Ranking alerts based on network monitoring

Information

  • Patent Grant
  • 11463299
  • Patent Number
    11,463,299
  • Date Filed
    Friday, April 9, 2021
    3 years ago
  • Date Issued
    Tuesday, October 4, 2022
    2 years ago
Abstract
Embodiments are directed to monitoring network traffic. A monitoring engine may monitor network traffic associated with a plurality of entities in networks to provide metrics. And provide a device relation model based on the plurality of entities, the network traffic, and the metrics. An inference engine may associate each entity in the plurality of entities with an importance score based on the device relation model and the metrics such that each importance score is associated with a significance of an entity to operations of the networks. An alert engine may generate a plurality of alerts associated with the plurality of entities based on the metrics. And provide one or more alerts from the plurality of alerts to one or more users based on one or more ranked importance scores associated with one or more entities.
Description
TECHNICAL FIELD

The present invention relates generally to network monitoring, and more particularly, but not exclusively, to monitoring networks in a distributed network monitoring environment.


BACKGROUND

On most computer networks, bits of data arranged in bytes are packaged into collections of bytes called packets. These packets are generally communicated between computing devices over networks in a wired and/or wireless manner. A suite of communication protocols is typically employed to communicate between at least two endpoints over one or more networks. The protocols are typically layered on top of one another to form a protocol stack. One model for a network communication protocol stack is the Open Systems Interconnection (OSI) model, which defines seven layers of different protocols that cooperatively enable communication over a network. The OSI model layers are arranged in the following order: Physical (1), Data Link (2), Network (3), Transport (4), Session (5), Presentation (6), and Application (7).


Another model for a network communication protocol stack is the Internet Protocol (IP) model, which is also known as the Transmission Control Protocol/Internet Protocol (TCP/IP) model. The TCP/IP model is similar to the OSI model except that it defines four layers instead of seven. The TCP/IP model's four layers for network communication protocol are arranged in the following order: Link (1), Internet (2), Transport (3), and Application (4). To reduce the number of layers from four to seven, the TCP/IP model collapses the OSI model's Application, Presentation, and Session layers into its Application layer. Also, the OSI's Physical layer is either assumed or is collapsed into the TCP/IP model's Link layer. Although some communication protocols may be listed at different numbered or named layers of the TCP/IP model versus the OSI model, both of these models describe stacks that include basically the same protocols. For example, the TCP protocol is listed on the fourth layer of the OSI model and on the third layer of the TCP/IP model. To assess and troubleshoot communicated packets and protocols over a network, different types of network monitors can be employed. One type of network monitor, a “packet sniffer” may be employed to generally monitor and record packets of data as they are communicated over a network. Some packet sniffers can display data included in each packet and provide statistics regarding a monitored stream of packets. Also, some types of network monitors are referred to as “protocol analyzers” in part because they can provide additional analysis of monitored and recorded packets regarding a type of network, communication protocol, or application.


Generally, packet sniffers and protocol analyzers passively monitor network traffic without participating in the communication protocols. In some instances, they receive a copy of each packet on a particular network segment or VLAN from one or more members of the network segment. They may receive these packet copies through a port mirror on a managed Ethernet switch, e.g., a Switched Port Analyzer (SPAN) port, a Roving Analysis Port (RAP), or the like, or combinations thereof. Port mirroring enables analysis and debugging of network communications. Port mirroring can be performed for inbound or outbound traffic (or both) on single or multiple interfaces. In other instances, packet copies may be provided to the network monitors from a specialized network tap or from a software entity running on the client or server. In virtual environments, port mirroring may be performed on a virtual switch that is incorporated within the hypervisor.


In some cases, monitoring large scale networks may generate a lot of information including, many and varied alerts or reports. Network monitoring systems monitoring large networks may generate so much information that it may be difficult for organizations or users to identify the information that is important from among the many alerts. Thus, it is with respect to these considerations and others that the present invention has been made.





BRIEF DESCRIPTION OF THE DRAWINGS

Non-limiting and non-exhaustive embodiments of the present innovations are described with reference to the following drawings. In the drawings, like reference numerals refer to like parts throughout the various figures unless otherwise specified. For a better understanding of the described innovations, reference will be made to the following Detailed Description of Various Embodiments, which is to be read in association with the accompanying drawings, wherein:



FIG. 1 illustrates a system environment in which various embodiments may be implemented;



FIG. 2 illustrates a schematic embodiment of a client computer;



FIG. 3 illustrates a schematic embodiment of a network computer;



FIG. 4 illustrates a logical architecture of a system for ranking alerts based on network monitoring in accordance with one or more of the various embodiments;



FIG. 5 illustrates a logical schematic of a system for ranking alerts based on network monitoring in accordance with one or more of the various embodiments;



FIG. 6 illustrates a logical representation of a network in accordance with at least one of the various embodiments;



FIG. 7 illustrates a logical representation of a portion a of device relation model in accordance with at least one of the various embodiments;



FIG. 8A illustrates a logical representation of a device relation model showing naïve relationships between the entities in accordance with the one or more embodiments;



FIG. 8B illustrates a logical representation of a device relation model showing informed relationships between the entities in accordance with the one or more embodiments;



FIG. 9A illustrates a logical representation of a device relation model showing relationships between the entities based on observed network connections in accordance with the one or more embodiments;



FIG. 9B illustrates a logical representation of a device relation model showing phantom edges that represent relationships between the entities in accordance with the one or more embodiments;



FIG. 10 illustrates a logical architecture of a network that includes entities in accordance with the one or more embodiments;



FIG. 11 illustrates a logical representation of a data structure for a device relation model that includes entities in accordance with the one or more embodiments;



FIG. 12 represents a logical representation of a system for transforming monitored network traffic into profile objects in accordance with one or more of the various embodiments;



FIG. 13 illustrates a logical representation of a system for ranking alerts based on network monitoring in accordance with one or more of the various embodiments;



FIG. 14 illustrates an overview flowchart of a process for ranking alerts based on network monitoring in accordance with one or more of the various embodiments;



FIG. 15 illustrates a flowchart of a process for rankining alerts based on user activity in accordance with one or more of the various embodiments; and



FIG. 16 illustrates a flowchart of a process for ranking alerts based on user feedback to suggested interests in accordance with one or more of the various embodiments.





DETAILED DESCRIPTION OF THE INVENTION

Various embodiments now will be described more fully hereinafter with reference to the accompanying drawings, which form a part hereof, and which show, by way of illustration, specific exemplary embodiments by which the invention may be practiced. The embodiments may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the embodiments to those skilled in the art. Among other things, the various embodiments may be methods, systems, media or devices. Accordingly, the various embodiments may take the form of an entirely hardware embodiment, an entirely software embodiment or an embodiment combining software and hardware aspects. The following detailed description is, therefore, not to be taken in a limiting sense.


Throughout the specification and claims, the following terms take the meanings explicitly associated herein, unless the context clearly dictates otherwise. The phrase “in one embodiment” as used herein does not necessarily refer to the same embodiment, though it may. Furthermore, the phrase “in another embodiment” as used herein does not necessarily refer to a different embodiment, although it may. Thus, as described below, various embodiments may be readily combined, without departing from the scope or spirit of the invention.


In addition, as used herein, the term “or” is an inclusive “or” operator, and is equivalent to the term “and/or,” unless the context clearly dictates otherwise. The term “based on” is not exclusive and allows for being based on additional factors not described, unless the context clearly dictates otherwise. In addition, throughout the specification, the meaning of “a,” “an,” and “the” include plural references. The meaning of “in” includes “in” and “on.”


For example embodiments, the following terms are also used herein according to the corresponding meaning, unless the context clearly dictates otherwise.


As used herein the term, “engine” refers to logic embodied in hardware or software instructions, which can be written in a programming language, such as C, C++, Objective-C, COBOL, Java™, PHP, Perl, JavaScript, Ruby, VBScript, Microsoft .NET™ languages such as C#, and/or the like. An engine may be compiled into executable programs or written in interpreted programming languages. Software engines may be callable from other engines or from themselves. Engines described herein refer to one or more logical modules that can be merged with other engines or applications, or can be divided into sub-engines. The engines can be stored in non-transitory computer-readable medium or computer storage device and be stored on and executed by one or more general purpose computers, thus creating a special purpose computer configured to provide the engine.


As used herein, the term “session” refers to a semi-permanent interactive packet interchange between two or more communicating endpoints, such as network devices. A session is set up or established at a certain point in time, and torn down at a later point in time. An established communication session may involve more than one message in each direction. A session may have stateful communication where at least one of the communicating network devices saves information about the session history to be able to communicate. A session may also provide stateless communication, where the communication consists of independent requests with responses between the endpoints. An established session is the basic requirement to perform a connection-oriented communication. A session also is the basic step to transmit in connectionless communication modes.


As used herein, the terms “network connection,” and “connection” refer to communication sessions with a semi-permanent connection for interactive packet interchange between two or more communicating endpoints, such as network devices. The connection may be established before application data is transferred, and where a stream of data is delivered in the same or different order than it was sent. The alternative to connection-oriented transmission is connectionless communication. For example, the datagram mode of communication used by the Internet Protocol (IP) and the Universal Datagram Protocol (UDP) may deliver packets out of order, since different packets may be routed independently and could be delivered over different paths. Packets associated with a TCP protocol connection may also be routed independently and could be delivered over different paths. However, for TCP connections the network communication system may provide the packets to application endpoints in the correct order.


Connection-oriented communication may be a packet-mode virtual circuit connection. For example, a transport layer virtual circuit protocol such as the TCP protocol can deliver packets of data in order although the lower layer switching is connectionless. A connection-oriented transport layer protocol such as TCP can also provide connection-oriented communications over connectionless communication. For example, if TCP is based on a connectionless network layer protocol (such as IP), this TCP/IP protocol can then achieve in-order delivery of a byte stream of data, by means of segment sequence numbering on the sender side, packet buffering and data packet reordering on the receiver side. Alternatively, the virtual circuit connection may be established in a datalink layer or network layer switching mode, where all data packets belonging to the same traffic stream are delivered over the same path, and traffic flows are identified by some connection identifier rather than by complete routing information, which enables fast hardware based switching.


As used herein, the terms “session flow” and “network flow” refer to one or more network packets or a stream of network packets that are communicated in a session that is established between at least two endpoints, such as two network devices. In one or more of the various embodiments, flows may be useful if one or more of the endpoints of a session may be behind a network traffic management device, such as a firewall, switch, router, load balancer, or the like. In one or more of the various embodiments, such flows may be used to ensure that the packets sent between the endpoints of a flow may be routed appropriately.


Typically, establishing a TCP based connection between endpoints begins with the execution of an initialization protocol and creates a single bi-directional flow between two endpoints, e.g., one direction of flow going from endpoint A to endpoint B, the other direction of the flow going from endpoint B to endpoint A, where each endpoint is at least identified by an IP address and a TCP port.


Also, some protocols or network applications may establish a separate flow for control information that enables management of at least one or more flows between two or more endpoints. Further, in some embodiments, network flows may be half-flows that may be unidirectional.


As used herein, the term “tuple” refers to a set of values that identify a source and destination of a network packet, which may, under some circumstances, be a part of a network connection. In one embodiment, a tuple may include a source Internet Protocol (IP) address, a destination IP address, a source port number, a destination port number, virtual LAN segment identifier (VLAN ID), tunnel identifier, routing interface identifier, physical interface identifier, or a protocol identifier. Tuples may be used to identify network flows (e.g., connection flows).


As used herein the term “related flows,” or “related network flows” as used herein are network flows that while separate they are operating cooperatively. For example, some protocols, such as, FTP, SIP, RTP, VOIP, custom protocols, or the like, may provide control communication over one network flow and data communication over other network flows. Further, configuration rules may define one or more criteria that are used to recognize that two or more network flows should be considered related flows. For example, configuration rules may define that flows containing a particular field value should be grouped with other flows having the same field value, such as, a cookie value, or the like.


As used herein, the terms “network monitor”, “network monitoring computer”, or “NMC” refer to an application (software, hardware, or some combination) that is arranged to monitor and record flows of packets in a session that are communicated between at least two endpoints over at least one network. The NMC can provide information for assessing different aspects of these monitored flows. In one or more embodiment, the NMC may passively monitor network packet traffic without participating in the communication protocols. This monitoring may be performed for a variety of reasons, including troubleshooting and proactive remediation, end-user experience monitoring, SLA monitoring, capacity planning, application lifecycle management, infrastructure change management, infrastructure optimization, business intelligence, security, and regulatory compliance. The NMC can receive network communication for monitoring through a variety of means including network taps, wireless receivers, port mirrors or directed tunnels from network switches, clients or servers including the endpoints themselves, or other infrastructure devices. In at least some of the various embodiments, the NMC may receive a copy of each packet on a particular network segment or virtual local area network (VLAN). Also, for at least some of the various embodiments, they may receive these packet copies through a port mirror on a managed Ethernet switch, e.g., a Switched Port Analyzer (SPAN) port, a Roving Analysis Port (RAP), or the like, or combination thereof. Port mirroring enables analysis and debugging of network communications. Port mirroring can be performed for inbound or outbound traffic (or both) on single or multiple interfaces.


The NMC may track network connections from and to end points such as a client and/or a server. The NMC may also extract information from the packets including protocol information at various layers of the communication protocol stack. The NMC may reassemble or reconstruct the stream of data exchanged between the endpoints. The NMC may perform decryption of the payload at various layers of the protocol stack. The NMC may passively monitor the network traffic or it may participate in the protocols as a proxy. The NMC may attempt to classify the network traffic according to communication protocols that are used.


The NMC may also perform one or more actions for classifying protocols that may be a necessary precondition for application classification. While some protocols run on well-known ports, others do not. Thus, even if there is traffic on a well-known port, it is not necessarily the protocol generally understood to be assigned to that port. As a result, the NMC may perform protocol classification using one or more techniques, such as, signature matching, statistical analysis, traffic analysis, and other heuristics. In some cases, the NMC may use adaptive protocol classification techniques where information used to classify the protocols may be accumulated and/or applied over time to further classify the observed protocols. In some embodiments, NMCs may be arranged to employ stateful analysis. Accordingly, for each supported protocols, an NMC may use network packet payload data to drive a state machine that mimics the protocol state changes in the client/server flows being monitored. The NMC may categorize the traffic where categories might include file transfers, streaming audio, streaming video, database access, interactive, gaming, and the like. The NMC may attempt to determine whether the traffic corresponds to known communications protocols, such as HTTP, FTP, SMTP, RTP, TDS, TCP, IP, and the like.


