failure. The UE may transmit a BFR request (e.g., a preamble, a UCI, an SR, a MAC CE, and/or the like) based on the initiating of the BFR procedure. The UE may detect the beam failure based on a determination that a quality of beam pair link(s) of an associated control channel is unsatisfactory (e.g., having an error rate higher than an error rate threshold, a received signal power lower than a received signal power threshold, an expiration of a timer, and/or the like).
The UE may measure a quality of a beam pair link using one or more reference signals (RSs) comprising one or more SS/PBCH blocks, one or more CSI-RS resources, and/or one or more demodulation reference signals (DMRSs). A quality of the beam pair link may be based on one or more of a block error rate (BLER), an RSRP value, a signal to interference plus noise ratio (SINR) value, a reference signal received quality (RSRQ) value, and/or a CSI value measured on RS resources. The base station may indicate that an RS resource is quasi co-located (QCLed) with one or more DM-RSs of a channel (e.g., a control channel, a shared data channel, and/or the like). The RS resource and the one or more DMRSs of the channel may be QCLed when the channel characteristics (e.g., Doppler shift, Doppler spread, average delay, delay spread, spatial Rx parameter, fading, and/or the like) from a transmission via the RS resource to the UE are similar or the same as the channel characteristics from a transmission via the channel to the UE.
A network (e.g., a gNB and/or an ng-NB of a network) and/or the UE may initiate a random access procedure. A UE in an RRC_IDLE state and/or an RRC_INACTIVE state may initiate the random access procedure to request a connection setup to a network. The UE may initiate the random access procedure from an RRC_CONNECTED state. The UE may initiate the random access procedure to request uplink resources (e.g., for uplink transmission of an SR when there is no PUCCH resource available) and/or acquire uplink timing (e.g., when uplink synchronization status is non-synchronized). The UE may initiate the random access procedure to request one or more system information blocks (SIBs) (e.g., other system information such as SIB2, SIB3, and/or the like). The UE may initiate the random access procedure for a beam failure recovery request. A network may initiate a random access procedure for a handover and/or for establishing time alignment for an SCell addition.
The configuration message 1310 may be transmitted, for example, using one or more RRC messages. The one or more RRC messages may indicate one or more random access channel (RACH) parameters to the UE. The one or more RACH parameters may comprise at least one of following: general parameters for one or more random access procedures (e.g., RACH-configGeneral); cell-specific parameters (e.g., RACH-ConfigCommon); and/or dedicated parameters (e.g., RACH-configDedicated). The base station may broadcast or multicast the one or more RRC messages to one or more UEs. The one or more RRC messages may be UE-specific (e.g., dedicated RRC messages transmitted to a UE in an RRC_CONNECTED state and/or in an RRC_INACTIVE state). The UE may determine, based on the one or more RACH parameters, a time-frequency resource and/or an uplink transmit power for transmission of the Msg 11311 and/or the Msg 31313. Based on the one or more RACH parameters, the UE may determine a reception timing and a downlink channel for receiving the Msg 21312 and the Msg 41314.
The one or more RACH parameters provided in the configuration message 1310 may indicate one or more Physical RACH (PRACH) occasions available for transmission of the Msg 11311. The one or more PRACH occasions may be predefined. The one or more RACH parameters may indicate one or more available sets of one or more PRACH occasions (e.g., prach-ConfigIndex). The one or more RACH parameters may indicate an association between (a) one or more PRACH occasions and (b) one or more reference signals. The one or more RACH parameters may indicate an association between (a) one or more preambles and (b) one or more reference signals. The one or more reference signals may be SS/PBCH blocks and/or CSI-RSs. For example, the one or more RACH parameters may indicate a number of SS/PBCH blocks mapped to a PRACH occasion and/or a number of preambles mapped to a SS/PBCH blocks.
The one or more RACH parameters provided in the configuration message 1310 may be used to determine an uplink transmit power of Msg 11311 and/or Msg 31313. For example, the one or more RACH parameters may indicate a reference power for a preamble transmission (e.g., a received target power and/or an initial power of the preamble transmission). There may be one or more power offsets indicated by the one or more RACH parameters. For example, the one or more RACH parameters may indicate: a power ramping step; a power offset between SSB and CSI-RS; a power offset between transmissions of the Msg 11311 and the Msg 31313; and/or a power offset value between preamble groups. The one or more RACH parameters may indicate one or more thresholds based on which the UE may determine at least one reference signal (e.g., an SSB and/or CSI-RS) and/or an uplink carrier (e.g., a normal uplink (NUL) carrier and/or a supplemental uplink (SUL) carrier).
The Msg 11311 may include one or more preamble transmissions (e.g., a preamble transmission and one or more preamble retransmissions). An RRC message may be used to configure one or more preamble groups (e.g., group A and/or group B). A preamble group may comprise one or more preambles. The UE may determine the preamble group based on a pathloss measurement and/or a size of the Msg 31313. The UE may measure an RSRP of one or more reference signals (e.g., SSBs and/or CSI-RSs) and determine at least one reference signal having an RSRP above an RSRP threshold (e.g., rsrp-ThresholdSSB and/or rsrp-ThresholdCSI-RS). The UE may select at least one preamble associated with the one or more reference signals and/or a selected preamble group, for example, if the association between the one or more preambles and the at least one reference signal is configured by an RRC message.
The UE may determine the preamble based on the one or more RACH parameters provided in the configuration message 1310. For example, the UE may determine the preamble based on a pathloss measurement, an RSRP measurement, and/or a size of the Msg 31313. As another example, the one or more RACH parameters may indicate: a preamble format; a maximum number of preamble transmissions; and/or one or more thresholds for determining one or more preamble groups (e.g., group A and group B). A base station may use the one or more RACH parameters to configure the UE with an association between one or more preambles and one or more reference signals (e.g., SSBs and/or CSI-RSs). If the association is configured, the UE may determine the preamble to include in Msg 11311 based on the association. The Msg 11311 may be transmitted to the base station via one or more PRACH occasions. The UE may use one or more reference signals (e.g., SSBs and/or CSI-RSs) for selection of the preamble and for determining of the PRACH occasion. One or more RACH parameters (e.g., ra-ssb-OccasionMskIndex and/or ra-OccasionList) may indicate an association between the PRACH occasions and the one or more reference signals.
The UE may perform a preamble retransmission if no response is received following a preamble transmission. The UE may increase an uplink transmit power for the preamble retransmission. The UE may select an initial preamble transmit power based on a pathloss measurement and/or a target received preamble power configured by the network. The UE may determine to retransmit a preamble and may ramp up the uplink transmit power. The UE may receive one or more RACH parameters (e.g., PREAMBLE_POWER_RAMPING_STEP) indicating a ramping step for the preamble retransmission. The ramping step may be an amount of incremental increase in uplink transmit power for a retransmission. The UE may ramp up the uplink transmit power if the UE determines a reference signal (e.g., SSB and/or CSI-RS) that is the same as a previous preamble transmission. The UE may count a number of preamble transmissions and/or retransmissions (e.g., PREAMBLE_TRANSMISSION_COUNTER). The UE may determine that a random access procedure completed unsuccessfully, for example, if the number of preamble transmissions exceeds a threshold configured by the one or more RACH parameters (e.g., preamble TransMax).
The Msg 21312 received by the UE may include/comprise an RAR. In some scenarios, the Msg 21312 may include multiple RARs corresponding to multiple UEs. The Msg 21312 may be received after or in response to the transmitting of the Msg 11311. The Msg 21312 may be scheduled on the DL-SCH and indicated on a PDCCH using a random access RNTI (RA-RNTI). The Msg 21312 may indicate that the Msg 11311 was received by the base station. The Msg 21312 may include a time-alignment command that may be used by the UE to adjust the UE's transmission timing, a scheduling grant for transmission of the Msg 31313, and/or a Temporary Cell RNTI (TC-RNTI). After transmitting a preamble, the UE may start a time window (e.g., ra-ResponseWindow) to monitor a PDCCH for the Msg 21312. The UE may determine when to start the time window based on a PRACH occasion that the UE uses to transmit the preamble. For example, the UE may start the time window one or more symbols after a last symbol of the preamble (e.g., at a first PDCCH occasion from an end of a preamble transmission). The one or more symbols may be determined based on a numerology. The PDCCH may be in a common search space (e.g., a Type 1-PDCCH common search space) configured by an RRC message. The UE may identify the RAR based on a Radio Network Temporary Identifier (RNTI). RNTIs may be used depending on one or more events initiating the random access procedure. The UE may use random access RNTI (RA-RNTI). The RA-RNTI may be associated with PRACH occasions in which the UE transmits a preamble. For example, the UE may determine the RA-RNTI based on: an OFDM symbol index; a slot index; a frequency domain index; and/or a UL carrier indicator of the PRACH occasions. An example of RA-RNTI may be as follows:
RA-RNTI=1+s_id+14×t_id+14×80×f_id+14×80×8×ul_carrier_id, where s_id may be an index of a first OFDM symbol of the PRACH occasion (e.g., 0≤ s_id<14), t_id may be an index of a first slot of the PRACH occasion in a system frame (e.g., 0≤ t_id<80), f_id may be an index of the PRACH occasion in the frequency domain (e.g., 0≤f_id<8), and ul_carrier_id may be a UL carrier used for a preamble transmission (e.g., 0 for an NUL carrier, and 1 for an SUL carrier).
