The invention relates to a range finder and lens assembly for display thereof.
Today's range finder includes displays to show information about the distance of the measured object, wherein the eyepiece can see information about the target, background, and display at the same time. However, the conventional range finder with displays cannot provide bright and clear target and display information without affecting the background color and visual effect. It is clear that the conventional range finder with displays can't satisfy today's requirements. Therefore, the range finder needs a new structure in order to increase the brightness of the display without affecting the background color.
The invention provides a range finder and lens assembly for display thereof, which can simultaneously increase the brightness of the display without affecting the background color, and greatly improve the visual effect.
The lens assembly for display in accordance with an exemplary embodiment of the invention includes a display, a lens assembly, and a prism assembly. The display emits a first light beam. The lens assembly includes a light incident surface and a light emitting surface, both of which are arranged in order along an optical axis, wherein the first light beam enters the lens assembly through the light incident surface and exits the lens assembly by the light emitting surface. The prism assembly includes a first prism, a second prism, and an optical multilayer film, wherein the first prism includes a first surface, a second surface, and a third surface; the second prism includes a fourth surface, a fifth surface, a sixth surface, a seventh surface, and an eighth surface; the fifth surface faces the third surface; and the optical multilayer film is disposed between the third surface and the fifth surface. The lens assembly further includes a first lens, a second lens, and a third lens, all of which are arranged in order along the optical axis. The second lens is disposed between the first lens and the third lens. The first lens includes a first light incident surface, and the first light incident surface is the light incident surface of the lens assembly. The third lens includes a third light emitting surface, and the third light emitting surface is the light emitting surface of the lens assembly. A second light beam enters the first prism through the first surface are totally reflected from the second surface to the optical multilayer film, the optical multilayer film reflects a part of the second light beam causing the part of the second light beam to exit the first prism by the second surface. The first light beam exits the lens assembly, and enters the second prism through the eighth surface, and exits the second prism by the fifth surface, and enters the first prism through the optical multilayer film, the optical multilayer film allows a part of the first light beam to pass through, finally, the part of the first light beam exits the first prism by the second surface, where the part of the second light beam and the part of the first light beam coincide on the second surface. The lens assembly for display satisfies at least one of following conditions: 0.60≤Din/TTL≤0.75; 0.28≤Din/f123≤0.35; 4.56 mm≤Din≤5.02 mm; wherein Din is an effective optical diameter of the light incident surface, TTL is an interval from the light incident surface to the light emitting surface along the optical axis, and f123 is an effective focal length of a combination of the first lens, the second lens, and the third lens.
The lens assembly for display in accordance with another embodiment of the invention includes a display, a lens assembly, and a prism assembly. The display emits a first light beam. The lens assembly includes a light incident surface and a light emitting surface, both of which are arranged in order along an optical axis, wherein the first light beam enters the lens assembly through the light incident surface and exits the lens assembly by the light emitting surface. The prism assembly includes a first prism, a second prism, and an optical multilayer film, wherein the first prism includes a first surface, a second surface, and a third surface; the second prism includes a fourth surface, a fifth surface, a sixth surface, a seventh surface, and an eighth surface; the fifth surface faces the third surface; and the optical multilayer film is disposed between the third surface and the fifth surface. The lens assembly further includes a first lens, a second lens, and a third lens, all of which are arranged in order along the optical axis. The second lens is disposed between the first lens and the third lens. The first lens includes a first light incident surface, and the first light incident surface is the light incident surface of the lens assembly. The third lens includes a third light emitting surface, and the third light emitting surface is the light emitting surface of the lens assembly. A second light beam enters the first prism through the first surface are totally reflected from the second surface to the optical multilayer film, the optical multilayer film reflects a part of the second light beam causing the part of the second light beam to exit the first prism by the second surface. The first light beam exits the lens assembly, and enters the second prism through the eighth surface, and exits the second prism by the fifth surface, and enters the first prism through the optical multilayer film, the optical multilayer film allows a part of the first light beam to pass through, finally, the part of the first light beam exits the first prism by the second surface, where the part of the second light beam and the part of the first light beam coincide on the second surface. The lens assembly for display satisfies at least one of following conditions: 1.10≤Dout/TTL≤1.25; 0.50≤Dout/f123≤0.57; wherein Dout is an effective optical diameter of the eighth surface, TTL is an interval from the light incident surface to the light emitting surface along the optical axis, and f123 is an effective focal length of a combination of the first lens, the second lens, and the third lens.
In another exemplary embodiment, the optical multilayer film covers the third surface; the first light beam enters the lens assembly through the first light incident surface of the first lens and exits the lens assembly by the third light emitting surface of the third lens; and the lens assembly for display satisfies: 0.50≤Dout/f123≤0.57; wherein Dout is an effective optical diameter of the eighth surface and f123 is the effective focal length of the combination of the first lens, the second lens, and the third lens.
