RANGING METHOD AND APPARATUS IN A COMMUNICATION SYSTEM WITH RELAY STATION, AND SYSTEM THEREOF

Information

  • Patent Application
  • 20080064329
  • Publication Number
    20080064329
  • Date Filed
    September 07, 2007
    17 years ago
  • Date Published
    March 13, 2008
    16 years ago
Abstract
A method for performing ranging by a mobile station in a communication system. The method includes transmitting a ranging sequence to a relay station; receiving an added signal of a reference sequence of the relay station and the ranging sequence, from the relay station; performing a correlation operation on each of the ranging sequence and the reference sequence in the added signal; estimating a time difference between the ranging sequence and the reference sequence depending on the correlation operation; and transmitting the signal to the relay station taking the time difference into account.
Description

BRIEF DESCRIPTION OF THE DRAWINGS

The above and other aspects, features and advantages of the present invention will become more apparent from the following detailed description when taken in conjunction with the accompanying drawings in which:



FIG. 1 illustrates initial ranging between a base station and a mobile station in a conventional communication system;



FIG. 2 illustrates an initial ranging procedure in a communication system with a relay station according to a first embodiment of the present invention;



FIG. 3 illustrates an initial ranging procedure according to a second embodiment of the present invention;



FIG. 4 illustrates an initial ranging procedure according to a third embodiment of the present invention;



FIG. 5 illustrates signal transmission/reception based on sequence addition and time difference estimation according to the second and third embodiments of the present invention;



FIG. 6 is a block diagram of a mobile station according to an embodiment of the present invention;



FIG. 7 is a block diagram of a relay station according to the second embodiment of the present invention; and



FIG. 8 is a block diagram of a relay station according to the third embodiment of the present invention.





Similar reference characters denote corresponding features consistently throughout the drawings.


DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Preferred embodiments of the present invention will now be described in detail with reference to the annexed drawings. In the following description, a description of known functions and configurations incorporated herein has been omitted for clarity and conciseness.


The present invention provides a method for performing initial ranging to minimize system overhead in a communication system with a relay station. Although the present invention will be described herein with reference to an initial ranging operation among various ranging operations, the present invention can be applied to other ranging operations, such as periodic ranging and bandwidth request ranging.



FIG. 2 shows a first example of an initial ranging procedure in a communication system with a relay station according to the present invention.


In FIG. 2, a Mobile Station (MS) #1240 and an MS #2260 transmit an initial ranging sequence #1 and an initial ranging sequence #2 to a Relay Station (RS) 220, respectively in steps 201 and 203. The RS 220 decides to forward the received initial ranging sequences to a Base Station (BS) 200 in step 205. As a result, the RS 220 transmits the initial ranging sequence #1 and the initial ranging sequence #2 to the BS 200 in steps 207 and 209.


The BS 200 compares the times the BS 200 has received the initial ranging sequences #1 and #2 with a reference time to estimate timing offsets between the initial ranging sequences and the reference time in step 211. Thereafter, the BS 200 generates timing offset calibration messages to transmit the estimated timing offsets to the MSs 240 and 260 in step 213. The timing offset calibration messages are messages transmitted to the MS #1240 and the MS #2260. Therefore, the timing offset calibration messages are divided into a message including timing offset information between the initial ranging sequence #1 and the reference time, and a message including timing offset information between the initial ranging sequence #2 and the reference time. The BS 200 sends the generated timing offset calibration messages to the RS 220 in steps 215 and 217.


The RS 220 decides to forward the received timing offset calibration messages to the MSs 240 and 260 in step 219. As a result, the RS 220 sends the timing offset calibration messages to the MSs 240 and 260, respectively, in steps 221 and 223.


Similar to the conventional procedure, the procedure shown in FIG. 2 uses a control message, or the timing offset calibration message, to perform initial ranging in the communication system with a relay station. A description will now be made of a scheme capable of calibrating a timing offset without using the control message according to different examples of the present invention.


For this, the present invention is based on the following assumptions.


1. A transmission delay between a BS and an RS is time-constant.


2. Each RS uses its own unique reference sequence.


3. Each MS can communicate with only one of the BS and the RS.



FIG. 3 shows a second example of an initial ranging procedure according to the present invention.


Before a description of FIG. 3 is given, in the second example of the present invention, the ranging procedure is divided into the following steps and a signal is relayed according to an ‘amplify-and-forward’ scheme. The amplify-and-forward scheme as used herein refers to a scheme in which a RS amplifies Radio Frequency (RF) power of a signal and forwards the power-amplified signal to a MS.


Step 1: An MS transmits a ranging sequence.


