The subject matter of the present invention relates generally to a range hood that can monitor the temperature of a cook top located beneath it and provide notification and or remedial response(s) based on such temperature monitoring.
Conventionally, cook top appliances have been largely dependent upon a user monitoring the cook top during use in order to prevent undesirable temperature levels and/or prolonged periods of heating such as e.g., when a heating element is left on after cooking a meal. During use, it may be visibly apparent that a particular heating element is activated. For example, with a gas burner, the user may be able to see the flame. With an electric resistance (aka coil) or electric radiant cook top, the heating element may provide an orange or red glow indicating a high temperature.
There may be times, however, when there is no visual indication that a heating element is activated or at high temperature. By way of example, some heating elements do not necessarily emit light or otherwise indicate their energized status at all times during operation, particularly at low power levels (such as “Simmer” or “Warm”). Also, even if it is visually apparent that a heating element is activated, visual inspection may not reveal the actual temperature level such that the user may not appreciate that an undesirable temperature has been reached if the user is not otherwise carefully monitoring temperature. For example, an undesirable temperature may include one at which food can be burned, the cook top appliance can be damaged, contact with the user is undesirable, a cooking oil could be ignited, and others. Alternatively, the temperature level of a heating element may be undesirable simply because the heating element has been left on for a prolonged period of time during which the user is not actually using the cook top. Similarly, even after the heating element is turned off residual heat in the cook top surface (or in the case of a gas cook top, the metal support grate above the burner) can remain hot for a considerable period of time.
In the case of electric radiant and induction cook tops the heating element generally contains a temperature-sensitive switch that controls the illumination of a visual indicator somewhere on the cook top surface, typically near the control knobs or touch pad. However, this indicator is generally small and hard to perceive over wide viewing angles, and generally is not positioned where the cook top is actually “hot.” In the case of electric resistance (aka coil) and gas cook tops no such temperature sensitive switch is easily implementable, therefore direct monitoring of the heating element temperature is not performed, and, generally, no visual indicator is provided.
Several challenges are created for the design of features for monitoring the temperature of a cook top and providing notifications and/or remedial responses based on such temperature measurement. For example, cook top appliances can include a variety of configurations for the heating elements located on the cook top surface. The number of heating elements or positions available for heating on the cook top can include e.g., four, six, or more depending upon the intended application and preferences of the buyer. These heating elements can also vary in size and location along the surface of the cook top. Further, the types of heating elements available include, for example, gas burner, electric resistance (e.g., hot coil), electric radiant, and induction. As such, when a cook top and range hood are not purchased by a consumer as a complementary pair, challenges are present in providing a range hood that is equipped with temperature measuring features that will work with the wide variety of cook top configurations and types including differences in the number of heating elements. Additionally, the range hood cannot necessarily rely on communication with the cook top appliance since the cook top may not be equipped for such communication and/or may not e.g., include any temperature monitoring features.
Accordingly, a range hood with features for detecting temperatures on a variety of cook top types and configurations would be useful. Such a range hood that can detect the temperature conditions on a cook top and also provide notification to the user and/or undertake other remedial responses if temperature conditions exceed one or more predetermined levels would be particularly beneficial.
Aspects and advantages of the invention will be set forth in part in the following description, or may be obvious from the description, or may be learned through practice of the invention.
In one exemplary embodiment, the present invention provides a range hood with a temperature monitoring system for a cook top. The cook top has at least one heating element positioned about the cook top surface. The range hood includes at least one temperature sensor positioned above the cook top and configured for detecting the temperature of the at least one heating element of the cook top, a cooking utensil on the heating element, a food in the utensil on the cook top, or a combination thereof. The range hood also includes one or more warning devices configured for providing a first notification to a user of the appliance if the temperature sensor detects a temperature over a first predetermined temperature level, TL1.