In yet another exemplary embodiment, the optical multilayer film covers the third surface; the first light beam enters the lens assembly through the first light incident surface of the first lens and exits the lens assembly by the third light emitting surface of the third lens; and the lens assembly for display satisfies: 1.10≤Dout/TTL≤1.25; wherein Dout is an effective optical diameter of the eighth surface and TTL is the interval from the light incident surface to the light emitting surface along the optical axis.
In another exemplary embodiment, the light emitting surface and the optical axis intersect at a second intersection point; an outermost edge of the effective optical diameter of the light incident surface and the second intersection point form a first virtual edge; the first virtual edge forms a first angle with the optical axis; the light incident surface and the optical axis intersect at a first intersection point; an outermost edge of the effective optical diameter of the light emitting surface and the first intersection point form a second virtual edge; the second virtual edge forms a second angle with the optical axis; and the first angle is more than or equal to 15 degrees and less than or equal to 17 degrees or the second angle is more than or equal to 28 degrees and less than or equal to 31 degrees.
In yet another exemplary embodiment, the lens assembly for display satisfies at least one of following conditions: 0.96 degrees/mm≤A1/f123≤1.07 degrees/mm; 1.78 degrees/mm≤A2/f123≤2.04 degrees/mm; wherein A1 is an angle of the first angle, A2 is an angle of the second angle, and f123 is an effective focal length of a combination of the first lens, the second lens, and the third lens.
In another exemplary embodiment, the prism assembly further includes a roof prism which includes a ninth surface, a tenth surface, and a ridge surface, wherein the ninth surface faces the second surface; a third light beam enters the first prism through the first surface is totally reflected from the second surface to the optical multilayer film, the optical multilayer film allows the third light beam to pass through and enters the second prism through the fifth surface, and exits the second prism by the seventh surface; and the part of the first light beam exits the first prism by the second surface and enters the roof prism through the ninth surface.
In yet another exemplary embodiment, the lens assembly for display satisfies: 0.80%≤E1/E0≤0.95%; wherein E0 is an energy of the first light beam emitted from the display and E1 is an energy of the first light beam passes through the lens assembly.
In another exemplary embodiment, the optical multilayer film covers the third surface; the first light beam enters the lens assembly through the first light incident surface of the first lens and exits the lens assembly by the third light emitting surface of the third lens; and the lens assembly for display satisfies at least one of following conditions: 0.60≤Din/TTL≤0.75; 4.56 mm≤Dm≤5.02 mm; wherein Din is an effective optical diameter of the light incident surface and TTL is the interval from the light incident surface to the light emitting surface along the optical axis.
In yet another exemplary embodiment, the lens assembly for display satisfies: 0.28≤Din/f123≤0.35; wherein Din is the effective optical diameter of the light incident surface and f123 is an effective focal length of a combination of the first lens, the second lens, and the third lens.
A detailed description is given in the following embodiments with reference to the accompanying drawings.
The invention can be more fully understood by reading the subsequent detailed description and examples with references made to the accompanying drawings, wherein:
The following description is made for the purpose of illustrating the general principles of the invention and should not be taken in a limiting sense. The scope of the invention is best determined by reference to the appended claims.
In the following description, visible light beam 2 can be regarded as second light beam, infrared light beam 201R can be regarded as third light beam, and visible light beam 71 can be regarded as first light beam.
Referring to
When a visible light beam 2 enters the first prism 11, it directly penetrates the first surface 111 toward the second surface 112 and undergoes a total internal reflection on the second surface 112. Then, the propagation direction of the visible light beam 2 is changed, and the visible light beam 2 enters the third surface 113 and the optical multilayer film 17. The optical multilayer film 17 allows infrared light beam and part of visible light beam to pass through but reflects the other part of visible light beam, so that part of the visible light beam 2 is reflected to change propagation direction toward the second surface 112 and exits the first prism 11 by the second surface 112, and then enters the roof prism 15. The visible light beam 2 directed to the roof prism 15 will penetrate the ninth surface 151 directly, and then the visible light beam 2 will be totally reflected from the tenth surface 152, the ridge surface 153, and the ninth surface 151 to change the propagation direction and exits the roof prism 15 by the tenth surface 152 finally.
When another visible light beam 71 enters the second prism 13 through the eighth surface 135, it will be directed to the fifth surface 132, the optical multilayer film 17, and the third surface 113. The visible light beam 71 will directly penetrate the fifth surface 132. The optical multilayer film 17 allows infrared light beam and part of the visible light beam to pass through but reflects the other part of the visible light beam, so that part of the visible light beam 71 penetrates the optical multilayer film 17 and enters the first prism 11 through the third surface 113, and finally exits the first prism 11 by the second surface 112, and then enters the roof prism 15. The visible light beam 71 directed to the roof prism 15 directly penetrates the ninth surface 151, and then the visible light beam 71 is totally reflected from the tenth surface 152, the ridge surface 153, and the ninth surface 151 to change the propagation direction. Finally, the visible light beam 71 exits the roof prism 15 by tenth surface 152.