In one or more of the various embodiments, NMCs and/or NMC functionality may be implemented using hardware or software based proxy devices that may be arranged to intercept network traffic in the monitored networks.


As used herein, the terms “layer” and “model layer” refer to a layer of one or more communication protocols in a stack of communication protocol layers that are defined by a model, such as the OSI model and the TCP/IP (IP) model. The OSI model defines seven layers and the TCP/IP model defines four layers of communication protocols.


For example, at the OSI model's lowest or first layer (Physical), streams of electrical/light/radio impulses (bits) are communicated between computing devices over some type of media, such as cables, network interface cards, radio wave transmitters, and the like. At the next or second layer (Data Link), bits are encoded into packets and packets are also decoded into bits. The Data Link layer also has two sub-layers, the Media Access Control (MAC) sub-layer and the Logical Link Control (LLC) sub-layer. The MAC sub-layer controls how a computing device gains access to the data and permission to transmit it. The LLC sub-layer controls frame synchronization, flow control and error checking. At the third layer (Network), logical paths are created, known as virtual circuits, to communicated data from node to node. Routing, forwarding, addressing, internetworking, error handling, congestion control, and packet sequencing are functions of the Network layer. At the fourth layer (Transport), transparent transfer of data between end computing devices, or hosts, is provided. The Transport layer is responsible for end to end recovery and flow control to ensure complete data transfer over the network.


At the fifth layer (Session) of the OSI model, connections between applications are established, managed, and terminated. The Session layer sets up, coordinates, and terminates conversations, exchanges, and dialogues between applications at each end of a connection. At the sixth layer (Presentation), independence from differences in data representation, e.g., encryption, is provided by translating from application to network format and vice versa. Generally, the Presentation layer transforms data into the form that the protocols at the Application layer (7) can accept. For example, the Presentation layer generally handles the formatting and encrypting/decrypting of data that is communicated across a network.


At the top or seventh layer (Application) of the OSI model, application and end user processes are supported. For example, communication partners may be identified, quality of service can be identified, user authentication and privacy may be considered, and constraints on data syntax can be identified. Generally, the Application layer provides services for file transfer, messaging, and displaying data. Protocols at the Application layer include FTP, HTTP, and Telnet.


To reduce the number of layers from seven to four, the TCP/IP model collapses the OSI model's Application, Presentation, and Session layers into its Application layer. Also, the OSI's Physical layer is either assumed or may be collapsed into the TCP/IP model's Link layer. Although some communication protocols may be listed at different numbered or named layers of the TCP/IP model versus the OSI model, both of these models describe stacks that include basically the same protocols.


As used herein, the term “entity” refers to an actor in the monitored network. Entities may include applications, services, programs, processes, network devices, or the like, operating in the monitored network. For example, individual entities may include, web clients, web servers, database clients, database servers, mobile app clients, payment processors, groupware clients, groupware services, or the like. In some cases, multiple entities may co-exist on the same network computer, process, application, or cloud compute instance.


As used herein, the term “device relation model” refers to a data structure that is used to represent relationships between and among different entities in a monitored network. Device relation models may be graph models comprised of nodes and edges stored in the memory of a network computer. In some embodiments, the network computer may automatically update the configuration and composition of the device relation model stored in the memory of the network computer to reflect the relationships between two or more entities in the monitored network. Nodes of the graph model may represent entities in the network and the edges of the graph model represent the relationship between entities in the network. Device relation models may improve the performance of computers at least by enabling a compact representation of entities and relationships in large networks to reduce memory requirements.


As used herein, the “device profile” refers to a data structure that represents the characteristics of network devices or entities that are discovered in networks monitored by NMCs. Values or fields in device profiles may be based on metrics, network traffic characteristics, network footprints, or the like, that have been collected based on passive network monitoring of network traffic in one or more monitored networks. Device profiles may be provided for various network devices, such as, client computers, server computers, application server computers, networked storage devices, routers, switches, firewalls, virtual machines, cloud instances, or the like.


As used herein, the “application profile” refers to a data structure that represents the characteristics of applications or services that are discovered in networks monitored by NMCs. Values or fields in application profiles may be based on metrics, network traffic characteristics, network footprints, or the like, that have been collected based on passive network monitoring of network traffic in one or more monitored networks. Application profiles may be provided for various applications, such as, client computers, server computers, application server computers, networked storage devices, routers, switches, firewalls, virtual machines, cloud instances, or the like. For example, application profiles may be provided for web clients, web servers, database clients, database servers, credentialing services, mobile application clients, payment processors, groupware clients, groupware services, micro-services, container based services, document management clients, document management services, billing/invoicing systems, building management services, healthcare management services, VOIP clients, VOIP servers, or the like.


As used herein, the term “entity profile” refers to a data structure that represent the characteristics of a network entity that may be a combination of device profiles and application profiles. Entity profiles may also include additional values or fields based on metrics, network traffic characteristics, network footprint, or the like, that have been collected based on passive network monitoring of network traffic in one or more monitored networks. For example, an entity profile may be provided for application servers where the entity profile is made from some or all of the device profile of the computer running or hosting the applications and some or all of the application profiles associated with the applications or services that are running or hosting one the computer. In some cases, multiple services or applications running on devices may be included in the same entity profile. In other cases, entity profiles may be arranged in hierarchal data structure similar to an object oriented computer languages class hierarchy.


As used herein, the term “observation port” refers to network taps, wireless receivers, port mirrors or directed tunnels from network switches, clients or servers, virtual machines, cloud computing instances, other network infrastructure devices or processes, or the like, or combination thereof. Observation ports may provide a copy of each network packet included in wire traffic on a particular network segment or virtual local area network (VLAN). Also, for at least some of the various embodiments, observation ports may provide NMCs network packet copies through a port mirror on a managed Ethernet switch, e.g., a Switched Port Analyzer (SPAN) port, or a Roving Analysis Port (RAP).


The following briefly describes embodiments of the invention in order to provide a basic understanding of some aspects of the invention. This brief description is not intended as an extensive overview. It is not intended to identify key or critical elements, or to delineate or otherwise narrow the scope. Its purpose is merely to present some concepts in a simplified form as a prelude to the more detailed description that is presented later.


Briefly stated, various embodiments are directed to monitoring network traffic using one or more network computers. In one or more of the various embodiments, a monitoring engine may be instantiated to perform actions, including: monitoring network traffic associated with a plurality of entities in one or more networks to provide one or more metrics; and providing a device relation model based on the plurality of entities, the network traffic, and the one or more metrics.


In one or more of the various embodiments, the actions of the monitoring engine may further include: modifying the device relation model based on an addition or removal of one or more entities in the network; and modifying the importance score associated with each entity based on the modification to the device relation model.


In one or more of the various embodiments, an inference engine may be instantiated to perform actions including associating each entity in the plurality of entities with an importance score based on the device relation model and the one or more metrics, wherein each importance score is associated with a significance of an entity to one or more operations of the one or more networks.


In one or more of the various embodiments, the actions of the inference engine may further include, modifying the importance score associated with each entity based on one or more characteristics including one or more of resources accessed by an entity, resources provided by an entity, users that access an entity, users that are logged in to an entity, or an uptime of the entity.


In one or more of the various embodiments, the actions of the inference engine may further include: providing one or more other entities based on a traversal of the device relation model; and modifying each importance score that is associated with the one or more other entities based on the traversal.


In one or more of the various embodiments, the actions of the inference engine may further include, modifying the importance score of the entity based on one or more applications shared by the entity and one or more other entities, dependencies shared by the entity and the one or more other entities, or activities of the one or more users.


In one or more of the various embodiments, the actions of the inference engine may further include, increasing the importance score for the entity based on a metric value that is associated with another entity that is linked to the entity.


In one or more of the various embodiments, the actions of the inference engine may further include: associating two or more entities that are communicating based on one or more public key infrastructure (PKI) certificates; and increasing each importance score associated with the two or more associated entities based on one or more anomalies associated with the one or more PKI certificates.


In one or more of the various embodiments, an alert engine may be instantiated to perform actions, including: generating a plurality of alerts associated with the plurality of entities based on the one or more metrics; and providing one or more alerts to one or more users from the plurality of alerts based on one or more ranked importance scores associated with one or more entities.


Illustrated Operating Environment



FIG. 1 shows components of one embodiment of an environment in which embodiments of the invention may be practiced. Not all of the components may be required to practice the invention, and variations in the arrangement and type of the components may be made without departing from the spirit or scope of the invention. As shown, system 100 of FIG. 1 includes local area networks (LANs)/wide area networks (WANs)—(network) 110, wireless network 108, client computers 102-105, application server computer 116, network monitoring computer 118, or the like.


At least one embodiment of client computers 102-105 is described in more detail below in conjunction with FIG. 2. In one embodiment, at least some of client computers 102-105 may operate over one or more wired and/or wireless networks, such as networks 108, and/or 110. Generally, client computers 102-105 may include virtually any computer capable of communicating over a network to send and receive information, perform various online activities, offline actions, or the like. In one embodiment, one or more of client computers 102-105 may be configured to operate within a business or other entity to perform a variety of services for the business or other entity. For example, client computers 102-105 may be configured to operate as a web server, firewall, client application, media player, mobile telephone, game console, desktop computer, or the like. However, client computers 102-105 are not constrained to these services and may also be employed, for example, as for end-user computing in other embodiments. It should be recognized that more or less client computers (as shown in FIG. 1) may be included within a system such as described herein, and embodiments are therefore not constrained by the number or type of client computers employed.


Computers that may operate as client computer 102 may include computers that typically connect using a wired or wireless communications medium such as personal computers, multiprocessor systems, microprocessor-based or programmable electronic devices, network PCs, or the like. In some embodiments, client computers 102-105 may include virtually any portable computer capable of connecting to another computer and receiving information such as, laptop computer 103, mobile computer 104, tablet computers 105, or the like. However, portable computers are not so limited and may also include other portable computers such as cellular telephones, display pagers, radio frequency (RF) devices, infrared (IR) devices, Personal Digital Assistants (PDAs), handheld computers, wearable computers, integrated devices combining one or more of the preceding computers, or the like. As such, client computers 102-105 typically range widely in terms of capabilities and features. Moreover, client computers 102-105 may access various computing applications, including a browser, or other web-based application.


A web-enabled client computer may include a browser application that is configured to send requests and receive responses over the web. The browser application may be configured to receive and display graphics, text, multimedia, and the like, employing virtually any web-based language. In one embodiment, the browser application is enabled to employ JavaScript, HyperText Markup Language (HTML), eXtensible Markup Language (XML), JavaScript Object Notation (JSON), Cascading Style Sheets (CS S), or the like, or combination thereof, to display and send a message. In one embodiment, a user of the client computer may employ the browser application to perform various activities over a network (online). However, another application may also be used to perform various online activities.


Client computers 102-105 also may include at least one other client application that is configured to receive and/or send content between another computer. The client application may include a capability to send and/or receive content, or the like. The client application may further provide information that identifies itself, including a type, capability, name, and the like. In one embodiment, client computers 102-105 may uniquely identify themselves through any of a variety of mechanisms, including an Internet Protocol (IP) address, a phone number, Mobile Identification Number (MIN), an electronic serial number (ESN), a client certificate, or other device identifier. Such information may be provided in one or more network packets, or the like, sent between other client computers, application server computer 116, network monitoring computer 118, or other computers.


Client computers 102-105 may further be configured to include a client application that enables an end-user to log into an end-user account that may be managed by another computer, such as application server computer 116, network monitoring computer 118, or the like. Such an end-user account, in one non-limiting example, may be configured to enable the end-user to manage one or more online activities, including in one non-limiting example, project management, software development, system administration, configuration management, search activities, social networking activities, browse various websites, communicate with other users, or the like. Further, client computers may be arranged to enable users to provide configuration information, policy information, or the like, to network monitoring computer 118. Also, client computers may be arranged to enable users to display reports, interactive user-interfaces, results provided by network monitor computer 118, or the like.


Wireless network 108 is configured to couple client computers 103-105 and its components with network 110. Wireless network 108 may include any of a variety of wireless sub-networks that may further overlay stand-alone ad-hoc networks, and the like, to provide an infrastructure-oriented connection for client computers 103-105. Such sub-networks may include mesh networks, Wireless LAN (WLAN) networks, cellular networks, and the like. In one embodiment, the system may include more than one wireless network.


Wireless network 108 may further include an autonomous system of terminals, gateways, routers, and the like connected by wireless radio links, and the like. These connectors may be configured to move freely and randomly and organize themselves arbitrarily, such that the topology of wireless network 108 may change rapidly.


Wireless network 108 may further employ a plurality of access technologies including 2nd (2G), 3rd (3G), 4th (4G) 5th (5G) generation radio access for cellular systems, WLAN, Wireless Router (WR) mesh, and the like. Access technologies such as 2G, 3G, 4G, 5G, and future access networks may enable wide area coverage for mobile computers, such as client computers 103-105 with various degrees of mobility. In one non-limiting example, wireless network 108 may enable a radio connection through a radio network access such as Global System for Mobil communication (GSM), General Packet Radio Services (GPRS), Enhanced Data GSM Environment (EDGE), code division multiple access (CDMA), time division multiple access (TDMA), Wideband Code Division Multiple Access (WCDMA), High Speed Downlink Packet Access (HSDPA), Long Term Evolution (LTE), and the like. In essence, wireless network 108 may include virtually any wireless communication mechanism by which information may travel between client computers 103-105 and another computer, network, a cloud-based network, a cloud instance, or the like.