Step 2: An RS adds up a reference sequence and a ranging sequence taking into account a delay time between the RS and the BS, and forwards the added signal.


Step 3: After receiving the added signal, the MS performs a correlation operation using the reference sequence and the ranging sequence to estimate a time difference.


Step 4: The MS determines a signal transmission time taking the estimated time difference into consideration.


Referring to FIG. 3, an MS #1340 and an MS #2360 transmit an initial ranging sequence #1 and an initial ranging sequence #2 to an RS 320, respectively, in steps 310 and 303.


After receiving the initial ranging sequences, the RS 320 temporarily stores the received initial ranging sequences in a buffer in step 305. The RS 320 generates a reference sequence uniquely allocated to the RS 320 in step 307. The RS 320 adds the reference sequence to the initial ranging sequences taking timing offsets into account in step 309. The timing offsets between the initial ranging sequences and the reference sequence herein are determined taking into account (i) a transmission delay having a time-constant characteristic between a base station and a relay station, (ii) a reference time difference, and (iii) a data reception time used by the base station.


The RS 320 decides to amplify-and-forward the added sequence of the initial ranging sequences and the reference sequence, and transmits the added sequence to a BS 300 and the MSs 340 and 360 in step 311. The RS 320 can transmit the signal to the BS 300 at an uplink signal transmission time, and can transmit the signal to the MSs 340 and 360 at a downlink signal transmission time. Alternatively, the RS 320 can transmit the signal regardless of the uplink/downlink signal transmission time using an omni-directional antenna. The transmission to the BS 300 is not mandatory.


The MSs 340 and 360 each correlate their initial ranging sequences from the signal received from the RS 320 with a pre-recognized reference sequence, to estimate reception times of the sequences in step 313. The MSs 340 and 360 each compensate for time differences between their initial ranging sequences and the reference sequence, and then transmit the signals.



FIG. 4 shows a third example of an initial ranging procedure according to the present invention.


Before a description of FIG. 4 is given, in the third example of the present invention, an RS, upon receipt of a ranging sequence from an MS, decodes the received ranging sequence to detect a type and reception timing of the ranging sequence. That is, in the third example, the RS relays the signal using a decoding-and-forward scheme. The ‘decoding-and-forward scheme’ as used herein refers to a scheme in which the relay station decodes a received signal to perform error detection, and forwards the signal after re-encoding the error-detected signal.


Therefore, in the third example of the present invention, the ranging procedure is divided into the following steps in particular, the third example is different from the second example in step 2 and step 3, as shown below.


Step 1: Each MS transmits a ranging sequence.


Step 2: An RS detects a type and timing of the ranging sequence.


Step 3: The RS adds up regenerated ranging sequences and a reference sequence taking into account a delay time between the RS and the BS, and forwards the added signal. The ‘regenerated ranging sequence’ as used herein refers to a signal that the RS has generated by decoding a ranging sequence received from the MS, performing error detection thereon, and then re-encoding the error-detected signal.


Step 4: Each MS estimates a time difference between the reference sequence and its transmitted ranging sequence by performing a correlation operation on a received signal.


Step 5: Each MS determines a signal transmission time taking the estimated time difference into account.


Referring to FIG. 4, an MS #1340 and an MS #2360 transmit an initial ranging sequence #1 and an initial ranging sequence #2 to an RS 320, respectively, in steps 401 and 403.


After receiving the initial ranging sequences, the RS 320 estimates a timing offset, or a difference between a reference time and a reception time for each of the initial ranging sequences in step 405. The RS 320 generates a reference sequence uniquely used in the RS 320, and regenerates initial ranging sequences of the MSs 340 and 360 in step 407. The RS 320 adds up the regenerated initial ranging sequences and the reference sequence taking the estimated timing offsets into account in step 409.


The RS 320 transmits the added signal to the BS 300 and the MSs 340 and 360 in step 41. The RS 320 can transmit the signal to the BS 300 at an uplink signal transmission time, and can transmit the signal to the MSs 340 and 360 at a downlink signal transmission time. Alternatively, the RS 320 can transmit the signal regardless of the uplink/downlink signal transmission time using an omni-directional antenna. The transmission to the BS 300 is not mandatory.


The MSs 340 and 360 each correlate their initial ranging sequences from the signal received from the RS 320 with a pre-recognized reference sequence, to estimate time differences between the reference sequence and the initial ranging sequences in step 413. Thereafter, the MSs 340 and 360 each compensate for time differences between their initial ranging sequences and the reference sequence, and then transmit the signals.


With reference to FIG. 5, a description will now be made of the operation in which the relay station adds up the initial ranging sequences and the reference sequence and transmits the added signal according to the second and third examples of the present invention.