The UE may transmit the Msg 31313 in response to a successful reception of the Msg 21312 (e.g., using resources identified in the Msg 21312). The Msg 31313 may be used for contention resolution in, for example, the contention-based random access procedure illustrated in
The Msg 41314 may be received after or in response to the transmitting of the Msg 31313. If a C-RNTI was included in the Msg 31313, the base station will address the UE on the PDCCH using the C-RNTI. If the UE's unique C-RNTI is detected on the PDCCH, the random access procedure is determined to be successfully completed. If a TC-RNTI is included in the Msg 31313 (e.g., if the UE is in an RRC_IDLE state or not otherwise connected to the base station), Msg 41314 will be received using a DL-SCH associated with the TC-RNTI. If a MAC PDU is successfully decoded and a MAC PDU comprises the UE contention resolution identity MAC CE that matches or otherwise corresponds with the CCCH SDU sent (e.g., transmitted) in Msg 31313, the UE may determine that the contention resolution is successful and/or the UE may determine that the random access procedure is successfully completed.
The UE may be configured with a supplementary uplink (SUL) carrier and a normal uplink (NUL) carrier. An initial access (e.g., random access procedure) may be supported in an uplink carrier. For example, a base station may configure the UE with two separate RACH configurations: one for an SUL carrier and the other for an NUL carrier. For random access in a cell configured with an SUL carrier, the network may indicate which carrier to use (NUL or SUL). The UE may determine the SUL carrier, for example, if a measured quality of one or more reference signals is lower than a broadcast threshold. Uplink transmissions of the random access procedure (e.g., the Msg 11311 and/or the Msg 31313) may remain on the selected carrier. The UE may switch an uplink carrier during the random access procedure (e.g., between the Msg 11311 and the Msg 31313) in one or more cases. For example, the UE may determine and/or switch an uplink carrier for the Msg 11311 and/or the Msg 31313 based on a channel clear assessment (e.g., a listen-before-talk).
The contention-free random access procedure illustrated in
After transmitting a preamble, the UE may start a time window (e.g., ra-Response Window) to monitor a PDCCH for the RAR. In the event of a beam failure recovery request, the base station may configure the UE with a separate time window and/or a separate PDCCH in a search space indicated by an RRC message (e.g., recoverySearchSpaceId). The UE may monitor for a PDCCH transmission addressed to a Cell RNTI (C-RNTI) on the search space. In the contention-free random access procedure illustrated in
Msg A 1331 may be transmitted in an uplink transmission by the UE. Msg A 1331 may comprise one or more transmissions of a preamble 1341 and/or one or more transmissions of a transport block 1342. The transport block 1342 may comprise contents that are similar and/or equivalent to the contents of the Msg 31313 illustrated in
The UE may initiate the two-step random access procedure in
The UE may determine, based on two-step RACH parameters included in the configuration message 1330, a radio resource and/or an uplink transmit power for the preamble 1341 and/or the transport block 1342 included in the Msg A 1331. The RACH parameters may indicate a modulation and coding schemes (MCS), a time-frequency resource, and/or a power control for the preamble 1341 and/or the transport block 1342. A time-frequency resource for transmission of the preamble 1341 (e.g., a PRACH) and a time-frequency resource for transmission of the transport block 1342 (e.g., a PUSCH) may be multiplexed using FDM, TDM, and/or CDM. The RACH parameters may enable the UE to determine a reception timing and a downlink channel for monitoring for and/or receiving Msg B 1332.
The transport block 1342 may comprise data (e.g., delay-sensitive data), an identifier of the UE, security information, and/or device information (e.g., an International Mobile Subscriber Identity (IMSI)). The base station may transmit the Msg B 1332 as a response to the Msg A 1331. The Msg B 1332 may comprise at least one of following: a preamble identifier; a timing advance command; a power control command; an uplink grant (e.g., a radio resource assignment and/or an MCS); a UE identifier for contention resolution; and/or an RNTI (e.g., a C-RNTI or a TC-RNTI). The UE may determine that the two-step random access procedure is successfully completed if: a preamble identifier in the Msg B 1332 is matched to a preamble transmitted by the UE; and/or the identifier of the UE in Msg B 1332 is matched to the identifier of the UE in the Msg A 1331 (e.g., the transport block 1342).
A UE and a base station may exchange control signaling. The control signaling may be referred to as L1/L2 control signaling and may originate from the PHY layer (e.g., layer 1) and/or the MAC layer (e.g., layer 2). The control signaling may comprise downlink control signaling transmitted from the base station to the UE and/or uplink control signaling transmitted from the UE to the base station.
The downlink control signaling may comprise: a downlink scheduling assignment; an uplink scheduling grant indicating uplink radio resources and/or a transport format; a slot format information; a preemption indication; a power control command; and/or any other suitable signaling. The UE may receive the downlink control signaling in a payload transmitted by the base station on a physical downlink control channel (PDCCH). The payload transmitted on the PDCCH may be referred to as downlink control information (DCI). In some scenarios, the PDCCH may be a group common PDCCH (GC-PDCCH) that is common to a group of UEs.
A base station may attach one or more cyclic redundancy check (CRC) parity bits to a DCI in order to facilitate detection of transmission errors. When the DCI is intended for a UE (or a group of the UEs), the base station may scramble the CRC parity bits with an identifier of the UE (or an identifier of the group of the UEs). Scrambling the CRC parity bits with the identifier may comprise Modulo-2 addition (or an exclusive OR operation) of the identifier value and the CRC parity bits. The identifier may comprise a 16-bit value of a radio network temporary identifier (RNTI).
DCIs may be used for different purposes. A purpose may be indicated by the type of RNTI used to scramble the CRC parity bits. For example, a DCI having CRC parity bits scrambled with a paging RNTI (P-RNTI) may indicate paging information and/or a system information change notification. The P-RNTI may be predefined as “FFFE” in hexadecimal. A DCI having CRC parity bits scrambled with a system information RNTI (SI-RNTI) may indicate a broadcast transmission of the system information. The SI-RNTI may be predefined as “FFFF” in hexadecimal. A DCI having CRC parity bits scrambled with a random access RNTI (RA-RNTI) may indicate a random access response (RAR). A DCI having CRC parity bits scrambled with a cell RNTI (C-RNTI) may indicate a dynamically scheduled unicast transmission and/or a triggering of PDCCH-ordered random access. A DCI having CRC parity bits scrambled with a temporary cell RNTI (TC-RNTI) may indicate a contention resolution (e.g., a Msg 3 analogous to the Msg 31313 illustrated in
Depending on the purpose and/or content of a DCI, the base station may transmit the DCIs with one or more DCI formats. For example, DCI format 0_0 may be used for scheduling of PUSCH in a cell. DCI format 0_0 may be a fallback DCI format (e.g., with compact DCI payloads). DCI format 0_1 may be used for scheduling of PUSCH in a cell (e.g., with more DCI payloads than DCI format 0_0). DCI format 1_0 may be used for scheduling of PDSCH in a cell. DCI format 1_0 may be a fallback DCI format (e.g., with compact DCI payloads). DCI format 1_1 may be used for scheduling of PDSCH in a cell (e.g., with more DCI payloads than DCI format 1_0). DCI format 2_0 may be used for providing a slot format indication to a group of UEs. DCI format 2_1 may be used for notifying a group of UEs of a physical resource block and/or OFDM symbol where the UE may assume no transmission is intended to the UE. DCI format 2_2 may be used for transmission of a transmit power control (TPC) command for PUCCH or PUSCH. DCI format 2_3 may be used for transmission of a group of TPC commands for SRS transmissions by one or more UEs. DCI format(s) for new functions may be defined in future releases. DCI formats may have different DCI sizes, or may share the same DCI size.
After scrambling a DCI with a RNTI, the base station may process the DCI with channel coding (e.g., polar coding), rate matching, scrambling and/or QPSK modulation. A base station may map the coded and modulated DCI on resource elements used and/or configured for a PDCCH. Based on a payload size of the DCI and/or a coverage of the base station, the base station may transmit the DCI via a PDCCH occupying a number of contiguous control channel elements (CCEs). The number of the contiguous CCEs (referred to as aggregation level) may be 1, 2, 4, 8, 16, and/or any other suitable number. A CCE may comprise a number (e.g., 6) of resource-element groups (REGs). A REG may comprise a resource block in an OFDM symbol. The mapping of the coded and modulated DCI on the resource elements may be based on mapping of CCEs and REGs (e.g., CCE-to-REG mapping).
The base station may transmit, to the UE, RRC messages comprising configuration parameters of one or more CORESETs and one or more search space sets. The configuration parameters may indicate an association between a search space set and a CORESET. A search space set may comprise a set of PDCCH candidates formed by CCEs at a given aggregation level. The configuration parameters may indicate: a number of PDCCH candidates to be monitored per aggregation level; a PDCCH monitoring periodicity and a PDCCH monitoring pattern; one or more DCI formats to be monitored by the UE; and/or whether a search space set is a common search space set or a UE-specific search space set. A set of CCEs in the common search space set may be predefined and known to the UE. A set of CCEs in the UE-specific search space set may be configured based on the UE's identity (e.g., C-RNTI).
As shown in
The UE may transmit uplink control signaling (e.g., uplink control information (UCI)) to a base station. The uplink control signaling may comprise hybrid automatic repeat request (HARQ) acknowledgements for received DL-SCH transport blocks. The UE may transmit the HARQ acknowledgements after receiving a DL-SCH transport block. Uplink control signaling may comprise channel state information (CSI) indicating channel quality of a physical downlink channel. The UE may transmit the CSI to the base station. The base station, based on the received CSI, may determine transmission format parameters (e.g., comprising multi-antenna and beamforming schemes) for a downlink transmission. Uplink control signaling may comprise scheduling requests (SR). The UE may transmit an SR indicating that uplink data is available for transmission to the base station. The UE may transmit a UCI (e.g., HARQ acknowledgements (HARQ-ACK), CSI report, SR, and the like) via a physical uplink control channel (PUCCH) or a physical uplink shared channel (PUSCH). The UE may transmit the uplink control signaling via a PUCCH using one of several PUCCH formats.