Network 110 is configured to couple network computers with other computers, including, application server computer 116, network monitoring computer 118, client computers 102-105 through wireless network 108, or the like. Network 110 is enabled to employ any form of computer readable media for communicating information from one electronic device to another. Also, network 110 can include the Internet in addition to local area networks (LANs), wide area networks (WANs), direct connections, such as through a universal serial bus (USB) port, Ethernet port, other forms of computer-readable media, or any combination thereof. On an interconnected set of LANs, including those based on differing architectures and protocols, a router acts as a link between LANs, enabling messages to be sent from one to another. In addition, communication links within LANs typically include twisted wire pair or coaxial cable, while communication links between networks may utilize analog telephone lines, full or fractional dedicated digital lines including T1, T2, T3, and T4, and/or other carrier mechanisms including, for example, E-carriers, Integrated Services Digital Networks (ISDNs), Digital Subscriber Lines (DSLs), wireless links including satellite links, or other communications links known to those skilled in the art. Moreover, communication links may further employ any of a variety of digital signaling technologies, including without limit, for example, DS-0, DS-1, DS-2, DS-3, DS-4, OC-3, OC-12, OC-48, or the like. Furthermore, remote computers and other related electronic devices could be remotely connected to either LANs or WANs via a modem and temporary telephone link. In one embodiment, network 110 may be configured to transport information using one or more network protocols, such Internet Protocol (IP).


Additionally, communication media typically embodies computer readable instructions, data structures, program modules, or other transport mechanism and includes any information non-transitory delivery media or transitory delivery media. By way of example, communication media includes wired media such as twisted pair, coaxial cable, fiber optics, wave guides, and other wired media and wireless media such as acoustic, RF, infrared, and other wireless media.


One embodiment of application server computer 116 is described in more detail below in conjunction with FIG. 3. One embodiment of network monitoring computer 118 is described in more detail below in conjunction with FIG. 3. Although FIG. 1 illustrates application server computer 116, and network monitoring computer 118, each as a single computer, the innovations and/or embodiments are not so limited. For example, one or more functions of application server computer 116, network monitoring computer 118, or the like, may be distributed across one or more distinct network computers. Moreover, in one or more embodiment, network monitoring computer 118 may be implemented using a plurality of network computers. Further, in one or more of the various embodiments, application server computer 116, or network monitoring computer 118 may be implemented using one or more cloud instances in one or more cloud networks. Accordingly, these innovations and embodiments are not to be construed as being limited to a single environment, and other configurations, and other architectures are also envisaged.


Illustrative Client Computer



FIG. 2 shows one embodiment of client computer 200 that may include many more or less components than those shown. Client computer 200 may represent, for example, at least one embodiment of mobile computers or client computers shown in FIG. 1.


Client computer 200 may include processor 202 in communication with memory 204 via bus 228. Client computer 200 may also include power supply 230, network interface 232, audio interface 256, display 250, keypad 252, illuminator 254, video interface 242, input/output interface 238, haptic interface 264, global positioning systems (GPS) receiver 258, open air gesture interface 260, temperature interface 262, camera(s) 240, projector 246, pointing device interface 266, processor-readable stationary storage device 234, and processor-readable removable storage device 236. Client computer 200 may optionally communicate with a base station (not shown), or directly with another computer. And in one embodiment, although not shown, a gyroscope may be employed within client computer 200 for measuring or maintaining an orientation of client computer 200.


Power supply 230 may provide power to client computer 200. A rechargeable or non-rechargeable battery may be used to provide power. The power may also be provided by an external power source, such as an AC adapter or a powered docking cradle that supplements and/or recharges the battery.


Network interface 232 includes circuitry for coupling client computer 200 to one or more networks, and is constructed for use with one or more communication protocols and technologies including, but not limited to, protocols and technologies that implement any portion of the OSI model for mobile communication (GSM), CDMA, time division multiple access (TDMA), UDP, TCP/IP, SMS, MMS, GPRS, WAP, UWB, WiMax, SIP/RTP, GPRS, EDGE, WCDMA, LTE, UMTS, OFDM, CDMA2000, EV-DO, HSDPA, or any of a variety of other wireless communication protocols. Network interface 232 is sometimes known as a transceiver, transceiving device, or network interface card (MC).


Audio interface 256 may be arranged to produce and receive audio signals such as the sound of a human voice. For example, audio interface 256 may be coupled to a speaker and microphone (not shown) to enable telecommunication with others and/or generate an audio acknowledgement for some action. A microphone in audio interface 256 can also be used for input to or control of client computer 200, e.g., using voice recognition, detecting touch based on sound, and the like.


Display 250 may be a liquid crystal display (LCD), gas plasma, electronic ink, light emitting diode (LED), Organic LED (OLED) or any other type of light reflective or light transmissive display that can be used with a computer. Display 250 may also include a touch interface 244 arranged to receive input from an object such as a stylus or a digit from a human hand, and may use resistive, capacitive, surface acoustic wave (SAW), infrared, radar, or other technologies to sense touch and/or gestures.


Projector 246 may be a remote handheld projector or an integrated projector that is capable of projecting an image on a remote wall or any other reflective object such as a remote screen.


Video interface 242 may be arranged to capture video images, such as a still photo, a video segment, an infrared video, or the like. For example, video interface 242 may be coupled to a digital video camera, a web-camera, or the like. Video interface 242 may comprise a lens, an image sensor, and other electronics. Image sensors may include a complementary metal-oxide-semiconductor (CMOS) integrated circuit, charge-coupled device (CCD), or any other integrated circuit for sensing light.


Keypad 252 may comprise any input device arranged to receive input from a user. For example, keypad 252 may include a push button numeric dial, or a keyboard. Keypad 252 may also include command buttons that are associated with selecting and sending images.


Illuminator 254 may provide a status indication and/or provide light. Illuminator 254 may remain active for specific periods of time or in response to event messages. For example, when illuminator 254 is active, it may backlight the buttons on keypad 252 and stay on while the client computer is powered. Also, illuminator 254 may backlight these buttons in various patterns when particular actions are performed, such as dialing another client computer. Illuminator 254 may also cause light sources positioned within a transparent or translucent case of the client computer to illuminate in response to actions.


Further, client computer 200 may also comprise hardware security module (HSM) 268 for providing additional tamper resistant safeguards for generating, storing and/or using security/cryptographic information such as, keys, digital certificates, passwords, passphrases, two-factor authentication information, or the like. In some embodiments, hardware security module may be employed to support one or more standard public key infrastructures (PKI), and may be employed to generate, manage, and/or store keys pairs, or the like. In some embodiments, HSM 268 may be a stand-alone computer, in other cases, HSM 268 may be arranged as a hardware card that may be added to a client computer.


Client computer 200 may also comprise input/output interface 238 for communicating with external peripheral devices or other computers such as other client computers and network computers. The peripheral devices may include an audio headset, virtual reality headsets, display screen glasses, remote speaker system, remote speaker and microphone system, and the like. Input/output interface 238 can utilize one or more technologies, such as Universal Serial Bus (USB), Infrared, WiFi, WiMax, Bluetooth™, and the like.


Input/output interface 238 may also include one or more sensors for determining geolocation information (e.g., GPS), monitoring electrical power conditions (e.g., voltage sensors, current sensors, frequency sensors, and so on), monitoring weather (e.g., thermostats, barometers, anemometers, humidity detectors, precipitation scales, or the like), or the like. Sensors may be one or more hardware sensors that collect and/or measure data that is external to client computer 200.


Haptic interface 264 may be arranged to provide tactile feedback to a user of the client computer. For example, the haptic interface 264 may be employed to vibrate client computer 200 in a particular way when another user of a computer is calling. Temperature interface 262 may be used to provide a temperature measurement input and/or a temperature changing output to a user of client computer 200. Open air gesture interface 260 may sense physical gestures of a user of client computer 200, for example, by using single or stereo video cameras, radar, a gyroscopic sensor inside a computer held or worn by the user, or the like. Camera 240 may be used to track physical eye movements of a user of client computer 200.


GPS transceiver 258 can determine the physical coordinates of client computer 200 on the surface of the Earth, which typically outputs a location as latitude and longitude values. GPS transceiver 258 can also employ other geo-positioning mechanisms, including, but not limited to, triangulation, assisted GPS (AGPS), Enhanced Observed Time Difference (E-OTD), Cell Identifier (CI), Service Area Identifier (SAI), Enhanced Timing Advance (ETA), Base Station Subsystem (BSS), or the like, to further determine the physical location of client computer 200 on the surface of the Earth. It is understood that under different conditions, GPS transceiver 258 can determine a physical location for client computer 200. In one or more embodiment, however, client computer 200 may, through other components, provide other information that may be employed to determine a physical location of the client computer, including for example, a Media Access Control (MAC) address, IP address, and the like.


Human interface components can be peripheral devices that are physically separate from client computer 200, allowing for remote input and/or output to client computer 200. For example, information routed as described here through human interface components such as display 250 or keyboard 252 can instead be routed through network interface 232 to appropriate human interface components located remotely. Examples of human interface peripheral components that may be remote include, but are not limited to, audio devices, pointing devices, keypads, displays, cameras, projectors, and the like. These peripheral components may communicate over a Pico Network such as Bluetooth™, Zigbee™ and the like. One non-limiting example of a client computer with such peripheral human interface components is a wearable computer, which might include a remote pico projector along with one or more cameras that remotely communicate with a separately located client computer to sense a user's gestures toward portions of an image projected by the pico projector onto a reflected surface such as a wall or the user's hand.


A client computer may include web browser application 226 that is configured to receive and to send web pages, web-based messages, graphics, text, multimedia, and the like. The client computer's browser application may employ virtually any programming language, including a wireless application protocol messages (WAP), and the like. In one or more embodiment, the browser application is enabled to employ Handheld Device Markup Language (HDML), Wireless Markup Language (WML), WMLScript, JavaScript, Standard Generalized Markup Language (SGML), HyperText Markup Language (HTML), eXtensible Markup Language (XML), HTML5, and the like.


Memory 204 may include RAM, ROM, and/or other types of memory. Memory 204 illustrates an example of computer-readable storage media (devices) for storage of information such as computer-readable instructions, data structures, program modules or other data. Memory 204 may store BIOS 208 for controlling low-level operation of client computer 200. The memory may also store operating system 206 for controlling the operation of client computer 200. It will be appreciated that this component may include a general-purpose operating system such as a version of UNIX, or LINUX™, or a specialized client computer communication operating system such as Windows Phone™, or the Symbian® operating system. The operating system may include, or interface with a Java virtual machine module that enables control of hardware components and/or operating system operations via Java application programs.


Memory 204 may further include one or more data storage 210, which can be utilized by client computer 200 to store, among other things, applications 220 and/or other data. For example, data storage 210 may also be employed to store information that describes various capabilities of client computer 200. The information may then be provided to another device or computer based on any of a variety of methods, including being sent as part of a header during a communication, sent upon request, or the like. Data storage 210 may also be employed to store social networking information including address books, buddy lists, aliases, user profile information, or the like. Data storage 210 may further include program code, data, algorithms, and the like, for use by a processor, such as processor 202 to execute and perform actions. In one embodiment, at least some of data storage 210 might also be stored on another component of client computer 200, including, but not limited to, non-transitory processor-readable removable storage device 236, processor-readable stationary storage device 234, or even external to the client computer.


Applications 220 may include computer executable instructions which, when executed by client computer 200, transmit, receive, and/or otherwise process instructions and data. Applications 220 may include, for example, other client applications 224, web browser 226, or the like. Client computers may be arranged to exchange communications, such as, queries, searches, messages, notification messages, event messages, alerts, performance metrics, log data, API calls, or the like, combination thereof, with application servers and/or network monitoring computers.


Other examples of application programs include calendars, search programs, email client applications, IM applications, SMS applications, Voice Over Internet Protocol (VOIP) applications, contact managers, task managers, transcoders, database programs, word processing programs, security applications, spreadsheet programs, games, search programs, and so forth.


Additionally, in one or more embodiments (not shown in the figures), client computer 200 may include one or more embedded logic hardware devices instead of CPUs, such as, an Application Specific Integrated Circuit (ASIC), Field Programmable Gate Array (FPGA), Programmable Array Logic (PAL), or the like, or combination thereof. The embedded logic hardware devices may directly execute embedded logic to perform actions. Also, in one or more embodiments (not shown in the figures), client computer 200 may include one or more hardware microcontrollers instead of CPUs. In one or more embodiments, the microcontrollers may directly execute their own embedded logic to perform actions and access their own internal memory and their own external Input and Output Interfaces (e.g., hardware pins and/or wireless transceivers) to perform actions, such as System On a Chip (SOC), or the like.


Illustrative Network Computer



FIG. 3 shows one embodiment of network computer 300 that may be included in a system implementing at least one of the various embodiments. Network computer 300 may include many more or less components than those shown in FIG. 3. However, the components shown are sufficient to disclose an illustrative embodiment for practicing these innovations. Network computer 300 may represent, for example, one embodiment of at least one of application server computer 116, or network monitoring computer 118 of FIG. 1.


As shown in the figure, network computer 300 includes a processor 302 that may be in communication with a memory 304 via a bus 328. In some embodiments, processor 302 may be comprised of one or more hardware processors, or one or more processor cores. In some cases, one or more of the one or more processors may be specialized processors designed to perform one or more specialized actions, such as, those described herein. Network computer 300 also includes a power supply 330, network interface 332, audio interface 356, display 350, keyboard 352, input/output interface 338, processor-readable stationary storage device 334, and processor-readable removable storage device 336. Power supply 330 provides power to network computer 300.


Network interface 332 includes circuitry for coupling network computer 300 to one or more networks, and is constructed for use with one or more communication protocols and technologies including, but not limited to, protocols and technologies that implement any portion of the Open Systems Interconnection model (OSI model), global system for mobile communication (GSM), code division multiple access (CDMA), time division multiple access (TDMA), user datagram protocol (UDP), transmission control protocol/Internet protocol (TCP/IP), Short Message Service (SMS), Multimedia Messaging Service (MMS), general packet radio service (GPRS), WAP, ultra-wide band (UWB), IEEE 802.16 Worldwide Interoperability for Microwave Access (WiMax), Session Initiation Protocol/Real-time Transport Protocol (SIP/RTP), or any of a variety of other wired and wireless communication protocols. Network interface 332 is sometimes known as a transceiver, transceiving device, or network interface card (NIC). Network computer 300 may optionally communicate with a base station (not shown), or directly with another computer.