The above visible light beam 2 and visible light beam 71 coincide on the second surface 112.
Referring to
In summary, the visible light beam 2 and the infrared light beam 201R will be separated and propagate in different directions if the visible light beam 2 and the infrared light beam 201R simultaneously enter the prism assembly 10 through the first surface 111. The visible light beam 2 exits the prism assembly 10 by the tenth surface 152 without changing its propagation direction. The infrared light beam 201R exits the prism assembly 10 by the seventh surface 134 with changing its propagation direction.
Referring to
Referring to
The display 73 emits a visible light beam 71. The visible light beam 71 reflected by the mirror 75 first to change propagation direction and enters the stop ST, the first lens 76, the second lens 77, and the third lens 78 in order, and then enters the prism assembly 10 through the eighth surface 135 of the second prism 13, finally exits the roof prism 15 by the tenth surface 152 and imaging on the focal plane 3. User can view the image which is on the focal plane 3 through the eyepiece 40, that is, the user can see the distance of the measured object displayed on the display 73 through the eyepiece 40.
Referring to
0.80%≤E1/E0≤0.95% (1)
0.60≤Din/TTL≤0.75 (2)
1.10≤Dout/TTL≤1.25 (3)
0.28≤Din/f123≤0.35 (4)
0.50≤Dout/f123≤0.57 (5)
15 degrees≤A1≤17 degrees (6)
28 degrees≤A2≤31 degrees (7)
2.10 degrees/mm≤A1/TTL≤2.30 degrees/mm (8)
3.95 degrees/mm≤A2/TTL≤4.40 degrees/mm (9)
0.96 degrees/mm≤A1/f123≤1.07 degrees/mm (10)
1.78 degrees/mm≤A2/f123≤2.04 degrees/mm (11)
4.56 mm≤Din≤5.02 mm; (12)
wherein E0 is an energy of the visible light beam 71 emitted from the display 73, E1 is an energy of the visible light beam 71 passes through the lens assembly 72, Din is an effective optical diameter of the first light incident surface S3, Dout is an effective optical diameter of the eighth surface 135 of the second prism 13, TTL is an interval from the first light incident surface S3 to the third light emitting surface S8 along the optical axis OA, f123 is an effective focal length of a combination of the first lens 76, the second lens 77, and the third lens 78, A1 is an angle of the first angle, and A2 is an angle of the second angle. By changing the design value of DL, Din, Dout and satisfying at least any one of the conditions (1)-(12), the visual brightness of the lens assembly for display 70 (viewed through the eyepiece 40) can be effectively improved without affecting the background color. Two embodiments will be presented below to explain the effects of different values of DL, Din, Dout and the values of conditions (1)-(12) on the visual brightness of the lens assembly for display 70.
Among the above conditions, if condition (1) is modified to 0.85%≤E1/E0≤0.93%, there is a better effect for visual brightness.
Among the above conditions, if condition (2) is modified to 0.64≤Din/TTL≤0.71, there is a better effect for visual brightness.
Among the above conditions, if condition (4) is modified to 0.29≤Din/f123≤0.32, there is a better effect for visual brightness.
Among the above conditions, if condition (8) is modified to 2.25 degrees/mm≤A1/TTL≤2.26 degrees/mm, there is a better effect for visual brightness.
Among the above conditions, if condition (9) is modified to 4.15 degrees/mm≤A2/TTL≤4.32 degrees/mm, there is a better effect for visual brightness.
Among the above conditions, if condition (11) is modified to 1.87 degrees/mm≤A2/f123≤1.94 degrees/mm, there is a better effect for visual brightness.
Referring to Table 1, Table 1 shows the optical specifications of the lens assembly 72 in accordance with a first embodiment of the invention. Table 1 shows that the effective focal length f123 of the combination of the first lens 76, the second lens 77, and the third lens 78 is equal to 15.8045 mm and the interval TTL from the first light incident surface S3 to the third light emitting surface S8 along the optical axis OA is equal to 7.121 mm.
Table 2 shows the parameters and condition values for conditions (2)-(12) in accordance with the first embodiment of the lens assembly 72. It can be seen from Table 2 that the lens assembly 72 of the first embodiment satisfies the conditions (2)-(12).
Referring to Table 3, Table 3 shows the optical specifications of the lens assembly 72 in accordance with a second embodiment of the invention. Table 3 shows that the effective focal length f123 of the combination of the first lens 76, the second lens 77, and the third lens 78 is equal to 15.7745 mm and the interval TTL from the first light incident surface S3 to the third light emitting surface S8 along the optical axis OA is equal to 7.091 mm.