In another exemplary aspect of the present invention, a method for monitoring the temperature of a cook top is provided. The cook top has at least one heating element. The method includes the steps of sensing the temperature of the heating element, a cooking utensil on the heating element, a food in the utensil, or a combination thereof determining whether the temperature measured in said step of sensing exceeds a predetermined level, and, if so, then providing a warning to a user of the cook top indicative of the temperature exceeding the predetermined level.
In another exemplary aspect of the present invention, a method for monitoring the temperature of a cook top is provided. The cook top has at least one heating element. The method includes the steps of using a temperature sensor positioned above the cook top to determine the temperature of the heating element, a cooking utensil on the heating element, a food in the utensil, or a combination thereof determining whether the temperature measured in said step of sensing exceeds a first predetermined level TL1, and, if so, then providing a warning to a user of the cook top indicative of the temperature exceeding the first predetermined level TL1.
These and other features, aspects and advantages of the present invention will become better understood with reference to the following description and appended claims. The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention.
A full and enabling disclosure of the present invention, including the best mode thereof, directed to one of ordinary skill in the art, is set forth in the specification, which makes reference to the appended figures, in which:
The present invention provides a range hood with one or more temperature sensors for monitoring the temperature of a cook top positioned below it and, if the temperature on (or in the vicinity of) the cook top surface exceeds one or more predetermined temperature levels, undertake a notification to the user and/or other remedial responses. Various embodiments of the present invention can operate with a variety of cook top configurations. The range hood can be configured to provide different notifications depending upon the temperature levels measured by one or more temperature sensors. Reference now will be made in detail to embodiments of the invention, one or more examples of which are illustrated in the drawings. Each example is provided by way of explanation of the invention, not limitation of the invention. In fact, it will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the scope or spirit of the invention. For instance, features illustrated or described as part of one embodiment can be used with another embodiment to yield a still further embodiment. Thus, it is intended that the present invention covers such modifications and variations as come within the scope of the appended claims and their equivalents.
Range hood 115 is positioned over cook top 100. Range hood 115 typically includes one or more ventilation fans to circulate air or remove heat and fumes. Hood 115 may also include one or more lamps to illuminate the surface 110 of cook top 100. Additional features such as filters or timers may also be included. The shape and configuration of range hood 115 is not limited to that shown in the figures—it being understood that others may be used as well (square, rectangular, round, etc.). Similarly, the range hood 115 might be mounted on the wall immediately behind the cook top appliance, or suspended from the ceiling or cabinetry above the cook top appliance.
For this exemplary embodiment, range hood 115 also includes multiple temperature sensors 120. Temperature sensors 120 are positioned under range hood 115 and, for this exemplary embodiment, each sensor 120 is located approximately over a respective heating element 105. As illustrated using arrows A, each sensor 120 is also configured for detecting temperatures associated with a respective heating element 105 and providing such information to a processor or other control device configured within range hood 115 as further discussed below. As used herein, detecting the temperature of heat source using a temperature sensor includes detecting the temperature of the actual heating device and can also include detecting the temperature of a grate or other utensil support immediately above or adjacent to the heat source. By way of example, temperature sensor 120 may be constructed from an infrared (IR) sensor capable of “seeing” a particular location or an area on surface 110. More particularly, temperature sensor 120 may be configured to sense the temperature of e.g., a location on the surface of the heating element 105 such as a burner grate or an electric coil.
Because different models of cook tops have heating elements 105 located in varying positions on the cook top surface 110, temperature sensors 120 can be implemented mechanically such that, during installation of the range hood, sensor 120 can be aimed or directed e.g., towards the center of the heating elements 105. By way of example only, in one potential implementation, sensors 120 can be mounted similar to the readily positionable “eyeball lights” found in e.g., airplanes, automobiles, and home ceilings. In addition, range hood 115 can be equipped with more than four temperature sensors 120 (e.g., 5, 6 or 8) so that hood 115 can accommodate a cook top 100 have more than four heating elements 105. To the extent any sensors 120 are not needed, such could be disabled during installation by e.g., a variety of means including, but not limited to, an “Enable/Disable” switch or button, an IR-blocking lens cover, removal of the sensor, or any combination thereof.