Audio interface 356 is arranged to produce and receive audio signals such as the sound of a human voice. For example, audio interface 356 may be coupled to a speaker and microphone (not shown) to enable telecommunication with others and/or generate an audio acknowledgement for some action. A microphone in audio interface 356 can also be used for input to or control of network computer 300, for example, using voice recognition.


Display 350 may be a liquid crystal display (LCD), gas plasma, electronic ink, light emitting diode (LED), Organic LED (OLED) or any other type of light reflective or light transmissive display that can be used with a computer. In some embodiments, display 350 may be a handheld projector or pico projector capable of projecting an image on a wall or other object.


Network computer 300 may also comprise input/output interface 338 for communicating with external devices or computers not shown in FIG. 3. Input/output interface 338 can utilize one or more wired or wireless communication technologies, such as USB™, Firewire™, WiFi, WiMax, Thunderbolt™, Infrared, Bluetooth™, Zigbee™, serial port, parallel port, and the like.


Also, input/output interface 338 may also include one or more sensors for determining geolocation information (e.g., GPS), monitoring electrical power conditions (e.g., voltage sensors, current sensors, frequency sensors, and so on), monitoring weather (e.g., thermostats, barometers, anemometers, humidity detectors, precipitation scales, or the like), or the like. Sensors may be one or more hardware sensors that collect and/or measure data that is external to network computer 300. Human interface components can be physically separate from network computer 300, allowing for remote input and/or output to network computer 300. For example, information routed as described here through human interface components such as display 350 or keyboard 352 can instead be routed through the network interface 332 to appropriate human interface components located elsewhere on the network. Human interface components include any component that allows the computer to take input from, or send output to, a human user of a computer. Accordingly, pointing devices such as mice, styluses, track balls, or the like, may communicate through pointing device interface 358 to receive user input.


GPS transceiver 340 can determine the physical coordinates of network computer 300 on the surface of the Earth, which typically outputs a location as latitude and longitude values. GPS transceiver 340 can also employ other geo-positioning mechanisms, including, but not limited to, triangulation, assisted GPS (AGPS), Enhanced Observed Time Difference (E-OTD), Cell Identifier (CI), Service Area Identifier (SAI), Enhanced Timing Advance (ETA), Base Station Subsystem (BSS), or the like, to further determine the physical location of network computer 300 on the surface of the Earth. It is understood that under different conditions, GPS transceiver 340 can determine a physical location for network computer 300. In one or more embodiment, however, network computer 300 may, through other components, provide other information that may be employed to determine a physical location of the client computer, including for example, a Media Access Control (MAC) address, IP address, and the like.


In at least one of the various embodiments, applications, such as, operating system 306, network monitoring engine 322, inference engine 324, analysis engine 326, alert engine 327, web services 329, or the like, may be arranged to employ geo-location information to select one or more localization features, such as, time zones, languages, currencies, calendar formatting, or the like. Localization features may be used when interpreting network traffic, monitoring application protocols, user-interfaces, reports, as well as internal processes and/or databases. In at least one of the various embodiments, geo-location information used for selecting localization information may be provided by GPS 340. Also, in some embodiments, geolocation information may include information provided using one or more geolocation protocols over the networks, such as, wireless network 108 and/or network 111.


Memory 304 may include Random Access Memory (RAM), Read-Only Memory (ROM), and/or other types of memory. Memory 304 illustrates an example of computer-readable storage media (devices) for storage of information such as computer-readable instructions, data structures, program modules or other data. Memory 304 stores a basic input/output system (BIOS) 308 for controlling low-level operation of network computer 300. The memory also stores an operating system 306 for controlling the operation of network computer 300. It will be appreciated that this component may include a general-purpose operating system such as a version of UNIX, or LINUX™, or a specialized operating system such as Microsoft Corporation's Windows® operating system, or the Apple Corporation's IOS® operating system. The operating system may include, or interface with a Java virtual machine module that enables control of hardware components and/or operating system operations via Java application programs. Likewise, other runtime environments may be included.


Memory 304 may further include one or more data storage 310, which can be utilized by network computer 300 to store, among other things, applications 320 and/or other data. For example, data storage 310 may also be employed to store information that describes various capabilities of network computer 300. The information may then be provided to another device or computer based on any of a variety of methods, including being sent as part of a header during a communication, sent upon request, or the like. Data storage 310 may also be employed to store social networking information including address books, buddy lists, aliases, user profile information, or the like. Data storage 310 may further include program code, data, algorithms, and the like, for use by a processor, such as processor 302 to execute and perform actions such as those actions described below. In one embodiment, at least some of data storage 310 might also be stored on another component of network computer 300, including, but not limited to, non-transitory media inside processor-readable removable storage device 336, processor-readable stationary storage device 334, or any other computer-readable storage device within network computer 300, or even external to network computer 300. Data storage 310 may include, for example, capture database 312, network topology database 314, protocol information 316, or the like. Capture database 312 may be a database arranged for storing network metrics or network traffic collected by an NMC. Network topology database 314 may be a data store that contains information related to the topology of one or more network monitored by a NMC, include one or more device relation models. And, protocol information 316 may store various rules and/or configuration information related to one or more network communication protocols, including application protocols, secure communication protocols, client-server protocols, peer-to-peer protocols, shared file system protocols, or the like, that may be employed in a monitored network environment.


Applications 320 may include computer executable instructions which, when executed by network computer 300, transmit, receive, and/or otherwise process messages (e.g., SMS, Multimedia Messaging Service (MMS), Instant Message (IM), email, and/or other messages), audio, video, and enable telecommunication with another user of another mobile computer. Other examples of application programs include calendars, search programs, email client applications, IM applications, SMS applications, Voice Over Internet Protocol (VOIP) applications, contact managers, task managers, transcoders, database programs, word processing programs, security applications, spreadsheet programs, games, search programs, and so forth. Applications 320 may include network monitoring engine 322, inference engine 324, analysis engine 326, alert engine 327, web services 329, or the like, that may be arranged to perform actions for embodiments described below. In one or more of the various embodiments, one or more of the applications may be implemented as modules and/or components of another application. Further, in one or more of the various embodiments, applications may be implemented as operating system extensions, modules, plugins, or the like.


Furthermore, in one or more of the various embodiments, network monitoring engine 322, inference engine 324, analysis engine 326, alert engine 327, web services 329, or the like, may be operative in a cloud-based computing environment. In one or more of the various embodiments, these applications, and others, that comprise the management platform may be executing within virtual machines and/or virtual servers that may be managed in a cloud-based based computing environment. In one or more of the various embodiments, in this context the applications may flow from one physical network computer within the cloud-based environment to another depending on performance and scaling considerations automatically managed by the cloud computing environment. Likewise, in one or more of the various embodiments, virtual machines and/or virtual servers dedicated to network monitoring engine 322, inference engine 324, analysis engine 326, alert engine 327, web services 329, or the like, may be provisioned and de-commissioned automatically.


Also, in one or more of the various embodiments, network monitoring engine 322, inference engine 324, analysis engine 326, alert engine 327, web services 329, or the like, may be located in virtual servers running in a cloud-based computing environment rather than being tied to one or more specific physical network computers.


Further, network computer 300 may also comprise hardware security module (HSM) 360 for providing additional tamper resistant safeguards for generating, storing and/or using security/cryptographic information such as, keys, digital certificates, passwords, passphrases, two-factor authentication information, or the like. In some embodiments, hardware security module may be employ to support one or more standard public key infrastructures (PKI), and may be employed to generate, manage, and/or store keys pairs, or the like. In some embodiments, HSM 360 may be a stand-alone network computer, in other cases, HSM 360 may be arranged as a hardware card that may be installed in a network computer.


Additionally, in one or more embodiments (not shown in the figures), network computer 300 may include one or more embedded logic hardware devices instead of CPUs, such as, an Application Specific Integrated Circuit (ASIC), Field Programmable Gate Array (FPGA), Programmable Array Logic (PAL), or the like, or combination thereof. The embedded logic hardware device may directly execute its embedded logic to perform actions. Also, in one or more embodiments (not shown in the figures), the network computer may include one or more hardware microcontrollers instead of CPUs. In one or more embodiments, the one or more microcontrollers may directly execute their own embedded logic to perform actions and access their own internal memory and their own external Input and Output Interfaces (e.g., hardware pins and/or wireless transceivers) to perform actions, such as System On a Chip (SOC), or the like.


Illustrative Logical System Architecture



FIG. 4 illustrates a logical architecture of system 400 for ranking alerts based on network monitoring in accordance with one or more of the various embodiments. System 400 may be arranged to include a plurality of network devices and/or network computers on first network 402 and a plurality of network devices and/or network computers on second network 404. Communication between the first network and the second network is managed by switch 406. Also, NMC 408 may be arranged to passively monitor or record packets (network packets) that are communicated in network flows between network devices or network computers on first network 402 and second network 404. For example, the communication of flows of packets between the Host B network computer and the Host A network computer are managed by switch 406 and NMC 408 may be passively monitoring and recording some or all of the network traffic comprising these flows.


NMC 408 may be arranged to receive network communication for monitoring through a variety of means including network taps, wireless receivers, port mirrors or directed tunnels from network switches, clients or servers including the endpoints themselves, virtual machine, cloud computing instances, other network infrastructure devices, or the like, or combination thereof. In at least some of the various embodiments, the NMC may receive a copy of each packet on a particular network segment or virtual local area network (VLAN). Also, for at least some of the various embodiments, NMCs may receive these packet copies through a port mirror on a managed Ethernet switch, e.g., a Switched Port Analyzer (SPAN) port, or a Roving Analysis Port (RAP). Port mirroring enables analysis and debugging of network communications. Port mirroring can be performed for inbound or outbound traffic (or both) on single or multiple interfaces.


In one or more of the various embodiments, NMCs may be arranged to employ adaptive networking monitoring information including one or more device relation models to determine a user's interest in alerts.



FIG. 5 illustrates a logical schematic of system 500 for ranking alerts based on network monitoring in accordance with one or more of the various embodiments. In one or more of the various embodiments, an NMC, such as NMC 502 may be arranged to monitor network traffic in one or more networks, such as, network 504, network 506, or network 508. In this example, network 504, network 506, or network 508 may be considered similar to network 108 or network 110. Also, in some embodiments, one or more of network 504, network 506, or network 508 may be considered cloud computing environments. Likewise, in some embodiments, one or more of network 504, network 506, or network 508 may be considered remote data centers, local data centers, or the like, or combination thereof.


In one or more of the various embodiments, NMCs, such as NMC 502 may be arranged to communicate with one or more capture agents, such as, capture agent 512, capture agent 514, or capture agent 514. In some embodiments, capture agents may be arranged to selectively capture network traffic or collect traffic metrics that may be provided to NMC 502 for additional analysis.


In one or more of the various embodiments, capture agents may be NMCs that are distributed in various networks or cloud environments. For example, in some embodiments, a simplified system may include one or more NMCs that also provide capture agent services. In some embodiments, capture agents may be NMCs arranged to instantiate one or more capture engines to perform one or more capture or collection actions. Similarly, in one or more of the various embodiments, one or more capture agents may be instantiated or hosted separately from one or more NMCs.


In one or more of the various embodiments, system 500 may include one or more network entities, such as, entities 518, entities 520, or the like, that communicate in or over one or more of the monitored networks. Entities 518 and entities 520 are illustrated here as cloud environment compute instances (e.g., virtual machines), or the like. However, one of ordinary skill in the art will appreciate that entities may be considered to be various network computers, network appliances, routers, applications, or the like, subject to network monitoring by one or more NMCs. (See, FIG. 4, as well).


In this example, for one or more of the various embodiments, capture agents, such as capture agent 512 may be arranged capture network traffic or network traffic metrics associated with one or more entities, such as, entities 518. Accordingly, in some embodiments, some or all of the information captured by capture agents may be provided to one or more NMCs, such as, NMC 502 for additional analysis. Also, in one or more of the various embodiments, capture agents or NMCs may be arranged to selectively store network traffic in a capture data store, such as, capture data store 522.



FIG. 6 illustrates a logical representation of network 600 in accordance with at least one of the various embodiments. In at least one of the various embodiments, network 602 represent a physical network and the objects in the network. In this example, network 602 includes, network computers 604, client computers 606, network devices, such as, network device 610, and other items, such as, WI-FI hotspot 608. One of ordinary skill in the art will appreciate that networks may have many more and/or different devices than shown in FIG. 6.


In at least one of the various embodiments, one or more network monitoring computers (NMCs) may be arranged to monitor networks, such as, network 602. (See, FIG. 4). In at least one of the various embodiments, NMCs may be arranged to generate a device relation model that represents the items in a network. For example, device relation model 612 represents a device relation model corresponding to network 602. Accordingly, device relation model 612 includes nodes that represent the various entities that may be active in network 602. For example, entities 614, may represent some of the entities that are operative in network 602. In some embodiments, there may be more entities in model 612 than the number of actual computers and network devices present in network 602 since many network computers/devices may host more than one entity.


In this example, device relation model 612 shows nodes that corresponds to entities absent any edges. In some embodiments, initially some or all of the relationships between the entities may be unknown to the monitoring NMC, so some or all of the edges may be unknown and therefor omitted from device relation model 612. Note, in at least one of the various embodiments, there may be pre-defined network architecture/topology information that may be available to the NMC. Accordingly, in some embodiments, the NMC may be able to determine some of the relationships between entities before observing network traffic.



FIG. 7 illustrates a logical representation of a portion of device relation model 700 in accordance with at least one of the various embodiments. In at least one of the various embodiments, device relation models may include nodes that represent entities and edges that represent relationships between the entities. In some embodiments, entities may represent servers, clients, switches, routers, NMCs, load balancers, or the like. For example, entity 702 may be a server entity that has relationships with other servers, such as, entity 704 and entity 706. Likewise, entity 708 may be a server or other service that has a relationship with entity 704, entity 706, and entity 702. Further, entity 704 and entity 710 may have a relationship and client entities 712 may have direct relationships with entity 710.


In at least one of the various embodiments, NMCs may be arranged to use device relation model 700 to discover relationships between groups of entities. For example, device relation model 700 may be used to determine that entity 702, entity 704, 710, and client 712 may be in a related group because they are all on the same path through the graph.