Table 4 shows the parameters and condition values for conditions (2)-(12) in accordance with the second embodiment of the lens assembly 72. It can be seen from Table 4 that the lens assembly 72 of the second embodiment satisfies the conditions (2)-(12).
Referring to Table 5, Table 5 shows a comparison table of the visual brightness of the lens assembly for display 70 with different DL, Din, and Dout values in the first and second embodiments. The unit of brightness may be in lumen (lm) or in watt (W), the present invention will use watt as a unit of brightness. It can be seen from Table 5, the energy ratio of the visible light beam 71 before to after passes through the lens assembly for display 72 satisfies condition (1): 0.80%≤E1/E0≤0.95%. In the first embodiment, the energy E0 of the visible light beam 71 before passes through the lens assembly for display 72 is equal to 63 watts and the energy E1 of the visible light beam 71 after pass through the lens assembly for display 72 is equal to 0.54 watts. In the second embodiment, the energy E0 of the visible light beam 71 before passes through the lens assembly for display 72 is equal to 63 watts and the energy E1 of the visible light beam 71 after pass through the lens assembly 72 is equal 0.59 watts. It can be calculated that E1/E0 of the first embodiment and the second embodiment are 0.85% and 0.93% respectively, which shows that increasing the effective optical diameter of the first light incident surface S3, increasing the effective optical diameter of the eighth surface 135 of the second prism 13, or satisfying at least any one of the conditions (1)-(12) can effectively improve the visual brightness of the lens assembly for display 70.
In the above embodiment, the display 73 is a liquid crystal display (LCD) or an organic light emitting diode (OLED).
In the above embodiment, the optical transmitter 20 is a semiconductor laser band the optical receiver 50 is an avalanche photodiode (APD) or a photo diode (PD).
While the invention has been described by way of example and in terms of preferred embodiment, it is to be understood that the invention is not limited thereto. To the contrary, it is intended to cover various modifications and similar arrangements (as would be apparent to those skilled in the art). Therefore, the scope of the appended claims should be accorded the broadest interpretation so as to encompass all such modifications and similar arrangements.
Number | Date | Country | Kind |
---|---|---|---|
201910335409.1 | Apr 2019 | CN | national |
This application is a Continuation of pending U.S. patent application Ser. No. 16/819,296, filed Mar. 16, 2020, now U.S. Pat. No. 11,604,064, and entitled “Range Finder and Lens Assembly for Display Thereof”.
Number | Name | Date | Kind |
---|---|---|---|
9341815 | Hsueh et al. | May 2016 | B1 |
10234283 | Chang et al. | Mar 2019 | B2 |
11604064 | Ma | Mar 2023 | B2 |
20070229982 | Minakawa et al. | Oct 2007 | A1 |
20140327976 | Chen | Nov 2014 | A1 |
20150029599 | Huang | Jan 2015 | A1 |
20170090192 | Iwasaki et al. | Mar 2017 | A1 |
20170276927 | Chen et al. | Sep 2017 | A1 |
20180203205 | Cao et al. | Jul 2018 | A1 |
20190049704 | Ishii et al. | Feb 2019 | A1 |
20190086646 | Chen et al. | Mar 2019 | A1 |
Number | Date | Country |
---|---|---|
101034200 | Sep 2007 | CN |
101490504 | Jul 2009 | CN |
101819316 | Sep 2010 | CN |
102087394 | Jun 2011 | CN |
102279458 | Dec 2011 | CN |
104007538 | Aug 2014 | CN |
105445942 | Mar 2016 | CN |
105806308 | Jul 2016 | CN |
106154525 | Nov 2016 | CN |
106444003 | Feb 2017 | CN |
106526811 | Mar 2017 | CN |
106842548 | Jun 2017 | CN |
107219621 | Sep 2017 | CN |
107229111 | Oct 2017 | CN |
107688224 | Feb 2018 | CN |
108427183 | Aug 2018 | CN |
101034200 | Sep 2007 | IN |
2005077714 | Mar 2005 | JP |
2007093888 | Apr 2007 | JP |
WO2017170284 | Feb 2019 | JP |
201115180 | May 2011 | TW |
201200928 | Jan 2012 | TW |
201232088 | Aug 2012 | TW |
201508333 | Mar 2015 | TW |
Entry |
---|
English translation of CN 105445942. (Year: 2016). |
Journal of Wuhan Technical University of Surveying and Mapping 1986, 11(4): 83-91; Publication Date: Dec. 31, 1986 Title: Design for Infra-red Geodimeter BHC-5 and Its Accuracy Analysis. |
Number | Date | Country | |
---|---|---|---|
20230194256 A1 | Jun 2023 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16819296 | Mar 2020 | US |
Child | 18165965 | US |