Alternatively, temperature sensor 120 may be used to sense the temperature of a utensil (e.g., pot or pan) placed on the heating element or the temperature of food (including solids and/or liquids) located in the utensil. In the case of food, for example, temperature sensor 120 may be focused on a particular portion of food such as e.g., the center of a portion of food placed on heating element 105 or may include a large area of food surface such that temperature information across such area is provided rather than the temperature at a particular point.
By way of additional example, temperature sensors 120 may be adjustable so that the coverage area can be varied from e.g., a small spot at the center of the heating element 105 to a large spot that encompasses the entire heating element 105. Similar to a camera “zoom lens”, one exemplary embodiment could be a “zoom ring” around the lens of the sensor 120, wherein twisting/turning/pulling-on the ring would adjust the field of view of the sensor 120. In an alternative implementation, this adjustment of field of view could be made by motorized means (a motor driven lens) wherein the zoom-in/zoom-out control is provided by means of a knob or buttons on the control panel of the range hood.
In still another alternative, each temperature sensor 120 may be used to sense temperature(s) associated with an area on cook top 100 rather than a particular point. For example, temperature sensor 120 can be configured to sense or scan the temperature of all, or substantially all, of the exposed surface of food being cooked on one of the heating elements 105. The resulting scan can be used to determine an average temperature, for example.
In still another alternative, each temperature sensor 120 may be equipped with a light beam emitter, e.g. a laser pointer, to assist in the aiming of the sensor during installation. For example, during installation, the laser pointer feature of the sensor could be activated so that the ‘eyeball’ of the sensor could be manipulated such that the laser's spot can be directed to the center of the heating element to be monitored by the sensor. As an adjunct to the previously described implementation wherein the sensing area can be adjusted using a “zoom” control, the spot size of the laser pointer could also change in proportion to the zoom control so as to provide a realistic indication to the installer which area is being monitored by the sensor.
As stated, a processor or processing device, such as a microprocessor, electronic module, or other electronic controller, can be used to evaluate the temperature information collected by one or more temperature sensors 120 and 140 and/or take certain steps in response to such temperature information as will be discussed below. Preferably, the processor is positioned within or otherwise associated with range hood 115. As such, the processor may be hidden from view of the operator and protected within an enclosure of range hood 115. Other locations for the processor may also be used. Multiple processors may be used to perform different steps as well—such as e.g., one processor for treating the information received from sensors 120 and another processor for executing an algorithm and/or taking certain actions based upon the temperature information.
Range hood 115 can be provided with a variety of features for use of the temperature information provided by the one or more temperature sensors 120 and 140. Referring now to
Illuminating warning devices 125 and 130 could be formed from a variety of constructions capable of projecting a notification onto cook top 100. For example, a bright light source such as halogen or multiple LEDs could be used with appropriate optics to project the image onto the cook top surface below. Alternatively, a laser could also be configured to provide such notification. Other constructions may be used as well, such as a picture/video image projector. It should also be understood that the visual indication/warning could be projected onto a surface other than the cook top such as e.g., a kitchen counter or a wall near the cook top. The visual notification could also be provided as a light or other visual indicator that appears on at a visible location on the range hood such as e.g., the shroud.
The exemplary embodiments of
Also, for each of the embodiments previously described, the predetermined temperature level at which one or more warning devices is activated can be selected from multiple different temperature events. For example, the predetermined temperature level could be a temperature at which it would be undesirable for a user to contact the heating element or surface being measured, a temperature at which there is a risk of igniting a cooking oil, a temperature at which food is likely to be burned, a temperature at which damage to the cook top is possible, and other temperature events as well.