FIGS. 8A and 8B illustrate how a device relation model may evolve as the NMCs gather more information about the relationships between the entities in a network.



FIG. 8A illustrates a logical representation of device relation model 800 showing naïve relationships between the entities in accordance with the one or more embodiments. In at least one of the various embodiments, for example, a NMC may initially determine the entities in a network by observing the network traffic to obtain the source/destination network address fields in the network packets that flow through the network. In at least one of the various embodiments, each unique network address may represent a different entity in the network.


Likewise, in some embodiments, the NMC may be arranged to observe responses to broadcast messages, or the like. In some embodiments, the NMC may be provided other configuration that defines some or all of the entities in the network.


In this example, for at least one of the various embodiments, the NMC has discovered/identified six entities in the network (entity 802 through entity 812). Accordingly, in some embodiments, the NMC may be arranged to generate a device relation model, such as, device relation model 800 that represents the six discovered entities as nodes in the graph. Likewise, in some embodiments, edges in device relation model 800 may represent the initial relationships as determined by the NMC. For example, in the initial stages of monitoring a network the NMC may be arranged to determine relationships based on which entities are observed to be communicating with each other.


However, in at least one of the various embodiments, NMCs may be arranged to provide a device relation model that represents the relationships between the entities. Initially, in some embodiments, the NMC may define the initial relationships in the network based on which entities communicate with each other. However, in at least one of the various embodiments, as the NMC collects more information about the entities and their relationships to other entities, the NMC may modify device relation model 800 to reflect the deeper understanding of these relationships.



FIG. 8B illustrates a logical representation of device relation model 800 showing informed relationships between the entities in accordance with the one or more embodiments. In at least one of the various embodiments, after sufficient monitoring has occurred, the NMC may have observed enough network traffic to evaluate and weight the relationships of the entities in the network.


In at least one of the various embodiments, some of the initial relationships may be determined to be incidental, spurious, or otherwise unimportant. Accordingly, the NMC may be arranged to remove (or de-prioritize) edges from device relation model 800 that correspond to such relationships. For example, in at least one of the various embodiments, entities (e.g., Windows network domain controllers) in a network may be arranged to periodically exchange messages with one or more other entities for discovery/accountability purposes. Thus, in this example, some of the messaging observed by an NMC may be routing and otherwise not resulting from an interesting relationship between the sender and receiver.


In at least one of the various embodiments, NMC may be arranged to evaluate the communication between entities to attempt to determine the type of relationships and the importance of the relationships. Accordingly, in at least one of the various embodiments, NMCs may be arranged to collected metrics associated with the various network flows flowing the network to identify the flows that may be important. Likewise, in at least one of the various embodiments, NMC may be arranged discover and recognize the communication protocols used by entities in monitored networks. In some embodiments, the NMCs may be arranged to use the collected metrics and its understanding of the communication protocol to establish and/or prioritize relationships between the entities in the networks.


In this example, for at least one of the various embodiments, device relation model 800 has been modified to include relationships determined to be of importance. The nodes representing entities 802-812 are still present in but some of the edges that represent relationships in the network have been removed. For example, in FIG. 8A, device relation model 800 includes an edge between entity 804 and entity 812. In FIG. 8B, device relation model 800 omits the edge between entity 804 and entity 812.


In at least one of the various embodiments, the remaining edges in device relation model 800 represent relationships between the entities that the NMC determined to be important. Note, in at least one of the various embodiments, an NMC may employ a variety of metrics, conditions, heuristics, or the like, to identify relationships that may be of interest. For example, an NMC may be arranged to identify entities that represent certain applications on the network, such as, database servers, database clients, email servers, email clients, or the like, by identifying the communication protocols that may be used by the particular applications. In other cases, the NMC may determine an important relationship based on the number and/or rate of packets exchanged between one or more entities. Accordingly, the NMC may be configured to prioritize relationships between entities that exchange a high volume of traffic.


In at least one of the various embodiments, the NMC may analyze observed traffic to identify network packets that flow through particular paths in the device relation model. In some embodiments, NMCs may be arranged to trace or identify such paths connecting related entities by observing common data carried in the payloads and/or header fields of the network packets that are passed among entities in the network. For example, an NMC may be arranged to observe sequence numbers, session identifiers, HTTP cookies, query values, or the like, from all entities participating in transactions on the network. In some embodiments, the NMC may correlate observed network packets that may be requests and responses based on the contents of the network packets and information about the operation of the underlying applications and/or protocols.



FIGS. 9A and 9B provide additional illustration of how a device relation model may evolve as the NMCs gather more information about the relationships between the entities in a network.



FIG. 9A illustrates a logical representation of device relation model 900 showing relationships between the entities based on observed network connections in accordance with the one or more embodiments. In at least one of the various embodiments, the NMC has provided device relation model 900 that represents the relationships between entity 902 through entity 912. Here device relation model 900 shows relationships that may be associated with actual network links (e.g., physical links or virtual links) between the entities in the network. For example, the edges in device relation model 900 may correspond to network flows that have been observed in the network. In some embodiments, an NMC may readily deduce these types of connection relationships by examining the source/destination fields in network packets observed in the network. Accordingly, in this example, entity 906 may have been observed exchanging data with entity 908 over the network.



FIG. 9B illustrates a logical representation of device relation model 900 showing phantom edges that represent relationships between the entities in accordance with the one or more embodiments. In some embodiments, networks may include entities that have important logical/operational relationships even though they do not exchange network packets directly with each other. Here, the NMC has discovered relationships between entity 902 and entity 908 even though they do not communicate directly with each other. Likewise, the NMC has discovered relationships between entity 904 and entity 912 even though they do not communicate directly with each other. Similarly, entity 908, entity 910, entity 912 have also been found to be related even though their no direct network link or communication between them.


In at least one of the various embodiments, the NMC may be arranged to represent such relationships using phantom edges. Phantom edges may represent relationships between entities that do not correspond to direct network links. For example, entity 902 and entity 904 may be database clients and entity 908, entity 910, and entity 912 may be database servers. In this example, entity 902 and entity 904 access the database servers through entity 906. In this example, entity 906 may be proxy-based load balancer of some kind. Accordingly, in this example there is no direct network link between the database clients and the database servers. Nor, as represented, do the database server entities (entity 908, entity 910, and entity 912) have direct connections to each other.


But, in some embodiments, the NMC may determine that the three database server entities (entity 908, entity 910, and entity 912) are related because they are each receiving communications from the same load balancer (entity 906). Likewise, the NMC may determine a relationship between the database clients (entity 902 and entity 904) and the database servers (entity 908, entity 910, and entity 912) by observing the operation of the database transactions even though they do not communicate directly with each other.



FIG. 10 illustrates a logical architecture of network 1000 that includes entities in accordance with the one or more embodiments. In at least one of the various embodiments, networks may include several (100s, 1000s, or more) computers and/or devices that may put network traffic on the network. As described above, (See, FIG. 4 and FIG. 5) network monitoring computers (NMCs) may be arranged to passively monitor the network traffic. In some embodiments, NMCs (not shown in FIG. 10) may have direct access to the wire traffic of the network enabling NMCs to access all of the network traffic in monitored networks.


In at least one of the various embodiments, the NMC may be arranged to identify entities in the network. Entities may include applications, services, programs, processes, network devices, or the like, operating in the monitored network. For example, individual entities may include, web clients, web servers, database clients, database servers, mobile app clients, payment processors, groupware clients, groupware services, or the like. In some cases, multiple entities may co-exist on the same network computer or cloud compute instance.


In this example, client computer 1002 may be hosting web client 1004 and DNS client 1006. Further, server computer 1008 may be hosting web server 1010, database client 1014, and DNS client 1021. Also, in this example: server computer 1016 may be arranged to host database server 1018 and authorization client 1020; server computer 1022 may be arranged to host authorization server 1024; and server computer 1026 may be arranged to DNS server 1028.


In at least one of the various embodiments, some or all of the applications on a computer may correspond to entities. Generally, applications, services, or the like, that communicate using the network may be identified as entities by an NMC. Accordingly, there may be more than one entity per computer. Some server computers may host many entities. Also, some server computers may be virtualized machine instances executing in a virtualized environment, such as, a cloud-based computing environment.


In at least one of the various embodiments, an individual process or program running on a network computer may perform more than one type of operation on the network. Accordingly, some processes or programs may be represented as more than one entity. For example, a web server application may have an embedded database client. Thus, in some embodiments, an individual web server application may contribute two or more entities to the device relation model.


In at least one of the various embodiments, the NMC may be arranged to monitor the network traffic to identify the entities and to determine their roles. In at least one of the various embodiments, the NMC may monitor the communication protocols, payloads, ports, source/destination addresses, or the like, or combination thereof, to identify entities.


In at least one of the various embodiments, the NMC may be preloaded with configuration information that it may use to identify entities and the services/roles they may be performing in the network. For example, if an NMC observes a HTTP GET request coming from a computer, it may determine there is a web client entity running on the host. Likewise, if the NMC observes a HTTP 200 OK response originating from a computer it may determine that there is a web server entity in the network.


In at least one of the various embodiments, the NMC may use some or all of the tuple information included in network traffic to distinguish between different entities in the network. Further, the NMC may be arranged to track the connections and network flows established between separate entities by correlating the tuple information of the requests and responses between the entities.



FIG. 11 illustrates a logical representation of a data structure for device relation model 1100 that includes entities in accordance with the one or more embodiments. In at least one of the various embodiments, network monitoring computers (NMCs) may be arranged generate device relation models, such as, device relation model 1100. In this example, device relation model 1100 represents the entities discovered network 1000 shown in FIG. 10.


In at least one of the various embodiments, as described above, NMCs may arrange device relation models to represent the relationship the entities have to each other rather than just modeling the network topology. For example, entity 1106, entity 1110, and entity 1118 are each related to the DNS system in network 1000. Therefore, in this example, for some embodiments, the NMC may arrange device relation model 1100 such that all of the DNS related entities (entity 1106, entity 1110, and entity 1118) are neighbors in the graph. Accordingly, in some embodiments, even though entity 1106 corresponds to DNS client 1006 on client computer 1002, the NMC may group entity 1106 with the other DNS entities rather than put it next other entities in the same computer.


In at least one of the various embodiments, the NMC may be arranged to generate device relation model 1100 based on the relationships that the entities have with each other. Accordingly, in some embodiments, the edges in the graph may be selected and/or prioritized (e.g., weighted) based on the type and/or strength of the relationship. In at least one of the various embodiments, the metrics used for prioritizing the edges in a device relation model may be selected/computed based on configuration information that includes rules, conditions, pattern matching, scripts, or the like. NMCs may be arranged to apply this configuration to the observed network packets (e.g., headers and payload, alike) to identify and evaluate relationships.


In at least one of the various embodiments, in device relation model 1100, the edge connecting entity 1104 and entity 1108 is depicted thicker to represent the close relationship the web server entity has with the database client entity. This reflects that the web server may be hosting a data centric web application that fetches data from a database when it receives HTTP requests from clients. Likewise, for device relation model 1100 the relationship between the database client (entity 1108) and the database server (entity 1112) is also a strong relationship. Similarly, the relationship between the authorization client (entity 1114) and the authorization server (entity 1116) is a strong relationship.


Also, in this example, the client (entity 1102) and DNS client 1 (entity 1106) have a strong relationship and it follows that DNS client 1 (entity 1106) has a strong relationship with the DNS server (entity 1118). However, DNS client 2 (entity 1110) has a weak relationship with the DNS server (entity 1118). In this example, this may make sense because DNS client 1 (entity 1106) is often used by the client (entity 1102) to send lookup requests to the DNS server. In contrast, in this example, DNS client 2 (entity 1110) is rarely used since it is running on the server computer (server computer 1008 in FIG. 10) and it may rarely issue name lookup requests.


In at least one of the various embodiments, the NMC may traverse device relation model 1100 to identify entities that may be closely related together and associate them into a group. For example, in some embodiments, in device relation model 1100, entity 1104, entity 1108, and entity 1112 may be grouped since they each have strong relationships with each other.


Accordingly, in at least one of the various embodiments, the NMC may be arranged to correlate error signals that may be associated with entity in the same to determine that an anomaly may be occurring. Related error signals that may propagate through a group of closely related entities may be recognized as a bigger problem that rises to an actual anomaly.


In at least one of the various embodiments, the NMC may be arranged to have configuration information, including, templates, patterns, protocol information, or the like, for identifying error signals in a group that may have correlations that indicate they indicate an anomaly.


In some embodiments, the NMC may be arranged to capture/monitor incoming and outgoing network traffic for entities in a monitored network. Also, the NMC may be arranged to employ facilities, such as, state machines, mathematical models, or the like, to track expected/normal operations of different types of entities in a monitored network. Accordingly, in at least one of the various embodiments, the NMC may monitor the state of operations for entities that are working together. For example, a web client entity, such as, entity 1102, may make an HTTP request to web server entity 1104, that in turn triggers the web server entity 1104 to issue a database request to DB client entity 1108 that in turn is provided database server entity 1112. In some embodiments, the NMC may monitor the operation of each entity in the group by observing the network traffic exchanged between the entities in a group. Thus, in some embodiments, if an error at database server entity 1112 causes web client entity 1102 to drop its connection because of a timeout (or the user cancel the request, or repeats the same request before the response is sent), the NMC may be able to correlate the error at database server entity 1112 with the “timeout” error at web client entity 1102 to recognize what may be a serious anomaly.



FIG. 12 represents a logical representation of system 1200 for transforming monitored network traffic into profile objects in accordance with one or more of the various embodiments. In one or more of the various embodiments, NMC 1202 may be arranged to passively monitor network traffic 1204. As described, in some embodiments, NMC 1202 may be arranged to provide various metrics associated with monitored network traffic 1204.


In one or more of the various embodiments, an NMC may be arranged to transform one or more collected metrics into profile objects suitable for machine learning training of activity models. Likewise, in one or more of the various embodiments, the profile objects may be provided to one or more trained activity models for classifications.