There may be five PUCCH formats and the UE may determine a PUCCH format based on a size of the UCI (e.g., a number of uplink symbols of UCI transmission and a number of UCI bits). PUCCH format 0 may have a length of one or two OFDM symbols and may include two or fewer bits. The UE may transmit UCI in a PUCCH resource using PUCCH format 0 if the transmission is over one or two symbols and the number of HARQ-ACK information bits with positive or negative SR (HARQ-ACK/SR bits) is one or two. PUCCH format 1 may occupy a number between four and fourteen OFDM symbols and may include two or fewer bits. The UE may use PUCCH format 1 if the transmission is four or more symbols and the number of HARQ-ACK/SR bits is one or two. PUCCH format 2 may occupy one or two OFDM symbols and may include more than two bits. The UE may use PUCCH format 2 if the transmission is over one or two symbols and the number of UCI bits is two or more. PUCCH format 3 may occupy a number between four and fourteen OFDM symbols and may include more than two bits. The UE may use PUCCH format 3 if the transmission is four or more symbols, the number of UCI bits is two or more and PUCCH resource does not include an orthogonal cover code. PUCCH format 4 may occupy a number between four and fourteen OFDM symbols and may include more than two bits. The UE may use PUCCH format 4 if the transmission is four or more symbols, the number of UCI bits is two or more and the PUCCH resource includes an orthogonal cover code.
The base station may transmit configuration parameters to the UE for a plurality of PUCCH resource sets using, for example, an RRC message. The plurality of PUCCH resource sets (e.g., up to four sets) may be configured on an uplink BWP of a cell. A PUCCH resource set may be configured with a PUCCH resource set index, a plurality of PUCCH resources with a PUCCH resource being identified by a PUCCH resource identifier (e.g., pucch-Resourceid), and/or a number (e.g. a maximum number) of UCI information bits the UE may transmit using one of the plurality of PUCCH resources in the PUCCH resource set. When configured with a plurality of PUCCH resource sets, the UE may select one of the plurality of PUCCH resource sets based on a total bit length of the UCI information bits (e.g., HARQ-ACK, SR, and/or CSI). If the total bit length of UCI information bits is two or fewer, the UE may select a first PUCCH resource set having a PUCCH resource set index equal to “0”. If the total bit length of UCI information bits is greater than two and less than or equal to a first configured value, the UE may select a second PUCCH resource set having a PUCCH resource set index equal to “1”. If the total bit length of UCI information bits is greater than the first configured value and less than or equal to a second configured value, the UE may select a third PUCCH resource set having a PUCCH resource set index equal to “2”. If the total bit length of UCI information bits is greater than the second configured value and less than or equal to a third value (e.g., 1406), the UE may select a fourth PUCCH resource set having a PUCCH resource set index equal to “3”.
After determining a PUCCH resource set from a plurality of PUCCH resource sets, the UE may determine a PUCCH resource from the PUCCH resource set for UCI (HARQ-ACK, CSI, and/or SR) transmission. The UE may determine the PUCCH resource based on a PUCCH resource indicator in a DCI (e.g., with a DCI format 1_0 or DCI for 1_1) received on a PDCCH. A three-bit PUCCH resource indicator in the DCI may indicate one of eight PUCCH resources in the PUCCH resource set. Based on the PUCCH resource indicator, the UE may transmit the UCI (HARQ-ACK, CSI and/or SR) using a PUCCH resource indicated by the PUCCH resource indicator in the DCI.
The base station 1504 may connect the wireless device 1502 to a core network (not shown) through radio communications over the air interface (or radio interface) 1506. The communication direction from the base station 1504 to the wireless device 1502 over the air interface 1506 is known as the downlink, and the communication direction from the wireless device 1502 to the base station 1504 over the air interface is known as the uplink. Downlink transmissions may be separated from uplink transmissions using FDD, TDD, and/or some combination of the two duplexing techniques.
In the downlink, data to be sent to the wireless device 1502 from the base station 1504 may be provided to the processing system 1508 of the base station 1504. The data may be provided to the processing system 1508 by, for example, a core network. In the uplink, data to be sent to the base station 1504 from the wireless device 1502 may be provided to the processing system 1518 of the wireless device 1502. The processing system 1508 and the processing system 1518 may implement layer 3 and layer 2 OSI functionality to process the data for transmission. Layer 2 may include an SDAP layer, a PDCP layer, an RLC layer, and a MAC layer, for example, with respect to
After being processed by processing system 1508, the data to be sent to the wireless device 1502 may be provided to a transmission processing system 1510 of base station 1504. Similarly, after being processed by the processing system 1518, the data to be sent to base station 1504 may be provided to a transmission processing system 1520 of the wireless device 1502. The transmission processing system 1510 and the transmission processing system 1520 may implement layer 1 OSI functionality. Layer I may include a PHY layer with respect to
At the base station 1504, a reception processing system 1512 may receive the uplink transmission from the wireless device 1502. At the wireless device 1502, a reception processing system 1522 may receive the downlink transmission from base station 1504. The reception processing system 1512 and the reception processing system 1522 may implement layer 1 OSI functionality. Layer I may include a PHY layer with respect to
As shown in
The processing system 1508 and the processing system 1518 maybe associated with a memory 1514 and a memory 1524, respectively. Memory 1514 and memory 1524 (e.g., one or more non-transitory computer readable mediums) may store computer program instructions or code that may be executed by the processing system 1508 and/or the processing system 1518 to carry out one or more of the functionalities discussed in the present application. Although not shown in
The processing system 1508 and/or the processing system 1518 may comprise one or more controllers and/or one or more processors. The one or more controllers and/or one or more processors may comprise, for example, a general-purpose processor, a digital signal processor (DSP), a microcontroller, an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) and/or other programmable logic device, discrete gate and/or transistor logic, discrete hardware components, an on-board unit, or any combination thereof. The processing system 1508 and/or the processing system 1518 may perform at least one of signal coding/processing, data processing, power control, input/output processing, and/or any other functionality that may enable the wireless device 1502 and the base station 1504 to operate in a wireless environment.
The processing system 1508 and/or the processing system 1518 may be connected to one or more peripherals 1516 and one or more peripherals 1526, respectively. The one or more peripherals 1516 and the one or more peripherals 1526 may include software and/or hardware that provide features and/or functionalities, for example, a speaker, a microphone, a keypad, a display, a touchpad, a power source, a satellite transceiver, a universal serial bus (USB) port, a hands-free headset, a frequency modulated (FM) radio unit, a media player, an Internet browser, an electronic control unit (e.g., for a motor vehicle), and/or one or more sensors (e.g., an accelerometer, a gyroscope, a temperature sensor, a radar sensor, a lidar sensor, an ultrasonic sensor, a light sensor, a camera, and/or the like). The processing system 1508 and/or the processing system 1518 may receive user input data from and/or provide user output data to the one or more peripherals 1516 and/or the one or more peripherals 1526. The processing system 1518 in the wireless device 1502 may receive power from a power source and/or may be configured to distribute the power to the other components in the wireless device 1502. The power source may comprise one or more sources of power, for example, a battery, a solar cell, a fuel cell, or any combination thereof. The processing system 1508 and/or the processing system 1518 may be connected to a GPS chipset 1517 and a GPS chipset 1527, respectively. The GPS chipset 1517 and the GPS chipset 1527 may be configured to provide geographic location information of the wireless device 1502 and the base station 1504, respectively.
A wireless device may receive from a base station one or more messages (e.g. RRC messages) comprising configuration parameters of a plurality of cells (e.g. primary cell, secondary cell). The wireless device may communicate with at least one base station (e.g. two or more base stations in dual-connectivity) via the plurality of cells. The one or more messages (e.g. as a part of the configuration parameters) may comprise parameters of physical, MAC, RLC, PCDP, SDAP, RRC layers for configuring the wireless device. For example, the configuration parameters may comprise parameters for configuring physical and MAC layer channels, bearers, etc. For example, the configuration parameters may comprise parameters indicating values of timers for physical, MAC, RLC, PCDP, SDAP, RRC layers, and/or communication channels.
A timer may begin running once it is started and continue running until it is stopped or until it expires. A timer may be started if it is not running or restarted if it is running. A timer may be associated with a value (e.g. the timer may be started or restarted from a value or may be started from zero and expire once it reaches the value). The duration of a timer may not be updated until the timer is stopped or expires (e.g., due to BWP switching). A timer may be used to measure a time period/window for a process. When the specification refers to an implementation and procedure related to one or more timers, it will be understood that there are multiple ways to implement the one or more timers. For example, it will be understood that one or more of the multiple ways to implement a timer may be used to measure a time period/window for the procedure. For example, a random access response window timer may be used for measuring a window of time for receiving a random access response. In an example, instead of starting and expiry of a random access response window timer, the time difference between two time stamps may be used. When a timer is restarted, a process for measurement of time window may be restarted. Other example implementations may be provided to restart a measurement of a time window.
A random access procedure may be initiated by a PDCCH order, by a MAC entity (e.g., MAC entity of a wireless device, a wireless device, and the like) itself, or by RRC (e.g., RRC layer of the wireless device, upper layer(s), upper layer(s) of the wireless device, and the like). There may be one random access procedure ongoing at any point in time in a MAC entity. The random access procedure on an SCell may be initiated by a PDCCH order with ra-PreambleIndex different from 0b000000.
A wireless device may transmit a preamble (e.g., random access preamble, Msg1, random access message 1, RACH transmission, RACH, PRACH, PRACH transmission, random access message, and the like), for the random access procedure, with a number of repetitions (e.g., 1, 2, 4, 8, and the like). Transmitting the preamble with the number of repetitions may, for example, be the same as transmitting the number of repetitions of the preamble. Transmitting the number of repetitions of the preamble by the wireless device may comprise, for example, a medium access control (MAC) layer (e.g., upper layer) of the wireless device instructing a physical layer (e.g., lower layer) of the wireless device to transmit the number of repetitions of the preamble.