A variety of methods may be employed for the operation of a range hood of the present invention using the temperature sensor configurations and warning devices previously described. As will be understood of by one of skill in the art using the teachings disclosed herein, one or more processing devices can configured, for example, to operate the range hood according to such methods. Also, different warnings or notifications may be employed for different temperature events.
For example, in one exemplary aspect of the present invention, range hood 115 can be configured to provide a first notification at a first predetermined temperature level TL1 and a second notification at a second predetermined temperature level TL2. TL1 could be a temperature that might be considered “hot” to user of the appliance such as e.g., about 140° F. While TL2 could be a temperature above which cooking oil could be ignited (about 620° F. for certain canola oil types) such as e.g., 600° F. Alternatively, TL1 and TL2 could be set somewhat lower to provide a larger “cushion” or temperature interval between the time of the warning to the user and the higher temperature event. For example, about 120° F. could be used for TL1 and 550° F. for TL2. Regardless, multiple different predetermined temperature levels could be used so that warnings are provided to the user upon the cook top temperature(s), as measured by one or more temperature sensors in range hood 115, reaching one or more of such predetermined levels.
Additionally, different warnings may be provided that are indicative of which predetermined temperature level has been reached. For example, once a temperature sensor determines that a cook top temperature has reached or exceeded the first predetermined temperature TL1, the words “HOT SURFACE” could be projected onto the cook top. Upon reaching the second predetermined temperature TL2, the words “EXTREMELY HOT SURFACE” could be projected onto the cook top surface. Other words or alphanumeric designations could be used. Similarly, different audible signals could also be used for the different predetermined temperatures levels TL1 and TL2. Using the teachings disclosed herein, one of skill in the art will understand that multiple predetermined temperature levels TLn may be employed as well such that warnings or notifications are provided for a variety of temperature events
For certain embodiments of the invention, a time delay can be provided between measuring or sensing a certain temperature level on the cook top and providing the user with a warning or other notification. For example, if a user temporarily removes a cooking utensil from a heating element 105 and leaves such heating element activated, these actions could cause the temperature as measured by the temperature sensor to spike and generate and unwanted warning. Accordingly, a time delay Δt could be provided to allow an interval before a warning or other notification is provided to the user. For example, a delay of 30 seconds could be provided between the time at which the range hood 115 measures a temperature that exceeds a predetermined temperature level TLn and the time at which a warning device to alert the user is activated. During this time interval, if the measured temperature falls below the predetermined temperature level TLn, then the notification would be given and the timer would be reset.
In addition, a different time delay could be provided for each predetermined temperature level. For example, a time interval Δt1 could be associated with predetermined temperature level TL1 and a time interval Δt2 could be associated with predetermined temperature level TL2. For example, a shorter time interval might be used where the measured temperature is in a range that is conducive to ignition (combustion) of cooking oil. The time interval Δtn could be a variable that is calculated based on the measured temperature such that e.g., shorter intervals are used at higher measured temperatures.
In still another exemplary aspect of the present invention, a time delay could be employed to provide notification of when the user has left a heating element on for a prolonged period of time through e.g., inadvertence. For example, upon a certain predetermined temperature level being measured on cook top 100, a time interval Δtn of two hours could be employed. Once such time interval Δtn has expired, an alert could be provided to the user that indicates that one or more heating elements on cook top 100 are still activated. Such time interval delay could be employed along with other time delays for multiple other temperature events.
Range hood 115 can also be equipped with other features as well. For example, hood 115 could include a smoke detector for determining whether a cooking oil is generating smoke indicative of having reached a condition at which ignition is likely or has already occurred. In such case, a warning device as previously described could be activated to provide a visual and/or audible alert to the user of such condition. Other remedial responses could also be employed such as activation of a fire suppression system, disconnecting electrical power to the appliance, closing a gas supply valve within or external to the appliance, etc.
This written description uses examples to disclose the invention, including the best mode, and also to enable any person skilled in the art to practice the invention, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they include structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal languages of the claims.