Accordingly, in one or more of the various embodiments, as described above, NMCs such as, NMC 1202 may be arranged to collect metrics from monitored network traffic and arrange them into metric profiles. Information from metric profiles may be selected or transformed to provide profile objects, such as profile objects 1206. In one or more of the various embodiments, profile objects may include one or more collections of fields with values that may be based on network traffic 1204 or metric profiles associated with network traffic 1202. In one or more of the various embodiments, one or more of the metrics included in a profile object may correspond to metrics collected by the NMC. In other embodiments, one or more of the metrics included in a profile object may be composites based on two or more metrics. Also, in one or more of the various embodiments, one or more metrics may be computed based on one or more observed metrics in one or more metric profiles.


Further, in one or more of the various embodiments, metric values included in profile objects may be normalized to a common schema as well as arithmetically normalized. Normalizing metric values to a common schema may include bucketing values. For example, in some embodiments, observed metrics that have continuous values may be mapped to named buckets, such as high, medium, low, or the like.


In one or more of the various embodiments, NMCs may be arranged to execute one or more ingestion rules to perform the data normalization required for mapping observed (raw) metrics into profile objects field value. in one or more of the various embodiments, one or more ingestion rules may be built-in to NMCs while other ingestion rules may be provided via configuration information, user input, or the like.



FIG. 13 illustrates a logical representation of system 1300 for ranking alerts based on network monitoring in accordance with one or more of the various embodiments. In one or more of the various embodiments, system 1300 includes networking environment 1302 that represents one or more monitored networks that includes various network devices. In this example, the particular network devices (entities) are not of interest, they represent any given device, computer, router, load balancer, or the like, in a monitored network. In one or more of the various embodiments, NMC 1304 represents one or more NMCs arranged to monitor networks or network traffic that may be associated with networking environment 1302. Further, in some embodiments, user 1306 may login to client computer 1308 to view one or more alerts, reports, or visualizations (referred to as alerts from here on out).


In one or more of the various embodiments, NMCs such as NMC 1304 may be arranged to monitor network traffic that may be associated with many different devices or entities in one or more networks (e.g., networking environment 1302). In one or more of the various embodiments, NMCs may be arranged to generate many types of alerts associated with the various anomalies discovered while monitoring the network traffic associated with large networking environments. Accordingly, alerts 1310 represent the universe of alerts provided or generated as a result of the NMC's network monitoring and network traffic analysis. In one or more of the various embodiments, alerts 1310 may include informational alerts, warnings, errors, status updates, or the like. In some embodiments, NMCs may provide an arbitrary number of alerts depending on how the its various alert triggers may be configured.


In one or more of the various embodiments, if the NMC provided all of the alerts to users in an organization, users such as user 1306 would be overwhelmed by information, including, in some embodiments, many alerts that may be not be important because they may be associated with unimportant or less-important entities in the network. Accordingly, in this example, user 1306 may be uninterested in alerts that are unrelated to important entities in networking environment 1302. In one or more of the various embodiments, NMCs, such as, NMC 1304 may be arranged to provide alerts, such as, alerts 1312 that may be determined to be associated with entities that are important. Likewise, in some embodiments, NMCs may be arranged to provide some or all alerts to one or more users, or other services. However, the NMCs may use an importance score associated with the entities associated with the alerts to filter, sort, route, select delivery paths, highlight, aggregate, or the like, one or more alerts.


In one or more of the various embodiments, NMCs may be arranged to survey users to identify important entities in a network, such as, devices, entities, applications, sub-networks, or the like. However, in one or more of the various embodiments, because modern networks may be complex and dynamic, determinations of important entities based on static mapping rules or self-identification may be insufficient to capture an accurate or reliable representation of the entities that are important to an organization. For example, in one or more of the various embodiments, users and organizations as a whole may be unaware of one or more related devices or services (entities) that should be considered important because their performance could affect the performance of systems or services that were identified by the organization as important.


Likewise, in one or more of the various embodiments, relying on static mapping rules or catalogs to assign important to entities may be insufficient because modern networking environments may be constantly changing. Thus, in some embodiments, even well-planned mapping rules may be difficult to keep up to date because of variabilities introduced by various sources. For example, modern networks that include cloud computing environments may be continually changing because of automatic provisioning or decommissioning of virtual devices, services, applications, virtual machines, or the like. Likewise, in some embodiments, different groups in an organization may alter different portions of an organization's network without communicating their changes to the rest of the organization, and so on.


Accordingly, in one or more of the various embodiments, NMCs, such as, NMC 1304 may be arranged to instantiate one or more inference engines, such as inference engine 324 to determine the importance of entities that may be used to rank the import of alerts based on information discovered via network monitoring. In one or more of the various embodiments, determining the importance of entities for ranking alerts may be based on inferences derived from device relation models, observed user behavior, other user behavior, heuristics, machine learning models, or the like, as well as, user inputs, including explicit user preferences, user feedback, or the like. In one or more of the various embodiments, if a user identifies one or more entities as important, the NMC may employ an inference engine to determine additional important entities that may be associated with entities identified as important by a user.


In one or more of the various embodiments, if an entity in a network is identified as being an important entity, the NMC or its inference engines may employ a device relation model to determine one or more entities that may be related to the entity identified by the user (or static mapping rule) as being important. Accordingly, in some embodiments, the strengths of relationships between entities as described in device relation models may be used identify entities that may be important. Likewise, in some embodiments, other features of the network represented in a device relation model may be used to infer importance. For example, the distance between entities in the model may be used to weight and identify potential importance. Accordingly, in some embodiments, the importance of an entity may be inversely proportional to the number of “hops” in a device relation model the entity is away from an entity known to important.


In one or more of the various embodiments, inference engines may be arranged to associate an importance score with entities in the network. Importance scores represent how important an entity is to an organization. In one or more of the various embodiments, inference engines may compute importance scores based on various factors, including, one or more device relation models, heuristics, user activity, customer activity, user feedback, customer feedback, or the like.


In one or more of the various embodiments, an inference engine may use a combination of heuristics, filters, rules, device relation models, or the like, to assign importance scores to entities that represent the importance of an entity to an organization.


In one or more of the various embodiments, the inference engine may be arranged to cluster entities in various dimensions or features, such as, applications, services, device manufacturer, relationships to other entities, dependencies with other entities, compute performance, storage capacity, cost (for metered services), networking activity, or the like, or combination thereof.


In one or more of the various embodiments, one or more device relation models, each representing different types of relationships between entities may be generated. Accordingly, in one or more of the various embodiments, a strength of relationship between or among various entities may be developed for different kinds of relationships.


In one or more of the various embodiments, device relation models may represent relationship between entities that may be based on common features, absence of features, common users, common user behavior, common customer behavior, dependencies, or the like.


In one or more of the various embodiments, relationships between entities may be based on their membership in one or more logical groups. In some embodiments, one or more entities that offer very different services may be related based on their association with a department, group, or organization. For example, a collection of the entities may be related because they are associated developing or deploying software products or services. For example, a source code repository server, build server, deployment server, continuous integration server, production server, or the like, may be logically related because they are associated with developing, maintaining, and deploying a software product. Accordingly, in one or more of the various embodiments, if a build server is determined to be important, a related source code repository is likely important as well, and so on.


In one or more of the various embodiments, entities associated because they are in the same network cluster or high-availability (HA) configuration may be considered to be related. Accordingly, if one entity that is a member of a cluster or HA configuration is considered important to an organization, other entities that are members of the same cluster or HA configurations are likely to be considered important as well.


In some embodiments, machine learning systems may be employed to identify various statistical clusters or relationships based on archives of captured network traffic, collected metrics, or the like. In one or more of the various embodiments, such clusters may be based on features unique to a given networking environment. In other embodiments, archived network traffic data from different networking environment or organizations may be used with machine learning identify features common to networking environments that may be used for clustering or relation determinations.


In one or more of the various embodiments, NMCs may identify one or more hub and spoke relationships that may indicate that the importance of the hub entities implies importance of the spoke entities (or vice-versa). For example, in some embodiments, NMCs may easily identify routers, proxying load balancers, or the like. Accordingly, in one or more of the various embodiments, one or more other entities that are dependent on the same routers or load balancers may be linked as far as importance to the organization concerned.


For example, if one web application server located behind a load balancer is determined to be important, it may be reasonable to increase the importance of web application servers behind the same load balancer. Note, other factors may be taken into account including client requests reaching the load balanced servers via the same IP address, port, or the like, that is proxied to different IP address on the backside of the load balancer. For example a load balancer may support more than application that has different servers behind the same load balancer servicing client requests.


In one or more of the various embodiments, the inference engine may be arranged to group the servers behind load balancers based on the various information included in the client request. Accordingly, the NMC may identify relationships between such entities by correlating network flows on one side of a load balancer with network flows on the other side of the load balancer. This may be accomplished by comparing the content of the flows.


For example, a client may send a request to a shared public IP address of an application. The shared IP address may be an interface on the load balancer. Accordingly, the load balancer may terminate the client request flow and pass any included request parameters through to the application servers via a new flow created by the load balancer. The NMCs may match the two flows by comparing the request parameters rather than ignoring a potential relationship. Overtime, the NMC or the inference engine will learn which servers behind a load balancer are related.


Note, in one or more of the various embodiments, various relationship determining mechanisms employed by NMCs or inference engines may be overlapping. In some cases, different mechanisms may be additive, such that, as more relationship determining mechanisms find the same relationship, the importance scores associated with the entities involved in those relationships may be increased.


Further, in one or more of the various embodiments, inference engines may assign one or more decay functions to importance scores associated one or more entities. In one or more of the various embodiments, one or more relationship indicators may be tied to the decay function(s). For example, if a portion of an importance score of an entity is based on user interactions with related reports or visualizations (See, FIG. 15), an inference engine may associate a decay function with that portion of the importance score. Accordingly, in this example, as time passes and users do not revisit the related reports or visualizations that were associated with an increase in the importance score, the inference engine may automatically decrease the importance score.


In one or more of the various embodiments, one or more inference engines may be arranged to reduce importance scores for other reasons. In some embodiments, if an entity associated with a high importance score causes an organization's users to be flooded with alerts, the inference engine may infer that the importance score is too high. Likewise, if the organization's users appear to ignore alerts associated with a supposed high importance entity, the inference engine may be arranged to reduce the importance score for that entity.


For example, in one or more of the various embodiments, an inference engine may compare interactions users have with the same type of entity or same type of alert. If most users are observed taking actions to resolve or reduce the alerts even though some user do not take action to reduce the alerts, the inference engine may infer that the entity is important even though one user has lost interest it.


In one or more of the various embodiments, an inference engine may discover network traffic patterns that show an organization no longer considers an entity with a high importance score as important. In some embodiments, the inference engine may determine that shortly after a specific type of alert was generated by an entity, users accessed the entity over the network. Sometime later, the inference engine may observe that the users have stopped accessing the entity in response the same alert. Accordingly, in one or more of the various embodiments, inference engine may be arranged to reduce the importance score because it appears that users are no longer interested in that alert-entity combination.


In one or more of the various embodiments, the inference engine may be arranged to infer the importance based on how organizations respond to alerts associated with an entity. In some embodiments, NMCs may be arranged to present alerts to users in a user-interface that enables users to provide feedback to grade the relevancy or importance of a given alert or class of alerts.


Accordingly, in one or more of the various embodiments, the inference engine may reduce the importance score for entities that are associated with alerts that have poor relevancy grades. Likewise, in one or more of the various embodiments, an inference engine may be arranged to determine entities related to the downgraded entity and reduce their importance score as well.


In one or more of the various embodiments, as new entities join a monitored network they will be identified based on their unique network traffic footprint (e.g., unknown MAC address, or the like). Accordingly, in one or more of the various embodiments, an inference engine may attempt to classify the new entity and assign an importance score to the new entity. If the inference engine identifies a known entity that is similar to the new entity it may derive an importance score for the entity based on the importance score associated with the known entity. In some embodiments, the inference engine may set the initial importance score for the new entity based on the how close it matches the known entities. A best match may result in the new entity being assigned the same importance score. A less close match may result in the new entity receiving an importance score that is less than the known entity.


In one or more of the various embodiments, an importance score for an entity may be comprised of various components. Each component may correspond to different inputs provided to the inference engine, such as, device relation models, alert relevancy grades provided by users, one or more heuristics, alert response (do users take action in response to the alerts), application groups, various metrics groups, or the like. In some embodiments, each component of an importance score may be increased or decreased independently. In some embodiments, the individual components of the importance score may be normalized, weighted, summed, average, scaled, curve fit, or the like, to provide an overall importance score for an entity.


Generalized Operations



FIGS. 14-17 represent generalized operations for ranking alerts based on network monitoring in accordance with one or more of the various embodiments. In one or more of the various embodiments, processes 1400, 1500, 1600, and 1700 described in conjunction with FIGS. 14-17 may be implemented by or executed by one or more processors on a single network computer (or network monitoring computer), such as network computer 300 of FIG. 3. In other embodiments, these processes, or portions thereof, may be implemented by or executed on a plurality of network computers, such as network computer 300 of FIG. 3. In yet other embodiments, these processes, or portions thereof, may be implemented by or executed on one or more virtualized computers, such as, those in a cloud-based environment. However, embodiments are not so limited and various combinations of network computers, client computers, or the like may be utilized. Further, in one or more of the various embodiments, the processes described in conjunction with FIGS. 14-17 may be used for ranking alerts based on network monitoring in accordance with at least one of the various embodiments and/or architectures such as those described in conjunction with FIGS. 4-13. Further, in one or more of the various embodiments, some or all of the actions performed by processes 1400, 1500, 1600, and 1700 may be executed in part by network monitoring engine 322, or inference engine 324 running on one or more processors of one or more network computers.



FIG. 14 illustrates an overview flowchart of process 1400 for ranking alerts based on network monitoring in accordance with one or more of the various embodiments. After a start block, at block 1402, in one or more of the various embodiments, the NMCs may be arranged to collect one or more metrics or other information based on monitoring the network traffic in the monitored networks. As described above, NMCs may be arranged to monitor the network traffic associated with various entities in the monitored networks. In some embodiments, the NMCs may employ some or all of the information collected during monitoring to generate one or more device relation models.