FIG. 5 shows signal transmission/reception based on sequence addition and time difference estimation according to the second and third examples of the present invention.


In FIG. 5, an MS #1 and an MS #2 transmit a ranging sequence #1 (ranging seq 1) and a ranging sequence #2 (ranging seq 2) to an RS at their reference times TrefMS1 and TrefMS2, respectively, in step 502. The RS buffers a received signal obtained in such a manner that the ranging sequence #1 and the ranging sequence #2 are added up after being delayed by transmission delay times DRSMS1 and DRSMS2 between the RS and the MSs in step 504.


The RS adds up the buffered received signal and the reference sequence, and transmits the added signal to the BS and the MSs #1 and #2 in step 506. An insertion time of the reference sequence is given such as TrefRS-dBS—RS-(TrefBS-TrefRS), where TrefRS and TrefBS denote reference times of the RS and the BS, respectively, and dBSRS denotes a transmission delay between the BS and the RS.


The MS #1 correlates the known ranging sequence #1 of MS #1 with the added signal to estimate a reception time of the ranging sequence #1, and to detect a timing offset ΔMS1 between the ranging sequence #1 and the reference sequence in step 508. The MS #2 correlates the known ranging sequence #2 of MS #2 with the added signal to estimate a reception time of the ranging sequence #2, and to detect a timing offset ΔMS2 between the ranging sequence #2 and the reference sequence in step 510.


The MSs #1 and #2 calibrate their transmission times taking the timing offsets into consideration, and then transmit the data to the RS in step 512.


As a result, the RS receives the data of the MS #1 and the MS #2 at the same time in step 514. The BS also receives the data of the MSs #1 and #2, relayed by the RS, at the same time in step 516.



FIG. 6 shows an MS according to the present invention.


In FIG. 6, a receiver 602 of the MS receives an added signal of a reference sequence and ranging sequences, from an RS. The received signal is input to a correlator 604 after undergoing a processing procedure. The correlator 604 performs correlation between a ranging sequence unique to the MS, generated from a ranging sequence generator 606, and a reference sequence generated from a reference sequence generator 608. By performing the correlation, the correlator 604 detects a reference sequence and a ranging sequence, and a timing offset estimator 610 estimates a timing offset between the reference sequence and the ranging sequence.



FIG. 7 shows an RS according to the second example of the present invention.


In FIG. 7, a receiver 702 of the RS receives a ranging sequence from an MS, and outputs the received ranging sequence to a buffer 704. The buffer 704 stores therein the received signal, and a controller 706 outputs reference sequence timing information to a reference sequence generator 708 to control a reference sequence generation time. The reference sequence generator 708 generates a reference sequence, and the generated reference sequence is added to the ranging sequence in the buffer 704 by means of an adder 710.


The added signal is multiplied by a by means of a multiplier 712, where a denotes an amplification factor in the RS using the amplify-and-forward scheme. The multiplied signal is input to a transmitter 714, and the transmitter 714 transmits the added signal of the reference sequence and the ranging sequence, to the MS.



FIG. 8 shows an RS according to the third example of the present invention.


In FIG. 8, a receiver 802 of the RS receives a ranging sequence from an MS, and outputs the received ranging sequence to a correlator 804. The ranging sequence herein can be either a single ranging sequence transmitted only by the MS, or an added ranging sequence of the ranging sequence and another ranging sequence transmitted by another MS. The correlator 804 performs correlation between a ranging sequence candidate of the MS, generated by a ranging sequence generator 810, and the received signal. The correlator 804 outputs the correlation result to a ranging sequence detector 806.


The ranging sequence detector 806 detects a ranging sequence of the MS among the ranging sequence candidates, and detects timing information of the detected ranging sequence. Type and timing information of the detected ranging sequence are input to a controller 808. The controller 808 outputs timing information for controlling type and generation time of a ranging sequence, to the ranging sequence generator 810. In addition, the controller 808 controls generation and generation time of the reference sequence. For this, a reference sequence generator 812 is controlled by the controller 808.


The generated reference sequence is added to the ranging sequence by an adder 814, and then input to a transmitter 816. The transmitter 816 transmits the added signal of the reference sequence and the ranging sequence, to the MS.


As can be appreciated from the foregoing description, the present invention provides a ranging procedure for a communication system with a relay station. In addition, according to the present invention, an MS can spontaneously calibrate ranging offset timing, thereby contributing to a reduction in overhead due to control message exchange.


While the invention has been shown and described with reference to certain preferred embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention as defined by the appended claims.