In an example, the number may be greater (e.g., more, larger, higher, and the like) than one. The wireless device may transmit the preamble with the number of repetitions, for example, to increase coverage (e.g., for coverage enhancement (CE), to increase coverage range, and the like). The wireless device may determine one or more resources (e.g., PRACH resources, RACH resources, random access resources, MsgA resources, PUSCH resources, uplink resources, and the like) to transmit the preamble, for example, based on a reference signal (e.g., pathloss reference signal, synchronization signal block (SSB), physical broadcast channel (PBCH), synchronization signal (SS)/physical broadcast channel (PBCH) block, channel state information reference signal (CSI-RS), cell-specific reference signal (CRS), and the like).
A base station may transmit (e.g., broadcast) a plurality of reference signals (RSs). Each reference signal (RS) of the one or more RSs may be associated with a respective radio link quality. A wireless device may select an RS, of/among the plurality of RSs, to determine the one or more resources. The wireless device may determine the number of repetitions based on a radio link quality of the RS. The base station may configure (e.g., transmit, indicate, and the like) a threshold for selecting an RS.
According to existing technologies, the wireless device may select an RS based on a radio link quality of the RS being greater than the threshold. In an example, the plurality of RSs may comprise a first RS and a second RS. The wireless device may determine a first radio link quality of the first RS. The first radio link quality may be greater than (or equal to) the threshold. The wireless device may select the first RS, for example, without determining a second radio link quality of the second RS.
In an example, the first RS (and/or the first radio link quality) may be associated a first number of repetitions. The second RS (and/or the second radio link quality) may be associated a second number of repetitions. The first number of repetitions may be, for example, higher than the second number of repetitions. The wireless device may transmit a preamble with the first number of repetitions based on selecting the first RS. In an example, the second radio link quality may be greater than the threshold. The wireless device may not select the second RS, for example, based on selecting the first RS without determining the second radio link quality. Based on selecting the first RS without determining the second radio link quality of the second RS, the wireless device may use a higher number of repetitions of the preamble than necessary (e.g., based on using the first number of repetitions instead of the second number of repetitions). Using a higher number of repetitions of the preamble than necessary may result in wasting/underutilizing network/uplink/downlink resources, increased power consumption at the wireless device, increased power consumption at the base station, reduction in battery life of the wireless device, and/or increase in (network/access) latency.
The plurality of RSs may be associated with a plurality of radio link qualities. Each RS of the plurality of RSs may be associated with a respective radio link quality of the plurality of radio link qualities. According to the existing technologies, the wireless device may select an RS based on the radio link quality of the RS being the highest among the plurality of RSs.
In an example, the plurality of RSs may comprise a first RS and a second RS. The plurality of radio link qualities may comprise a first radio link quality and a second radio link quality. The first RS may be associated with the first radio link quality. The second RS may be associated with the second radio link quality. The wireless device may determine the first radio link quality. The wireless device may determine the second radio link quality. The wireless device may compare the first radio link quality and the second radio link quality. In an example, the first radio link quality may be greater than the second radio link quality. The wireless device may select the first RS based on determining the first radio link quality, determining the second radio link quality, and/or the first radio link quality being greater than the second radio link quality.
In an example, the first RS (and/or the first radio link quality) may be associated a first number of repetitions. The second RS (and/or the second radio link quality) may be associated a second number of repetitions. The first number of repetitions and the second number of repetitions may, for example, be the same. Determining the second radio link quality, e.g., based on measuring the second RS, together with determining the first radio link quality may be unnecessary and/or redundant as the first RS (and/or the first radio link quality) and the second RS (and/or the second radio link quality) are associated with a same number of repetitions. Additionally determining the second radio link quality, which may be redundant/unnecessary, may increase the power consumption of the wireless device are reduce battery life of the wireless device.
In light of the existing technologies, there is a need to improve procedures for selecting an RS for a random access procedure.
According to example embodiments in the present disclosure, a wireless device may select an (e.g., any) RS, from/among one or more RSs, whose radio link quality is associated with a lowest number of repetitions from/among one or more numbers of repetitions. In an example, a base station may broadcast a first RS and a second RS. The first RS may be associated with a first radio link quality. The first RS (and/or the first radio link quality) may be associated with a first number of repetitions. The second RS may be associated with a second radio link quality. The second RS (and/or the second radio link quality) may be associated with a second number of repetitions. In an example, the first number of repetitions may be less than (or equal to) the second number of repetitions. The wireless device may determine the first radio link quality, e.g., based on measuring the first RS. The wireless device may select the first RS (e.g., without determining the second radio link quality of the second RS) based on the first number of repetitions being less than (or equal to) the second number of repetitions. In another example, the first number of repetitions may be greater than the second number of repetitions. The wireless device may determine the first radio link quality. The wireless device may determine the second radio link quality, e.g., based on measuring the second RS, for example, based on the first number of repetitions being greater than the second number of repetitions. The wireless device may select the second RS, for example, based on the first number of repetitions being greater than the second number of repetitions.
Based on determining a radio link quality of a second RS (only) when a radio link quality of a first RS is not associated with a lowest number of repetitions from/among one or more numbers of repetitions, the wireless device may not unnecessarily measure (and/or determine a radio link quality) of an RS. Based on determining a radio link quality of a second RS (only) when a radio link quality of a first RS is not associated with a lowest number of repetitions from/among one or more numbers of repetitions, the wireless device may select an RS associated with the number of repetitions. Based on the implementation of one or more example embodiments of the present disclosure, the wireless device may reduce power consumption at the wireless device, improve battery life of the wireless device, reduce latency (e.g., to access a network), and/or reduce wasting network resources.
In an example embodiment, a wireless device may one or more downlink messages. The wireless device may receive the one or more downlink messages from a base station. The one or more downlink messages may comprise configuration parameters. The wireless device may receive the configuration parameters from the base station. The base station may transmit the configuration parameters to the wireless device. The one or more downlink messages may be one or more radio resource configuration (RRC) messages (e.g., RRC setup message, RRCSetup, RRC reconfiguration message, RRCReconfiguration, RRC release message, RRCRelease, system information block (SIB), and the like).
The configuration parameters may be for/of/associated with a cell. The one or more downlink messages may be for/of/associated with the cell. The wireless device may be in (e.g., in a coverage area of, being served by, and the like) the cell. The cell may be, for example, a serving cell of/for the wireless device. The cell may be, for example, a non-serving cell of/for the wireless device. The cell may be, for example, an unlicensed cell (e.g., shared spectrum channel access cell). The cell may be, for example, a primary cell (PCell). The cell may be, for example, a secondary cell (SCell). The cell may be, for example, a primary secondary cell (PSCell). The cell may be, for example, a special cell (SpCell). The cell may be, for example, a non-terrestrial network (NTN) cell. The cell may be, for example, part of a master cell group (MCG). The cell may be, for example, part of a secondary cell group (SCG). The base station may, for example, serve the cell. The base station may, for example, transmit one or more downlink signals to a plurality of wireless devices in the cell. The base station may, for example, receive one or more downlink signals from a plurality of wireless devices in the cell.
The configuration parameters may indicate, for example, a plurality of RSs. The plurality of RSs may be, for example, a plurality of SSBs. The plurality of RSs may be, for example, a plurality of SS/PBCH blocks. The plurality of RSs may be, for example, a plurality of CSI-RSs. The plurality of RSs may be, for example, a plurality of CRSs. The plurality of RSs may be a plurality of sounding RSs (SRSs). The plurality of RSs may be a plurality of positioning RSs (PRSs).
An RS (e.g., from/among the plurality of RSs) may be, for example, an SSB. An RS may be, for example, an SS/PBCH block. An RS may be, for example, a CSI-RS. An RS may be, for example, a CRS. An RS may be, for example, a PRS. An RS may be, for example, an SRS.
Each RS of the plurality of RSs may be associated with a respective radio link quality. For example, the plurality of RSs may comprise a first RS and a second RS. The first RS may be associated with a first radio link quality. The second RS may be associated with a second radio link quality. The wireless device may determine (e.g., measure, calculate, compute, estimate, and the like) the first radio link quality, for example, based on measuring the first RS. The wireless device may determine the second radio link quality, for example, based on measuring the second RS.
In an example, a radio link quality of an RS may be a reference signal received power (RSRP) of the RS. The wireless device may determine the radio link quality of the RS by determining (e.g., measuring, estimating, calculating, computing, and the like) the RSRP of the RS. In an example, the radio link quality of an RS may be a received signal strength indication (RSSI) of the RS. The wireless device may determine the radio link quality of the RS by determining (e.g., measuring, estimating, calculating, computing, and the like) the RSSI of the RS. In an example, the radio link quality of an RS may be a reference signal received quality (RSRQ) of the RS. The wireless device may determine the radio link quality of the RS by determining (e.g., measuring, estimating, calculating, computing, and the like) the RSRQ of the RS. In an example, the radio link quality of an RS may be a signal to noise ratio (SNR) of the RS. The wireless device may determine the radio link quality of the RS by determining (e.g., measuring, estimating, calculating, computing, and the like) the SNR of the RS. In an example, the radio link quality of an RS may be a signal to interference plus noise ratio (SINR) of the RS. The wireless device may determine the radio link quality of the RS by determining (e.g., measuring, estimating, calculating, computing, and the like) the SINR of the RS. In an example, the radio link quality of an RS may be a block error rate (BLER) of the RS. The wireless device may determine the radio link quality of the RS by determining (e.g., measuring, estimating, calculating, computing, and the like) the BLER of the RS. In an example, the radio link quality of an RS (e.g., SSB) may be a SS-RSRP of the RS (e.g., SSB). The wireless device may determine the radio link quality of the RS by determining (e.g., measuring, estimating, calculating, computing, and the like) the SS-RSRP of the RS
In an example, the wireless device may determine (e.g., measure, calculate, compute, estimate, and the like) a respective radio link quality of one or more RSs of the plurality of RSs. The wireless device may determine a radio link quality of an RS based on (or by) measuring the RS. For example, the wireless device may measure RS 1. The wireless device may determine a radio link quality of RS 1, for example, based on measuring RS 1.