At block 1404, in one or more of the various embodiments, the one or more NMCs may instantiate one or more inference engines to perform actions to update importance score associated with entities in the monitored networks. In one or more of the various embodiments, the inference engines may analyze various inputs, such as user feedback, user activity, customer activity, one or more device relation models, or the like, to establish importance scores for some or all of the entities in the monitored network. Note, in one or more of the various embodiments, the inference engine may be configured to exclude or include entities from the importance score process.


At block 1406, in one or more of the various embodiments, the one or more NMCs may be arranged to provide one or more alerts based on the metrics. In one or more of the various embodiments, alerts generated at block 1408 represent the universe of alerts that a NMC may generate for a monitored network. Accordingly, these alerts may include many alerts that are irrelevant to some or all users or the organization in general.


At block 1408, in one or more of the various embodiments, the one or more NMCs may be arranged to provide one or more alerts to users in the organization based on the importance score associated with the entities associated with the alerts. In one or more of the various embodiments, alerts that are associated with entities that are considered important may be prioritized or otherwise highlighted as they are provided to the users in the organization. In some embodiments, NMCs may determine the importance an alert based on the importance score associated with the entities associated with an alert. Next, control may be returned to a calling process.



FIG. 15 illustrates a flowchart of process 1500 for ranking alerts based on user activity in accordance with one or more of the various embodiments. After a start block, at block 1502, one or more NMCs may be arranged to monitor user interactions with the monitoring system. In one or more of the various embodiments, the NMCs may record how users interact with various alerts, reports, visualizations, monitoring rules, or the like, that are provided by the monitoring system.


At block 1504, in one or more of the various embodiments, the one or more NMCs may be arranged to monitor user network activity in the monitored networks. In one or more of the various embodiments, the one or more NMCs may instantiate one or more monitoring engines that monitor the network traffic associated with a user. Accordingly, in one or more of the various embodiments, the monitoring engine may identify the entities that users tend to interact with. In one or more of the various embodiments, one or more metrics associated with user interaction with entities in the network may be stored and associated with the entities or provided directly to an inference engine. For example, the NMC may discover that users repeatedly communicate with a database server. Likewise, the NMC may monitor some or all of the communication between users and the database server. Accordingly, in some embodiments, the NMC may be able to identify the type of activity or interactions users are having with various entities in the network. For example, the NMC may monitor the communication between users and entities to determine which entities are accessed often. Further, the NMCs may be able to determine the nature of some of the communication based on the contents of the network traffic associated with the communications.


At block 1506, in one or more of the various embodiments, the one or more NMCs may be arranged to determine importance scores for one or more entities. As described above, the one or more NMCs may be arranged to determine importance scores for some or all of the entities in a monitored network. For example, if one or more NMCs observe users repeatedly logging into a database server, the inference engine may infer that the user increased interest in the database server should be reflect in its importance score. Likewise, in one or more of the various embodiments, inference engines may infer importance if users in an organization repeatedly view particular reports or visualizations associated with particular entities.


Also, in one or more of the various embodiments, the one or more inference engines may use one or more device relation model to modify the importance scores for other entities that may be related to the entities users directly interacted with. For example, if users interact often with a primary database server that is part of a database server cluster, the users might not directly interact with the secondary database servers. However, since the primary database server is important the other database servers in the same cluster may be inferred to be important as well. Accordingly, in this example, the inference engine may be arranged to increase the importance score for the secondary database servers based on their relationship with the primary database server even though on the surface it users do not directly interact with them.


At block 1508, in one or more of the various embodiments, the one or more NMCs may be arranged to provide one or more alerts that may be ranked based on the importance score associated with the entities associated with the alerts. In one or more of the various embodiments, the one or more NMCs may be arranged to instantiate one or more alert engines to provide alerts to one or more users in the organization. In one or more of the various embodiments, the alert engines may be arranged to provide alerts to some or all users based on the importance scores associated with the entities associated with the alert. Next, control may be returned to a calling process.



FIG. 16 illustrates a flowchart of process 1600 for ranking alerts based on user feedback to suggested importance entities in accordance with one or more of the various embodiments. After a start block, at block 1602, one or more NMCs may be arranged to suggest one or more entities that may be important to the organization. In one or more of the various embodiments, the one or more NMCs may have information about the user, such as, user role, department, entity interaction history, or the like, that may guide the suggestions.


Also, in one or more of the various embodiments, the NMC may identify one or more entities that may be important to an organization based on how other similar users respond to the suggestions. For example, if other users consider some entities important to the organization, entities that are known as important to the other users but have not been considered by the user may be suggested. Accordingly, in some embodiments, the user may be presented entities that his or her peers consider important.


At decision block 1604, in one or more of the various embodiments, if the user provides input or feedback, control may flow to block 1606; otherwise, control may flow to decision block 1608. In one or more of the various embodiments, a list of suggested entities may be displayed in a user-interface that enables the user indicate his or her perception of the importance of the entities included in the offered suggestions.


At block 1606, in one or more of the various embodiments, the one or more NMCs may be arranged to update the suggested entities based on the user input or feedback. In some embodiments, the entities that the user indicate as unimportant may be removed from the display list and replaced with other suggested entities.


At decision block 1608, in one or more of the various embodiments, if the user is finished providing input or feedback, control may be returned to a calling process; otherwise, control may loop back to block 1602. In one or more of the various embodiments, the user feedback associated with the suggest entities may be provided as input to the inference engine. Accordingly, the inference engine may update the importance scores based on the user feedback. For example, suggested entities that were confirmed or accepted by the user may have their importance scores increased. Likewise, in some embodiments, importance scores for suggested entities that the user disliked or declined may be decreased.


In one or more of the various embodiments, the role of a specific user in the organization may affect the impact of their feedback. For example, while the NMCs may not determine that an entity should be important, if the CEO (or other VIP user) suggests that an entity is important, it should be considered important.


It will be understood that each block of the flowchart illustration, and combinations of blocks in the flowchart illustration, can be implemented by computer program instructions. These program instructions may be provided to a processor to produce a machine, such that the instructions, which execute on the processor, create means for implementing the actions specified in the flowchart block or blocks. The computer program instructions may be executed by a processor to cause a series of operational steps to be performed by the processor to produce a computer-implemented process such that the instructions, which execute on the processor to provide steps for implementing the actions specified in the flowchart block or blocks. The computer program instructions may also cause at least some of the operational steps shown in the blocks of the flowchart to be performed in parallel. Moreover, some of the steps may also be performed across more than one processor, such as might arise in a multi-processor computer system. In addition, one or more blocks or combinations of blocks in the flowchart illustration may also be performed concurrently with other blocks or combinations of blocks, or even in a different sequence than illustrated without departing from the scope or spirit of the invention.


Accordingly, blocks of the flowchart illustration support combinations of means for performing the specified actions, combinations of steps for performing the specified actions and program instruction means for performing the specified actions. It will also be understood that each block of the flowchart illustration, and combinations of blocks in the flowchart illustration, can be implemented by special purpose hardware based systems, which perform the specified actions or steps, or combinations of special purpose hardware and computer instructions. The foregoing example should not be construed as limiting and/or exhaustive, but rather, an illustrative use case to show an implementation of at least one of the various embodiments of the invention.


Further, in one or more embodiments (not shown in the figures), the logic in the illustrative flowcharts may be executed using an embedded logic hardware device instead of a CPU, such as, an Application Specific Integrated Circuit (ASIC), Field Programmable Gate Array (FPGA), Programmable Array Logic (PAL), or the like, or combination thereof. The embedded logic hardware device may directly execute its embedded logic to perform actions. In one or more embodiment, a microcontroller may be arranged to directly execute its own embedded logic to perform actions and access its own internal memory and its own external Input and Output Interfaces (e.g., hardware pins and/or wireless transceivers) to perform actions, such as System On a Chip (SOC), or the like.

Claims
  • 1. A method for monitoring network traffic using one or more network computers, wherein execution of instructions by the one or more network computers perform the method comprising: monitoring network traffic associated with a plurality of entities in one or more networks to provide one or more metrics;associating each entity in the plurality of entities with an importance score based on the one or more metrics, wherein each importance score is based on a significance of an entity to one or more operations of the one or more networks and an importance of one or more other entities to the entity;presenting one or more of the plurality of entities to a user to acquire user feedback and updating the importance score for the one or more of the plurality of entities based on the user feedback and a role of the user;generating a plurality of alerts associated with the plurality of entities based on the importance score for each entity.
  • 2. The method of claim 1, further comprising: determining the importance of the one or more other entities to the entity based on one or more of: a same cluster having the one or more other entities and the entity as members;a user's feedback that a set of different entities interacting with a same resource as the one or more entities is important; ora peer user's feedback that the set of different entities interacting with the same resource is important.
  • 3. The method of claim 1, further comprising: determining one or more portions of the plurality of entities that are both currently unimportant to the user and currently important to an organization or one or more peer users; andrecommending the one or more portions of the plurality of entities to the user, wherein an importance score for a recommended entity is increased based on user acceptance of the recommendation or the importance score for the recommended entity is decreased based on user non-acceptance of the recommendation.
  • 4. The method of claim 1, further comprising: employing one or more agents to perform actions, including one or more of: selectively monitoring network traffic associated with the plurality of entities;determining one or more metrics associated with the selectively monitored network traffic; andstoring the selectively monitored network traffic.
  • 5. The method of claim 1, further comprising: providing the one or more other entities based on a traversal of a device relation model; andmodifying each importance score that is associated with the one or more other entities based on the traversal.
  • 6. The method of claim 1, further comprising: in response to one or more anomalies associated with one or more Public Key Infrastructure (PKI) certificates, increasing each importance score associated with each entity associated with the one or more PKI certificates.
  • 7. The method of claim 1, further comprising: in response to one or more of an application shared by the entity and the one or more other entities, a dependency shared by the entity and the one or more other entities, or activities of one or more users, modifying the importance score of the entity.
  • 8. A processor readable non-transitory storage media that includes instructions for monitoring network traffic using one or more network monitoring computers, wherein execution of the instructions by the one or more network computers perform the method comprising: monitoring network traffic associated with a plurality of entities in one or more networks to provide one or more metrics;associating each entity in the plurality of entities with an importance score based on the one or more metrics, wherein each importance score is based on a significance of an entity to one or more operations of the one or more networks and an importance of one or more entities to the entity;presenting one or more of the plurality of entities to a user to acquire user feedback and updating the importance score for the one or more of the plurality of entities based on the user feedback and a role of the user; andgenerating a plurality of alerts associated with the plurality of entities based on the importance score for each entity.
  • 9. The processor readable non-transitory storage media of claim 8, further comprising: determining the importance of the one or more other entities to the entity based on one or more of: a same cluster having the one or more other entities and the entity as members;a user's feedback that a set of different entities interacting with a same resource as the one or more entities is important; ora peer user's feedback that the set of different entities interacting with the same resource is important.
  • 10. The processor readable non-transitory storage media of claim 8, further comprising: determining one or more portions of the plurality of entities that are both currently unimportant to the user and currently important to an organization or one or more peer users; andrecommending the one or more portions of the plurality of entities to the user, wherein an importance score for a recommended entity is increased based on user acceptance of the recommendation or the importance score for the recommended entity is decreased based on user non-acceptance of the recommendation.
  • 11. The processor readable non-transitory storage media of claim 8, further comprising: employing one or more agents to perform actions, including one or more of: selectively monitoring network traffic associated with the plurality of entities;determining one or more metrics associated with the selectively monitored network traffic; andstoring the selectively monitored network traffic.
  • 12. The processor readable non-transitory storage media of claim 8, further comprising: providing the one or more other entities based on a traversal of a device relation model; andmodifying each importance score that is associated with the one or more other entities based on the traversal.
  • 13. The processor readable non-transitory storage media of claim 8, further comprising: in response to one or more anomalies associated with one or more Public Key Infrastructure (PKI) certificates, increasing each importance score associated with each entity associated with the one or more PKI certificates.
  • 14. The processor readable non-transitory storage media of claim 8, further comprising: in response to one or more of an application shared by the entity and the one or more other entities, a dependency shared by the entity and the one or more other entities, or activities of one or more users, modifying the importance score of the entity.
  • 15. A system for monitoring network traffic in a network: one or more network computers, comprising: a memory that stores at least instructions; and one or more processors that execute instructions that cause performance of actions, including:monitoring network traffic associated with a plurality of entities in one or more networks to provide one or more metrics;associating each entity in the plurality of entities with an importance score based on the one or more metrics, wherein each importance score is based on a significance of an entity to one or more operations of the one or more networks and an importance of one or more entities to the entity;presenting one or more of the plurality of entities to a user to acquire user feedback and updating the importance score for the one or more of the plurality of entities based on the user feedback and a role of the user; andgenerating a plurality of alerts associated with the plurality of entities based on the importance score for each entity.
  • 16. The system of claim 15, further comprising: determining one or more portions of the plurality of entities that are both currently unimportant to the user and currently important to an organization or one or more peer users; andrecommending the one or more portions of the plurality of entities to the user, wherein an importance score for a recommended entity is increased based on user acceptance of the recommendation or the importance score for the recommended entity is decreased based on user non-acceptance of the recommendation.
  • 17. The system of claim 15, further comprising: employing one or more agents to perform actions, including one or more of: selectively monitoring network traffic associated with the plurality of entities;determining one or more metrics associated with the selectively monitored network traffic; andstoring the selectively monitored network traffic.
  • 18. The system of claim 15, further comprising: providing the one or more other entities based on a traversal of a device relation model; andmodifying each importance score that is associated with the one or more other entities based on the traversal.
  • 19. The system of claim 15, further comprising: in response to one or more anomalies associated with one or more Public Key Infrastructure (PKI) certificates, increasing each importance score associated with each entity associated with the one or more PKI certificates.
  • 20. The system of claim 15, further comprising: in response to one or more of an application shared by the entity and the one or more other entities, a dependency shared by the entity and the one or more other entities, or activities of one or more users, modifying the importance score of the entity.
CROSS-REFERENCE TO RELATED APPLICATIONS

This Utility patent application is a Continuation of U.S. patent application Ser. No. 16/543,243 filed on Aug. 16, 2019, now U.S. Pat. No. 10,979,282 issued on Apr. 13, 2021, which is a Continuation of U.S. patent application Ser. No. 15/891,273 filed on Feb. 7, 2018, now U.S. Pat. No. 10,389,574 issued on Aug. 20, 2019, the benefit of the filing date of which is hereby claimed under 35 U.S.C. § 120 and the contents of each which are further incorporated in entirety by reference.