Claims
  • 1. A ranging control method of a relay station in a communication system, the method comprising: receiving a ranging sequence from a mobile station;adding up the ranging sequence and a reference sequence that the relay station uniquely uses; andtransmitting the added signal to the mobile station.
  • 2. The ranging control method of claim 1, wherein the ranging sequence is at least one of an initial ranging sequence, a periodic ranging sequence, and a bandwidth request ranging sequence.
  • 3. The ranging control method of claim 1, wherein the added signal is transmitted taking into account at least one of a time that a base station desires to transmit a signal, a signal delay time between the base station and the relay station, a base station reference time, and a relay station reference time.
  • 4. A ranging control method of a relay station in a communication system, the method comprising: receiving a ranging sequence from a mobile station;estimating a timing offset indicative of a difference between a reception time of the ranging sequence and a reference time;performing decoding and regeneration on the ranging sequence, and adding up the ranging sequence and a reference sequence that a base station uniquely uses; andtransmitting the added signal to the mobile station.
  • 5. The ranging control method of claim 4, wherein the ranging sequence is at least one of an initial ranging sequence, a periodic ranging sequence, and a bandwidth request ranging sequence.
  • 6. The ranging control method of claim 4, wherein the adding up of the decoded and regenerated ranging sequence and the reference sequence is performed taking into account at least one of a time that the base station desires to transmit a signal, a signal delay time between the base station and the relay station, a base station reference time, and a relay station reference time.
  • 7. A method for performing ranging by a mobile station in a communication system, the method comprising: transmitting a ranging sequence to a relay station;receiving an added signal of a reference sequence of the relay station and the ranging sequence, from the relay station;performing a correlation operation on each of the ranging sequence and the reference sequence in the added signal;estimating a time difference between the ranging sequence and the reference sequence depending on the correlation operation; andtransmitting the signal to the relay station taking the time difference into account.
  • 8. The method of claim 7, wherein the ranging sequence is at least one of an initial ranging sequence, a periodic ranging sequence, and a bandwidth request ranging sequence.
  • 9. A communication system for performing ranging, the system comprising: a relay station; anda mobile station,wherein the relay station receives a ranging sequence from the mobile station, adds up the received ranging sequence and a reference sequence that the relay station uniquely uses, and transmits the added signal to the mobile station, andwherein the mobile station receives the added signal from the relay station, estimates a time difference between the ranging sequence and the reference sequence through a correlation operation, and transmits a signal taking the estimated time difference into account.
  • 10. The communication system of claim 9, wherein the ranging sequence is at least one of an initial ranging sequence, a periodic ranging sequence, and a bandwidth request ranging sequence.
  • 11. The communication system of claim 9, wherein the relay station transmits the added signal taking into account at least one of a time that the base station desires to transmit a signal, a signal delay time between the base station and the relay station, a base station reference time, and a relay station reference time.
  • 12. A ranging apparatus of a relay station, the apparatus comprising: a receiver for receiving at least one ranging sequence;a buffer for storing a ranging sequence output from the receiver;a reference sequence generator for generating at least one reference sequence; anda transmitter.
  • 13. The ranging apparatus of claim 12, wherein the transmitter is configured for adding up the at least one reference sequence output from the reference sequence generator and the ranging sequence output from the buffer, and multiplying the added signal by a amplification factor before transmission.
  • 14. The ranging apparatus of claim 13, further comprising: a controller for controlling a reference sequence generation time of the reference sequence generator.
  • 15. The ranging apparatus of claim 13, wherein the ranging sequence is at least one of an initial ranging sequence, a periodic ranging sequence, and a bandwidth request ranging sequence.
  • 16. The ranging apparatus of claim 13, wherein the transmitter transmits the added signal taking into account at least one of a time that the base station desires to transmit a signal, a signal delay time between the base station and the relay station, a base station reference time, and a relay station reference time.
  • 17. The ranging apparatus of claim 12, further comprising: a ranging sequence generator for generating multiple ranging sequences; anda correlator for correlating each of the multiple ranging sequences generated from the ranging sequence generator, with the ranging sequence received from the receiver.
  • 18. The ranging apparatus of claim 17, wherein the transmitter is configured for adding up the ranging sequences correlated by correlator and the at least one reference sequence generated by the reference sequence generator, and transmitting the added signal.
  • 19. The ranging apparatus of claim 18, wherein the transmitter adds up the ranging sequences and the at least one reference sequence taking into account at least one of a time that the base station desires to transmit a signal, a signal delay time between the base station and the relay station, a base station reference time, and a relay station reference time.
Priority Claims (1)
Number Date Country Kind
86217-2006 Sep 2006 KR national