In an example, the wireless device may determine a first radio link quality of RS 1. The first radio link quality may be less (e.g., lower, smaller, weaker, and the like) than the selection threshold. The wireless device may not select RS 1, for example, based on the first radio link quality being less than the selection threshold. The wireless device may determine a second radio link quality of RS 2. The second radio link quality may be greater (e.g., higher, above, more, larger, stronger, and the like) than (or equal to) the selection threshold. The wireless device may select RS 2 for a random access procedure (in/of the cell), for example, based on the second radio link quality being greater than (or equal to) the selection threshold. The wireless device may not determine a third radio link quality and/or a fourth radio link quality of RS 3 and/or RS 4, respectively, for example, based on the second radio link quality of RS 2 being greater than the selection threshold.
In an example, RS 2 (and/or the second radio link quality) may be associated with a first number of repetitions. RS 4 (and/or the fourth radio link quality) may be associate with a second number of repetitions. The second number of repetitions may be less than the first number of repetitions. According to the existing technologies, the wireless device may determine RS 2 for the random access procedure. The wireless device may transmit the first number of repetitions of a preamble for the random access procedure. Using the first number of repetitions may waste network resources (e.g., uplink (UL) resources, PRACH resources, RACH resources, PUSCH resources, and the like) and/or reduce battery life of the wireless device.
The configuration parameters may indicate a plurality of numbers of repetitions. The plurality of numbers of repetitions may, for example, comprise Rep 1, Rep 2, and Rep 3. Each number of repetition of the plurality of numbers of repetitions may indicate a number of repetitions to be used by the wireless device (or the wireless device uses) to transmit a preamble for a random access procedure. In the example of
The configuration parameters may indicate the plurality of numbers of repetitions, for example, based on (or via) one or more thresholds. The one or more thresholds may be used for determining a number of repetitions of a preamble for a random access procedure (or a configured grant small data transmission procedure). In the example of
In the example of
The example in
In the example of
The first radio link quality (e.g., radio link quality of RS 1) may be less than Threshold 1, as shown in
In an example embodiment, the wireless device may determine the first radio link quality (e.g., based on measuring RS 1). The wireless device may determine the first radio link quality to be less than Threshold 1. The wireless device may determine the first radio link quality to be less than Threshold 2. The wireless device may determine RS 1 to be associated with Rep 3, for example, based on the first radio link quality being less than Threshold 1 and the first radio link quality being less than Threshold 2.
The wireless device may determine the second radio link quality (e.g., based on measuring RS 2), for example, based on the first radio link quality being less than Threshold 1. The wireless device may determine the second radio link quality, for example, based on the first radio link quality being less than Threshold 2. The wireless device may determine the second radio link quality to be greater than Threshold 2. The wireless device may determine the second radio link quality to be less than Threshold 1. The wireless device may determine RS 2 to be associated with Rep 2, for example, based on the second radio link quality being greater than Threshold 2 and the second radio link quality being less than Threshold 1.
The wireless device may determine the third radio link quality (e.g., based on measuring RS 3), for example, based on the first radio link quality being less than Threshold 1, the first radio link quality being less than Threshold 2, and/or the second radio link quality being less than Threshold 1. The wireless device may determine the third radio link quality, for example, based on the second radio link quality being less than Threshold 1. The wireless device may determine the third radio link quality to be greater than Threshold 1. The wireless device may determine the third radio link quality to be greater than Threshold 2. The wireless device may determine RS 3 to be associated with Rep 1, for example, based on the third radio link quality being greater than Threshold 1. The wireless device may determine RS 3 to be associated with Rep 1, for example, based on the third radio link quality being greater than Threshold 1 and the third radio link quality being greater than Threshold 2.
In an example embodiment, the wireless device may determine (e.g., select, choose, pick, use, and the like) RS 3 for a random access procedure, for example, based on the third radio link quality being greater than Threshold 1. The wireless device may determine RS 3 for the random access procedure, for example, based on RS 3 being associated with Rep 1.
The wireless device may not determine the fourth radio link quality (e.g., associated with RS 4), for example, based on the third radio link quality being greater than Threshold 1. The wireless device may not determine the fourth radio link quality, for example, based on RS 3 being associated with Rep 1.
In an example embodiment, the wireless device may determine the first radio link quality (e.g., a radio link quality associated with RS 1). The wireless device may, for example, determine the second radio link quality (e.g., a radio link quality associated with RS 2). The wireless device may, for example, determine the third radio link quality (e.g., a radio link quality associated with RS 3). The wireless device may, for example, determine the fourth radio link quality (e.g., a radio link quality associated with RS 4). The wireless device may determine the third radio link quality to be greater than Threshold 1. The wireless device may determine the third radio link quality to be associated with Rep 1. The wireless device may determine the fourth radio link quality to be greater than Threshold 1. The wireless device may determine the fourth radio link quality to be associated with Rep 1.
In an example embodiment, the wireless device may determine (e.g., select, choose, pick, use, and the like), for a random access procedure, one RS, out of/from/among RS 3 or RS 4 (e.g., as shown in
The wireless device determine (e.g., select, choose, pick, use, and the like), for a random access procedure, one RS (e.g., as shown in
In the example of
In the example of
In an example embodiment, the wireless device may determine RS 3, for example, based on the third radio link quality being greater than Threshold 1 and the third index being the lowest among the third index and the fourth index (e.g., among indexes of RSs whose radio link qualities are each greater than Threshold 1). In another example embodiment, the wireless device may determine RS 3, for example, based on the third radio link quality being associated with Rep 1 and the third index being the lowest among the third index and the fourth index (e.g., among indexes of RSs whose radio link qualities are each associated with Rep 1).
In the example of
In the example of
The wireless device may determine whether any of the first radio link quality, the second radio link quality, the third radio link quality, and the fourth radio link quality are greater than Threshold 2, for example, based on the first radio link quality being less than Threshold 1, the second radio link quality being less than Threshold 1, the third radio link quality being less than Threshold 1, and the fourth radio link quality being less than Threshold 1.
In the example of
In the example of
In the example of
In an example, the wireless device may determine RS 2 (e.g., at random), for example, based on the first radio link quality being less than both Threshold 1 and Threshold 2 (or each of a plurality of thresholds), the second radio link quality being less than both Threshold 1 and Threshold 2 (or each of the plurality of thresholds), the third radio link quality being less than both Threshold 1 and Threshold 2 (or each of the plurality of thresholds), and the fourth radio link quality being less than both Threshold 1 and Threshold 2 (or each of the plurality of thresholds).
In some of the example embodiments of the present disclosure, an RS being associated with a number of repetitions may comprise a wireless device transmitting the number of repetitions of a preamble based on determining (e.g., selecting, choosing, picking, using, and the like) the RS.
In the example embodiments of
In the example embodiments of
The wireless device may determine whether there is any RS from/of/among/out of the plurality of RS whose radio link quality is associated with Rep 1.
In an example, a first RS, from/of/among/out of the plurality of RSs, may be associated with a first radio link quality. The first radio link quality may be associated with Rep 1. The wireless device may determine (e.g., select, choose, pick, use) the first RS, for example based on the first radio link quality being associated with Rep 1.
Each RS of the plurality of RSs may be associated with a respective radio link quality of a plurality of radio link qualities. In an example, no radio link quality from/of/among the plurality of radio link qualities may be associated with Rep 1. Based on no radio link quality from/of/among the plurality of radio link qualities being associated with Rep 1, the wireless device may determine whether any radio link quality from/of/among the plurality of radio link qualities is associated with Rep 2. The wireless device may determine whether a highest radio link quality from/of/among the plurality of radio link qualities is associated with Rep 2, for example, based on no radio link quality from/of/among the plurality of radio link qualities being associated with Rep 1.
In an example, a second radio link quality (e.g., associated with a second RS from/of/among the plurality of RSs) may be associated with Rep 2. The wireless device may determine (e.g., select, choose, pick, use, and the like) the second RS for a random access procedure, for example, based on the second radio link quality (e.g., associated with a second RS from/of/among the plurality of RSs) being associated with Rep 2.
In another example, no radio link quality from/of/among the plurality of radio link qualities may be associated with Rep 2. The wireless device may determine any RS (e.g., at random, RS associated with a highest radio link quality from/among the plurality of radio link qualities, RS with a lowest index (e.g., SSB index, RS index, and the like), and the like) from/of/among the plurality of RSs for the random access procedure. The wireless device may determine Rep 3 as a number of repetitions to use for transmitting a preamble for the random access procedure.
In this specification, a preamble may, in some embodiments, refer to an uplink signal/message (e.g., PRACH transmission/message, RACH transmission/message, Msg1, Msg3, Msg5, Msg4 HARQ-ACK, PUCCH transmission/message, PUSCH transmission/message).
In this specification, a random access procedure may be performed for a purpose (e.g., raPurpose). Based on the purpose of the random access procedure, a wireless device may determine (e.g., set, use, configure, and the like) a parameter (e.g., raPurpose) to a value corresponding to the purpose. In an example, the purpose may be initial access for the wireless device from RRC_IDLE/RRC_INACTIVE mode/state. In an example, the purpose may be RRC connection re-establishment. In an example, the purpose may be downlink or uplink data arrival during RRC_CONNECTED and/or RRC_INACTIVE when the uplink synchronization status is “non-synchronized.” In an example, the purpose may be uplink data arrival when there are no PUCCH resources for SR available to the wireless device. In an example, the purpose may be SR failure. In an example, the purpose may be request by a RRC layer of the wireless device upon synchronous reconfiguration (e.g., handover). In an example, the purpose may be RRC connection resume procedure from RRC_INACTIVE/RRC_IDLE state/mode. In an example, the purpose may be to establish time alignment for a secondary timing advance group. In an example, the purpose may be to request for other system information. In an example, the purpose may be for beam failure recovery. In an example, the purpose may be due to consistent uplink listen before talk (LBT) failure on a SpCell. In an example, the purpose may be for SDT in RRC_INACTIVE/RRC_IDLE mode/state. In an example, the purpose may be for positioning during RRC_CONNECTED state requiring the random access procedure, e.g., when timing advance is needed for positioning.
In an example, the random access procedure may be a 4-step (e.g., type-1) random access procedure. In an example, the random access procedure may be a 2-step (e.g., type-2) random access procedure. In an example, the random access procedure may be a contention based random access (CBRA) procedure. The wireless device may select/transmit a preamble (e.g., the first preamble, the second preamble, and the like) from a set of preambles dedicated to CBRA, for example, based on the random access procedure being a CBRA.
In an example, the random access procedure may be a contention free random access (CFRA) procedure. The wireless device may select/transmit a preamble (e.g., the first preamble, the second preamble, and the like) from a set of preambles dedicated to CFRA, for example, based on the random access procedure being a CFRA.
In an example, a wireless device may determine (e.g., select, choose, pick, and the like) a first RS (e.g., RS 1 from/in
The wireless device may determine a first transmit (TX) beam, for example, based on determining the first RS. Determining the first RS may comprise determining the first TX beam. The wireless device may, for example, use beam correspondence without beam sweeping (e.g., beamcorrespondencewithoutULbeamsweeping) capability to determine the first TX beam based on the first RS (or based on determining the first RS). In another example, the wireless device may determine the first TX beam based on the first RS (or based on determining the first RS), for example, by using uplink beam sweeping.
In an example, the wireless device may determine a second RS for the random access procedure. The wireless device may determine a second RX beam, for example based on the second RS (or based on determining the second RS). The wireless device may determine a second TX beam, for example based on the second RS (or based on determining the second RS).
In an example, the first RS may not be the same as (e.g., may be different from) the second RS. The first RX beam may not be the same as (e.g., may be different from) the second RX beam, for example, based on the first RS not being the same as (e.g., being different from) the second RS. The first TX beam may not be the same as (e.g., may be different from) the second TX beam, for example, based on the first RS not being the same as (e.g., being different from) the second RS.
In an example, the first RS may be the same as the second RS. The first RX beam may be the same as the second RX beam, for example, based on the first RS being the same as the second RS. The first TX beam may be the same as the second TX beam, for example, based on the first RS being the same as the second RS.
In this specification, a number of repetitions and an associated level (or a level and an associated number of repetitions, e.g., coverage enhancement (CE) level, CE mode, and the like) may be used interchangeably. For example, a first level may be associated with a first number of repetitions and a second level may be associated with a second number of repetitions. The wireless device may determine, for example, a level (of the wireless device) to be the first level. Determining the level to be the first level may, for example, be the same as determining the number of repetitions to be the first number of repetitions. The wireless device may determine, for example, a number of repetitions to be the second number of repetitions. Determining the number of repetitions to be the second number of repetitions may, for example, be the same as determining a level to be the second level. In an example, the first number of repetitions and the second number of repetitions may be the same. The first level and the second level may be the same, for example, based on the first number of repetitions and the second number of repetitions being the same. In an example, the wireless device may determine that the first number of repetitions and the second number of repetitions are the same. The wireless device may determine that the first level and the second level are the same, for example, based on the first number of repetitions and the second number of repetitions being the same. In an example, the first number of repetitions may be associated with a first value. The first level may be associated with the first value, for example, based on the first number of repetitions being associated with the first value.
In the examples (e.g., each example) of
In an example, transmitting a number of repetitions of a preamble may comprise transmitting the (same) preamble the number of times. In an example, the number of repetitions may be one. The wireless device may transmit the preamble once, for example, based on the number of repetitions being one. In an example, the number of repetitions being one may be considered to be preamble without repetitions. In another example, the number of repetitions may be two. The wireless device may transmit the preamble. The wireless device may subsequently transmit the same preamble again for a total of two times, for example, based on the number of repetitions being two.
In an example, the number of repetitions may be higher than one. The wireless device may transmit a plurality of repetitions of the preamble. Transmitting a plurality of repetitions of the preamble (or transmitting a number of repetitions of the preamble, wherein the number of repetitions is higher than one) may be referred to, for example, as multiple preamble transmission, multiple Msg1 transmission, multiple PRACH transmission, multiple RACH transmission, multi-Msg1 repetition, multi-Msg1 transmission, random access message repetition, multiple random access message transmission, and the like. Transmitting one repetition of the preamble may also be referred to as transmitting the preamble with no repetitions (or without repetitions).
In an example, an nth preamble, xu,v(n), may be generated by the wireless device according to
from which the frequency-domain representation is generated according to
where LRA=839, LRA=139, LRA=1151, or LRA=571 depending on the PRACH preamble format. There may be, for example, 64 preambles defined in each time-frequency PRACH occasion, enumerated in increasing order of first increasing cyclic shift Cy of a logical root sequence, and then in increasing order of the logical root sequence index, starting with the index obtained from the higher-layer parameter prach-RootSequenceIndex or rootSequenceIndex-BFR or by msgA-PRACH-RootSequenceIndex if configured and a type-2 random-access procedure is initiated. Additional preamble sequences, in case 64 preambles may not be generated from a single root Zadoff-Chu sequence, may be obtained from the root sequences with the consecutive logical indexes until all the 64 sequences are found. The logical root sequence order may be cyclic; the logical index 0 may be consecutive to LRA−2. The sequence number u may be obtained from a logical root sequence index according to preconfigured table(s).
In an example, the wireless device may transmit a number of repetitions of a preamble. The number of repetitions may be higher than one. Each repetition of the preamble of the number of repetitions of the preamble may comprise a second number of repetitions of a sequence. In an example, the sequence may be a Zadoff-Chu sequence, logical root sequence, root sequence, and the like. The number of repetitions of the preamble may comprise transmitting the number of repetitions of a second number of repetitions of the sequence. For example, the number of repetitions may be two. The second number of repetitions may be four. Transmitting the number of repetitions of the preamble may comprise transmitting eight repetitions of the sequence. The number of repetitions of the preamble and the second number of repetitions of the sequence may, for example, be the same. The number of repetitions of the preamble and the second number of repetitions of the sequence may, for example, be different. In an example, the number of repetitions of the preamble may be one. The second number of repetitions of the sequence may be four. Transmitting the number of repetitions (e.g., one, no repetitions, and the like) of the preamble may comprise transmitting the sequence four times, for example, based on the second number of repetitions being four.
In an example, the wireless device may determine a number of repetitions of a preamble. Determining a number of repetitions of a preamble may comprise determining to transmit the number of repetitions of the preamble. In an example, the wireless device may determine one or more resources (e.g., based on a determined RS). Determining the one or more resources may comprise determining to transmit an uplink signal (e.g., PRACH signal, RACH signal, preamble, Msg1, Msg3, PUSCH, PUCCH, and the like) over/using/via the one or more resources. In an example, the wireless device may determine a preamble based on an RS. Determining the preamble may comprise determining to transmit the preamble.
In the examples of
Throughout this specification, determining an RS (e.g., for a random access procedure) may comprise selecting the RS (e.g., for the random access procedure). Determining an RS may comprise choosing the RS. Determining the RS may comprise picking the RS. Determining the RS may comprise using the RS.
In this specification, determining an RS may comprise determining an RS for a random access procedure. Based on determining an RS for the random access procedure, a wireless device may determine UL resource(s) based on the RS. The wireless device may transmit one or more repetitions of a preamble via/using the UL resource(s). The wireless device may determine a number of repetitions of a preamble based on a radio link quality of the RS. The wireless device may transmit the number of repetitions of the preamble, for the random access procedure (of/for/in/via a cell), via/over/using the UL resource(s), for example, based on determining the RS.
In this specification, determining an RS may comprise determining one or more (random access) resources, based on the RS, for transmitting an uplink signal (e.g., preamble, PUSCH, PUCCH, SRS, and the like), e.g., for a random access procedure. Determining a number of repetitions may comprise transmitting the number of repetitions of the uplink signal via/over/using the one or more resources.
Small Data Transmission (SDT) may be a procedure allowing data and/or signaling transmission while a wireless device remains in an RRC_INACTIVE/RRC_IDLE state (e.g., without transitioning to RRC_CONNECTED state). SDT may be enabled on a radio bearer basis. SDT may be initiated by the wireless device if less than a configured amount of uplink (UL) data awaits transmission across all radio bearers for which SDT is enabled. SDT may be initiated by the wireless device if a downlink radio link quality (e.g., RSRP) is above a configured threshold. SDT may be initiated by the wireless device if a valid SDT resource is available.
SDT procedure may be initiated with either a transmission over random access channel (RACH) (e.g., RACH may be configured via system information) or over Type 1 configured grant (CG) resources (e.g., configured by a base station to the wireless device via dedicated signaling in RRCRelease). The SDT resources may be configured on initial bandwidth part (BWP) for both RACH and CG. RACH and CG resources for SDT may be configured on either or both of normal UL (NUL) and supplementary UL (SUL) carriers. The CG resources for SDT may be valid within the Special cell (SpCell) of the wireless device, e.g., when the RRCRelease with suspend indication is received. CG resources may be associated with one or multiple RS(s). For RACH, the network (e.g., base station) may configure 2-step and/or 4-step RA resources for SDT. When both 2-step and 4-step RA resources for SDT are configured, the wireless device may select an RA type. Contention free random access (CFRA) may not supported for SDT over RACH.
Once initiated, the SDT procedure may be successfully completed after the wireless device is directed to RRC_IDLE (via RRCRelease) or to continue in RRC_INACTIVE (e.g., via RRCRelease or RRCReject) or to RRC_CONNECTED (e.g., via RRCResume or RRCSetup. Once initiated, the SDT procedure may be unsuccessfully completed upon cell re-selection, expiry of an SDT failure detection timer, a MAC entity reaching a configured maximum PRACH preamble transmission threshold, an RLC entity reaching a configured maximum retransmission threshold, and/or expiry of SDT-specific timing alignment timer while SDT procedure is ongoing over CG and the wireless device has not received a response from the network/base station after an initial PUSCH transmission.
Upon unsuccessful completion of the SDT procedure, the wireless device may transition to RRC_IDLE.
The initial PUSCH transmission during the SDT procedure may include at least a CCCH message. When using CG resources for initial SDT transmission, the wireless device may perform autonomous retransmission of the initial transmission if the wireless device does not receive confirmation from the network (e.g., dynamic UL grant or DL assignment) before a configured timer expires as specified. After the initial PUSCH transmission, subsequent transmissions are handled differently depending on a type of resource used to initiate the SDT procedure.
When using CG resources, the network can schedule subsequent UL transmissions using dynamic grants and/or the subsequent UL transmissions may take place on the following CG resource occasions. The DL transmissions are scheduled using dynamic assignments. The wireless device may initiate subsequent UL transmission only after reception of confirmation (e.g., dynamic UL grant or DL assignment) for the initial PUSCH transmission from the network. For subsequent UL transmission, the wireless device may not initiate re-transmission over a CG resource.
When using RACH resources, the network can schedule subsequent UL and DL transmissions using dynamic UL grants and DL assignments, respectively, after completion of the RA procedure.
While the SDT procedure is ongoing, if data appears in a buffer of any radio bearer not enabled for SDT, the wireless device may initiate a transmission of a non-SDT data arrival indication using UEAssistanceInformation message to the network and, if available, may include the resume cause.
SDT procedure over CG resources may be initiated with valid UL timing alignment. The UL timing alignment may be maintained by the wireless device based on a SDT-specific timing alignment timer configured by the network via dedicated signaling and, for initial CG-SDT transmission, also by DL radio link quality of configured number of highest ranked SSBs which are above a configured radio link quality threshold. Upon expiry of the SDT-specific timing alignment timer, the CG resources may be released by the wireless device while maintaining the CG resource configuration.
Logical channel restrictions configured by the network while in RRC_CONNECTED state and/or in RRCRelease message for radio bearers enabled for SDT, if any, may be applied by the UE during SDT procedure.
A MAC entity (e.g., a wireless device, a MAC entity of the wireless device, and the like) may be configured by a radio resource control (RRC) layer (e.g., upper layers, the wireless device, upper layers of the wireless device, RRC layer of the wireless device, and the like) with SDT and the SDT procedure may be initiated by the RRC layer. The SDT procedure may be performed either by Random Access procedure with 2-step RA type or 4-step RA type (i.e., RA-SDT) or by configured grant Type 1 (e.g., CG-SDT).
RRC may configure the following parameters for SDT procedure: sdt-DataVolumeThreshold: data volume threshold for the wireless device to determine whether to perform SDT procedure, sdt-RSRP-Threshold: radio link quality (e.g., RSRP) threshold for the wireless device to determine whether to perform SDT procedure, and/or cg-SDT-RSRP-ThresholdSSB: a radio link quality (e.g., RSRP) threshold configured for RS selection for CG-SDT.
The MAC entity may, if initiated by the upper layers for SDT procedure, if the data volume of the pending UL data across all RBs configured for SDT is less than or equal to sdt-DataVolumeThreshold, if the radio link quality of the downlink RS is higher than sdt-RSRP-Threshold (or if sdt-RSRP-Threshold is not configured), if CG-SDT is configured on the selected UL carrier, and TA of the CG resource is valid in the first available CG occasion, if, for each RB having data available for transmission, configuredGrantType1Allowed, if configured, is configured with value true for the corresponding logical channel, and/or if at least one RS configured for CG-SDT with a radio link quality (e.g., SS-RSRP) above cg-SDT-RSRP-ThresholdSSB is available, indicate to the upper layers that the conditions for initiating SDT procedure are fulfilled, and/or perform CG-SDT procedure on the selected UL carrier.
A base station may configure (e.g., transmit, provide, indicate, and the like) a CG-SDT configuration to the wireless device. The CG-SDT configuration may indicate a number of repetitions (e.g., PUSCH repetitions) to be used for UL transmission(s) via resources indicated in the CG-SDT configuration. The wireless device may determine an RS (e.g., SSB), from/among a plurality of RSs, for example, for the UL transmission(s) via the resources indicated in the CG-SDT configuration.
The base station may transmit (broadcast) configuration parameters of/for a cell to a wireless device. The wireless device may receive the configuration parameters. The configuration parameters may indicate a plurality of RSs. Each RS of the plurality of RSs may be associated with a respective number of repetitions. The plurality of RSs may comprise, for example, a first RS and a second RS. The first RS may be associated with a first number of repetitions. The second RS may be associated with a second number of repetitions. In an example, the base station may indicate, e.g., via the CG-SDT configuration, a third number of repetitions to be used by the wireless device for UL transmission(s) via resources indicated in the CG-SDT configuration. The wireless device may determine (e.g., select, choose, and the like) the first RS for the CG-SDT procedure/transmission(s). The wireless device may transmit UL transmission(s) via the resources indicated in the CG-SDT configuration with the third number of repetitions, for example, based on the CG-SDT configuration indicating the third number of repetitions.
In an example, the third number of repetitions may be greater than the first number of repetitions. According to the implementation of existing technologies, the wireless device may determine the first RS for the CG-SDT procedure. The wireless device may transmit the UL (e.g., PUSCH) transmission(s) via the resources indicated in the CG-SDT configuration with the third number of repetitions. Based on the wireless device determining the first RS and transmitting the UL (e.g., PUSCH) transmission(s) via the resources indicated in the CG-SDT configuration with the third number of repetitions, the wireless device may unnecessarily transmit additional repetitions of the UL transmission(s). Unnecessarily transmitting additional repetitions of the UL transmission(s) may lead to increase in power consumption at the wireless device, increase in power consumption at the base station, underutilization of network resources, increase in latency, and/or reduction in battery life of the wireless device.
In another example, the third number of repetitions may be less than the first number of repetitions. According to the implementation of existing technologies, the wireless device may determine the first RS for the CG-SDT procedure. The wireless device may transmit the UL (e.g., PUSCH) transmission(s) via the resources indicated in the CG-SDT configuration with the third number of repetitions. Based on the wireless device determining the first RS and transmitting the UL (e.g., PUSCH) transmission(s) via the resources indicated in the CG-SDT configuration with the third number of repetitions, the base station may not receive (e.g., decode, successfully receive, and the like) the UL (e.g., PUSCH) transmission(s) as the first RS is associated with the first number of repetitions that is greater than the third number of repetitions. In response to the base station not receiving the UL (e.g., PUSCH) transmission(s), the wireless device may retransmit the UL (e.g., PUSCH) transmission(s), transmit a random access message, initiate a random access procedure, transition to an RRC_CONNECTED state unnecessarily, and the like. As a result, power consumption at the wireless device and/or the base station may increase, battery life of the wireless device may reduce, network resources may be underutilized and/or wasted, and/or network latency may increase.
In light of the existing technologies, there is a need to improve determining (e.g., methods, apparatuses, procedures, and the like, used to determine) a number of repetitions of UL (e.g., PUSCH) transmission(s) via resources indicated in a CG-SDT configuration.
According to example embodiments of the present disclosure, a base station may transmit (e.g., provide, signal, configure, and the like) a plurality of UL resource sets (e.g., via one or more CG-SDT configurations) to a wireless device. Each UL resource set of the plurality of UL resource sets may be associated with a respective number of repetitions of a plurality of numbers of repetitions. The wireless device may determine (e.g., select, choose, and the like) an RS for a CG-SDT. Based on a radio link quality of the RS, the wireless device may determine a number of repetitions. Based on the number of repetitions, the wireless device may determine (e.g., select, choose, and the like) a UL resource set associated with the number of repetitions. The wireless device may transmit the number of repetitions of UL (e.g., PUSCH) transmission(s) via resources from/among the UL resource set. Based on the resource set on which the UL (e.g., PUSCH) transmission(s) are received, the base station may be aware of the number of repetitions used for the UL (e.g., PUSCH) transmission(s) (e.g., to monitor, expect, and the like).
Based on selecting UL resources from a UL resource set associated with a number of repetitions determined based on a radio link quality of a selected RS, the wireless device may not unnecessarily use more repetitions than or less repetitions than required. The wireless device may reduce power consumption, increase battery life, reduce underutilization and/or wastage of network resources, and/or improve/reduce network latency.
In an example embodiment of the present disclosure, a wireless device may receive configuration parameters of/for a cell. The wireless device may receive the configuration parameters from a base station. The wireless device may receive one or more downlink messages (e.g., RRC release message, RRCRelease, RRC connection release message, SIB, and the like) that may comprise the configuration parameters.
The configuration parameters may indicate/comprise one or more CG-SDT configurations (e.g., SDT-CG-Config, SDT-Config, CG-SDT specific configuration, and the like). The one or more CG-SDT configurations may indicate a plurality of UL resource sets.
Each UL resource set of the plurality of UL resources sets may comprise UL resource(s) for the wireless device to use for UL (e.g., PUSCH) transmission(s). Each UL resource set of the plurality of UL resource sets may be associated with a respective number of repetitions of a plurality of numbers of repetitions. The configuration parameters may, for example, indicate the plurality of number of repetitions.
The configuration parameters may indicate a plurality of numbers of repetitions (e.g., repetitions of an UL signal, e.g., PUSCH repetitions). In the example of
The configuration parameters (and/or the CG-SDT configuration(s)) may indicate an association between the plurality of UL resource sets and the plurality of numbers of repetitions. In the example of
The wireless device may repeat an UL signal (e.g., PUSCH transport block, PUCCH signal, and the like) Rep 1 times to transmit the UL signal over/via/using resource(s) from UL Resource Set 1, for example, based on UL Resource Set I being associated with Rep 1. The wireless device may repeat an UL signal (e.g., PUSCH transport block, PUCCH signal, and the like) Rep 2 times to transmit the UL signal over/via/using resource(s) from UL Resource Set 2, for example, based on UL Resource Set 2 being associated with Rep 2. The wireless device may repeat an UL signal (e.g., PUSCH transport block, PUCCH signal, and the like) Rep 3 times to transmit the UL signal over/via/using resource(s) from UL Resource Set 3, for example, based on UL Resource Set 3 being associated with Rep 1.
In an example, the wireless device may be in an RRC_CONNECTED mode/state when the wireless device receives the CG-SDT configuration(s). The wireless device may transition (e.g., move, transfer, and the like) to an RRC_IDLE/RRC_INACTIVE mode/state after receiving the CG-SDT configuration(s). In an example, the wireless device may transition (e.g., move, transfer, and the like) to an RRC_IDLE/RRC_INACTIVE mode/state in response to receiving one or more downlink messages comprising the CG-SDT configuration(s). The one or more downlink messages may be, for example, RRCRelease message.
The configuration parameters may comprise/indicate a plurality of RSs. In the example of
The wireless device may determine a radio link quality of RS 2. The radio link quality of RS 2 may be associated with a number of repetitions of the plurality of numbers of repetitions. In the example of
The wireless device may determine which UL resource set from/among/out of the plurality of UL resource sets to use for the CG-SDT procedure, for example, based on the radio link quality of the determined RS (e.g., the radio link quality of RS 2 in
In the example of
In an example embodiment, the CG-SDT configuration(s) may comprise a single CG-SDT configuration. The single CG-SDT configuration may comprise/indicate the plurality of UL resource sets. In another example embodiment, the CG-SDT configuration(s) may comprise a plurality of CG-SDT configuration. The plurality of CG-SDT configurations may comprise/indicate the plurality of UL resource sets. In an example, each CG-SDT configuration of the plurality of CG-SDT configurations may comprise/indicate a respective UL resource set from/of/among the plurality of UL resource sets.
In an example embodiment, the example embodiments of
In an example, the feature may be indicated in the configuration parameters (e.g., feature Priorities, featureIndication, and the like). In an example, the feature may be small data transmission (SDT). In an example, the feature may be network slicing. In an example, the feature may be reduced capability (RedCap). In an example, the feature may be message 3 repetitions. In an example, the feature may be extended reality (XR). In an example, the feature may be ultra reliable low latency communication (URLLC). In an example, the feature may be low latency communication. In an example, the feature may indicate communication for medical applications (e.g., surgery). In an example, the feature may be sidelink communication. In an example, the feature may be integrated access and backhaul (IAB). In an example, the feature may be shared spectrum channel access (e.g., unlicensed cell/band/spectrum/carrier). In an example, the feature may be coverage enhancement (CE). In an example, the feature may be IMS voice. In an example, the feature may be public warning system. In an example, the feature may be emergency services. In an example, the feature may be stand-alone network. In an example, the feature may be dual connectivity. In an example, the feature may be multi-radio connectivity. In an example, the feature may be multicast and broadcast services (MBS). In an example, the feature may be sidelink relay. In an example, the feature may be multi-SIM device. In an example, the feature may be interference management. In an example, the feature may be positioning. In an example, the feature may be a non-terrestrial network (NTN). In an example, the feature may be the wireless device being in an NTN (or NTN cell). In an example, the feature may be the wireless device transmitting an uplink signal (e.g., preamble, PRACH, PUSCH, PUCCH, SRS, PRS, and the like) in an NTN (e.g., NTN cell, to an NTN payload, and the like)
In an example embodiment, the example embodiments of
In an example embodiment, the example embodiment of
The wireless device may determine one or more numbers of repetitions, of the plurality of numbers of repetitions. The one or more number of repetitions may be, for example, the same as the plurality of numbers of repetitions. In another example, the plurality of numbers of repetitions may comprise the one or more numbers of repetitions. The one or more numbers of repetitions may be associated with one or more radio link qualities of one or more RS. Each number of repetitions of the one or more numbers of repetitions may be associated with a respective radio link quality of the one or more radio link qualities. Each radio link quality of the one or more radio link qualities may be associated with a respective RS of the one or more RSs.
The wireless device may, for example, determine (e.g., select, choose, pick, use, and the like) an RS of the one or more RSs based on a radio link quality of the RS being associated with a first number of repetitions that is lowest among the one or more numbers of repetitions. In an example, the wireless device may determine (e.g., select, choose, pick, use, and the like) the RS of the one or more RSs based on the radio link quality of the RS being associated with the first number of repetitions in response to the wireless device being in an NTN (e.g., the wireless device being served by an NTN cell, the wireless device transmitting an uplink signal (e.g., a preamble) via an NTN, the wireless device transmitting the uplink signal to an NTN payload, and the like).
The wireless device may, for example, transmit, via a random access resource determined based on the selected RS, a first preamble with the first number of repetitions. The wireless device may, for example, transmit the first preamble with the first number of repetitions via an NTN cell.
An example method comprising: receiving, by a wireless device, configuration parameters indicating: a plurality of numbers of repetitions of a preamble; and a plurality of reference signals (RSs); determining one or more numbers of repetitions, of the plurality of numbers of repetitions, associated with one or more radio link qualities of one or more RSs, of the plurality of RSs, wherein each number of repetitions of the one or more numbers of repetitions is associated with a respective radio link quality of the one or more radio link qualities; selecting an RS of the one or more RSs based on a radio link quality of the RS being associated with a first number of repetitions that is lowest among the one or more numbers of repetitions; and transmitting, via a random access resource determined based on the selected RS, a first preamble with the first number of repetitions.
The above example method, wherein the configuration parameters are broadcast configuration parameters.
One or more of the above example methods, wherein one or more system information blocks comprise the configuration parameters.
One or more of the above example methods, wherein one or more radio resource control (RRC) messages comprise the configuration parameters.
One or more of the above example methods, wherein the one or more RRC messages are one or more RRC reconfiguration messages.
One or more of the above example methods, wherein the one or more RRC messages are one or more RRC setup messages.
One or more of the above example methods, wherein the one or more RRC messages are one or more RRC release messages.
One or more of the above example methods, wherein the configuration parameters further comprise a plurality of thresholds.
One or more of the above example methods, wherein the configuration parameters indicate plurality of numbers of repetitions of a preamble based on the plurality of thresholds.
One or more of the above example methods, wherein each number of repetitions is associated with a respective radio link quality based on the radio link quality satisfying a respective threshold of the plurality of thresholds.
One or more of the above example methods, wherein the one or more numbers of repetitions are the same as the plurality of numbers of repetitions.
One or more of the above example methods, wherein the one or more numbers of repetitions are less than the plurality of numbers of repetitions.
One or more of the above example methods, wherein a number of the one or more RSs is equal to a number of the plurality of RSs.
One or more of the above example methods, wherein a number of the one or more RSs is less than a number of the plurality of RSs.
One or more of the above example methods, wherein the configuration parameters do not comprise/indicate a threshold for selecting an RS for a random access procedure based on comprising/indicating the plurality of thresholds.
One or more of the above example methods, wherein the configuration parameters indicate a plurality of coverage enhancement levels.
One or more of the above example methods, wherein the plurality of coverage enhancement levels are associated with the plurality of numbers of repetitions.
One or more of the above example methods, wherein each coverage enhancement level of the plurality of coverage enhancement levels is associated with a respective number of repetitions of the plurality of numbers of repetitions.
One or more of the above example methods, wherein the RS is at least one of: a synchronization signal; a synchronization signal block (SSB); synchronization signal/physical broadcast channel block; channel state information-RS; positioning RS; or sounding RS.
One or more of the above example methods, wherein the one or more radio link qualities are one of: one or more RSRPs; one or more RSSIs; one or more RSRQs; one or more BLERs; or one or more SNRs.
One or more of the above example methods, wherein the plurality of RSs comprise: a first RS; a second RS; and a third RS.
One or more of the above example methods, wherein the plurality of thresholds comprise: a first threshold; and a second threshold.
One or more of the above example methods, wherein the one or more numbers of repetitions comprise: a first number of repetitions; a second number of repetitions; and a third number of repetitions.
One or more of the above example methods, wherein the one or more radio link qualities comprise: a first radio link quality, a second radio link quality, and a third radio link quality.
One or more of the above example methods, wherein: the first radio link quality is associated with the first RS; the second radio link quality is associated with the second RS; and the third radio link quality is associated with the third RS.
One or more of the above example methods, further comprising selecting the first RS based on the first radio link quality being greater than the first threshold.
One or more of the above example methods, further comprising selecting the second RS based on: the second radio link quality being highest among the one or more radio link qualities; the second radio link quality being less than the first threshold; and the second radio link quality being greater than the second threshold.
One or more of the above example methods, further comprising selecting the third RS based on: the third radio link quality being highest among the one or more radio link qualities; the third radio link quality being less than the first threshold; and the third radio link quality being less than the second threshold.
This application claims the benefit of U.S. Provisional Application No. 63/440,821, filed Jan. 24, 2023, which is hereby incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
63440821 | Jan 2023 | US |