US Referenced Citations (632)
Number Name Date Kind
5027269 Grant et al. Jun 1991 A
5430727 Callon Jul 1995 A
5541995 Normile et al. Jul 1996 A
5548646 Aziz et al. Aug 1996 A
5715464 Crump et al. Feb 1998 A
5787237 Reilly Jul 1998 A
5802599 Cabrera et al. Sep 1998 A
5835726 Shwed et al. Nov 1998 A
5857188 Douglas Jan 1999 A
5928363 Ruvolo Jul 1999 A
6058429 Ames et al. May 2000 A
6141686 Jackowski et al. Oct 2000 A
6263049 Kuhn Jul 2001 B1
6321338 Porras et al. Nov 2001 B1
6385729 DiGiorgio et al. May 2002 B1
6401150 Reilly Jun 2002 B1
6405250 Lin et al. Jun 2002 B1
6412000 Riddle et al. Jun 2002 B1
6526044 Cookmeyer, II et al. Feb 2003 B1
6560636 Cohen et al. May 2003 B2
6636838 Perlman et al. Oct 2003 B1
6704311 Chuah et al. Mar 2004 B1
6704874 Porras et al. Mar 2004 B1
6765909 Sen et al. Jul 2004 B1
6807156 Veres et al. Oct 2004 B1
6807565 Dodrill et al. Oct 2004 B1
6883015 Geen et al. Apr 2005 B1
6901517 Redmore May 2005 B1
6944599 Vogel et al. Sep 2005 B1
6948060 Ramanathan Sep 2005 B1
6968554 Macdonald et al. Nov 2005 B1
6999729 Wandel Feb 2006 B2
7042888 Berggreen May 2006 B2
7047303 Lingafelt et al. May 2006 B2
7089326 Boucher et al. Aug 2006 B2
RE39360 Aziz et al. Oct 2006 E
7133365 Klinker et al. Nov 2006 B2
7143153 Black et al. Nov 2006 B1
7177930 LoPresti Feb 2007 B1
7181769 Keanini et al. Feb 2007 B1
7193968 Kapoor et al. Mar 2007 B1
7313141 Kan et al. Dec 2007 B2
7424532 Subbiah Sep 2008 B1
7454499 Cantrell et al. Nov 2008 B2
7457870 Lownsbrough et al. Nov 2008 B1
7474654 Guru Jan 2009 B2
7480292 Busi et al. Jan 2009 B2
7509680 Sallam Mar 2009 B1
7535906 Engbersen et al. May 2009 B2
7543146 Karandikar et al. Jun 2009 B1
7545499 Overbeck et al. Jun 2009 B2
7554983 Muppala Jun 2009 B1
7561517 Klinker et al. Jul 2009 B2
7580356 Mishra et al. Aug 2009 B1
7602731 Jain Oct 2009 B2
7606706 Rubin et al. Oct 2009 B1
7609630 Gobeil Oct 2009 B2
7594273 Keanini et al. Nov 2009 B2
7619988 Shimada et al. Nov 2009 B2
7620986 Jagannathan et al. Nov 2009 B1
7636305 Taylor et al. Dec 2009 B1
7639613 Ghannadian et al. Dec 2009 B1
7644150 Nucci et al. Jan 2010 B1
7660883 Fowlow Feb 2010 B2
7724905 Bleumer et al. May 2010 B2
7739497 Fink et al. Jun 2010 B1
7774456 Lownsbrough et al. Aug 2010 B1
7809829 Kelly et al. Oct 2010 B2
7810151 Guruswamy Oct 2010 B1
7817549 Kasralikar et al. Oct 2010 B1
7849502 Bloch et al. Dec 2010 B1
7864764 Ma et al. Jan 2011 B1
7916652 Lima et al. Mar 2011 B1
7936682 Singh et al. May 2011 B2
7937755 Guruswamy May 2011 B1
7944822 Nucci et al. May 2011 B1
7975139 Coulier Jul 2011 B2
7979555 Rothstein et al. Jul 2011 B2
7979694 Touitou et al. Jul 2011 B2
8040798 Chandra et al. Oct 2011 B2
8079083 Bennett et al. Dec 2011 B1
8102783 Narayanaswamy et al. Jan 2012 B1
8107397 Bagchi et al. Jan 2012 B1
8125908 Rothstein et al. Feb 2012 B2
8185953 Rothstein et al. May 2012 B2
8194542 Väänänen et al. Jun 2012 B2
8352725 O'Toole, Jr. Jan 2013 B1
8402540 Kapoor et al. Mar 2013 B2
8411677 Colloff Apr 2013 B1
8418249 Nucci et al. Apr 2013 B1
8443190 Breton et al. May 2013 B2
8457127 Eastham et al. Jun 2013 B2
8494985 Keralapura et al. Jul 2013 B1
8533254 Whitson, Jr. et al. Sep 2013 B1
8555383 Marhsall et al. Oct 2013 B1
8561177 Aziz et al. Oct 2013 B1
8577817 Keralapura et al. Nov 2013 B1
8578024 Keralapura et al. Nov 2013 B1
8601531 Zolfonoon et al. Dec 2013 B1
8613089 Holloway et al. Dec 2013 B1
8619579 Rothstein et al. Dec 2013 B1
8627422 Hawkes et al. Jan 2014 B2
8635441 Frenkel et al. Jan 2014 B2
8667151 Mizikovsky et al. Mar 2014 B2
8699357 Deshpande et al. Apr 2014 B2
8707440 Gula et al. Apr 2014 B2
8744894 Christiansen et al. Jun 2014 B2
8782393 Rothstein et al. Jul 2014 B1
8817655 Szabo et al. Aug 2014 B2
8843627 Baldi et al. Sep 2014 B1
8848744 Rothstein et al. Sep 2014 B1
8861397 Kind et al. Oct 2014 B2
8959643 Invernizzi et al. Feb 2015 B1
8964548 Keralapura et al. Feb 2015 B1
8971196 Degioanni et al. Mar 2015 B2
9026467 Bammi et al. May 2015 B2
9036493 Degioanni et al. May 2015 B2
9038178 Lin May 2015 B1
9049216 McCanne et al. Jun 2015 B2
9083740 Ma et al. Jul 2015 B1
9094288 Nucci et al. Jul 2015 B1
9094326 Sundararajan et al. Jul 2015 B2
9158604 Christodorescu et al. Oct 2015 B1
9176838 Li et al. Nov 2015 B2
9183573 Tseng Nov 2015 B2
9189318 Li et al. Nov 2015 B2
9191400 Ptasinski et al. Nov 2015 B1
9203865 Linden et al. Dec 2015 B2
9264288 Arora et al. Feb 2016 B1
9338147 Rothstein et al. May 2016 B1
9357410 Nedeltchev et al. May 2016 B2
9369479 Lin Jun 2016 B2
9380489 Kotecha et al. Jun 2016 B2
9391866 Martin et al. Jul 2016 B1
9400871 Hewinson Jul 2016 B1
9401925 Guo et al. Jul 2016 B1
9426036 Roy Aug 2016 B1
9430646 Mushtaq et al. Aug 2016 B1
9432430 Klenz Aug 2016 B1
9460299 Weiss et al. Oct 2016 B2
9461875 Groat et al. Oct 2016 B2
9479405 Tongaonkar et al. Oct 2016 B1
9483742 Ahmed Nov 2016 B1
9516053 Muddu et al. Dec 2016 B1
9531736 Torres et al. Dec 2016 B1
9565202 Kindlund et al. Feb 2017 B1
9565203 Bernstein et al. Feb 2017 B2
9591015 Amin et al. Mar 2017 B1
9621523 Rothstein et al. Apr 2017 B2
9654503 Kowalyshyn May 2017 B1
9660879 Rothstein et al. May 2017 B1
9692658 Guo et al. Jun 2017 B2
9715820 Boss et al. Jul 2017 B1
9729416 Khanal et al. Aug 2017 B1
9860209 Buchanan et al. Jan 2018 B2
9876810 McDougal et al. Jan 2018 B2
9888021 Horesh et al. Feb 2018 B2
9893897 Li et al. Feb 2018 B2
9967292 Higgins et al. May 2018 B1
10009364 Dasgupta et al. Jun 2018 B2
10009793 Wetterwald et al. Jun 2018 B2
10027689 Rathor et al. Jul 2018 B1
10028167 Calin et al. Jul 2018 B2
10033766 Gupta et al. Jul 2018 B2
10038611 Wu et al. Jul 2018 B1
10050982 Guerra et al. Aug 2018 B1
10063434 Khanal et al. Aug 2018 B1
10122748 Currie Nov 2018 B1
10176323 Zhang et al. Jan 2019 B2
10198667 Ryan, Jr. et al. Feb 2019 B2
10204211 Hammerle et al. Feb 2019 B2
10237294 Zadeh et al. Mar 2019 B1
10263883 Kamble Apr 2019 B2
10264003 Wu et al. Apr 2019 B1
10277618 Wu et al. Apr 2019 B1
10305928 McGrew et al. May 2019 B2
10320749 Sengupta et al. Jun 2019 B2
10321344 Barton et al. Jun 2019 B2
10326676 Driggs et al. Jun 2019 B1
10332005 Liao et al. Jun 2019 B1
10348767 Lee et al. Jul 2019 B1
10375155 Cai et al. Aug 2019 B1
10380498 Chaoji et al. Aug 2019 B1
10389574 Wu et al. Aug 2019 B1
10411978 Ball et al. Sep 2019 B1
10412080 Edwards et al. Sep 2019 B1
10419454 El-Moussa et al. Sep 2019 B2
10536268 Anderson et al. Jan 2020 B2
10536475 McCorkle, Jr. et al. Jan 2020 B1
10554665 Badawy et al. Feb 2020 B1
10581915 Scherman et al. Mar 2020 B2
10594664 Zaifman et al. Mar 2020 B2
10594718 Deaguero et al. Mar 2020 B1
10728126 Wu et al. Jul 2020 B2
10742677 Wu et al. Aug 2020 B1
10778700 Azvine et al. Sep 2020 B2
10805338 Kohout et al. Oct 2020 B2
10841194 Kim et al. Nov 2020 B2
10992693 Luo et al. Apr 2021 B2
11057420 McGrew et al. Jul 2021 B2
11159549 El-Moussa et al. Oct 2021 B2
11194901 El-Moussa et al. Dec 2021 B2
11201876 Kallos et al. Dec 2021 B2
11310256 Higgins et al. Apr 2022 B2
20020023080 Uga et al. Feb 2002 A1
20020024964 Baum et al. Feb 2002 A1
20020035604 Cohen et al. Mar 2002 A1
20020055998 Riddle et al. May 2002 A1
20020065912 Catchpole et al. May 2002 A1
20020078382 Sheikh et al. Jun 2002 A1
20020080720 Pegrum et al. Jun 2002 A1
20020091844 Craft et al. Jul 2002 A1
20020097724 Halme et al. Jul 2002 A1
20020107953 Ontiveros et al. Aug 2002 A1
20020133586 Shanklin et al. Sep 2002 A1
20020133622 Pinto Sep 2002 A1
20020152209 Merugu et al. Oct 2002 A1
20020156880 Mokuya Oct 2002 A1
20020175934 Hand et al. Nov 2002 A1
20020178360 Wenocur et al. Nov 2002 A1
20020184362 Banerjee et al. Dec 2002 A1
20020194483 Wenocur et al. Dec 2002 A1
20020194501 Wenocur et al. Dec 2002 A1
20020199096 Wenocur et al. Dec 2002 A1
20020199098 Davis Dec 2002 A1
20030014628 Freed et al. Jan 2003 A1
20030018891 Hall et al. Jan 2003 A1
20030023733 Lingafelt et al. Jan 2003 A1
20030084279 Campagna May 2003 A1
20030093514 Valdes et al. May 2003 A1
20030131116 Jain et al. Jul 2003 A1
20030133443 Klinker et al. Jul 2003 A1
20030135667 Mann et al. Jul 2003 A1
20030149887 Yadav Aug 2003 A1
20030152094 Colavito et al. Aug 2003 A1
20030156715 Reeds, III et al. Aug 2003 A1
20030204621 Poletto et al. Oct 2003 A1
20030212900 Liu et al. Nov 2003 A1
20030214913 Kan et al. Nov 2003 A1
20030217144 Fu et al. Nov 2003 A1
20030233361 Cady Dec 2003 A1
20040003094 See Jan 2004 A1
20040047325 Hameleers et al. Mar 2004 A1
20040049699 Griffith et al. Mar 2004 A1
20040073512 Maung Apr 2004 A1
20040088544 Tariq et al. May 2004 A1
20040088557 Malcolm et al. May 2004 A1
20040093414 Orton May 2004 A1
20040093513 Cantrell et al. May 2004 A1
20040146006 Jackson Jul 2004 A1
20040162070 Baral et al. Aug 2004 A1
20040199630 Sarkissian et al. Oct 2004 A1
20040250059 Ramelson et al. Dec 2004 A1
20050015455 Liu Jan 2005 A1
20050015622 Williams et al. Jan 2005 A1
20050050316 Peles Mar 2005 A1
20050055578 Wright et al. Mar 2005 A1
20050060427 Phillips et al. Mar 2005 A1
20050066196 Yagi Mar 2005 A1
20050086255 Schran et al. Apr 2005 A1
20050091341 Knight et al. Apr 2005 A1
20050091357 Krantz et al. Apr 2005 A1
20050100000 Faulkner et al. May 2005 A1
20050111367 Jonathan Chao et al. May 2005 A1
20050125553 Wu et al. Jun 2005 A1
20050125684 Schmidt Jun 2005 A1
20050182833 Duffie, III et al. Aug 2005 A1
20050193245 Hayden et al. Sep 2005 A1
20050201363 Gilchrist et al. Sep 2005 A1
20050210242 Troxel et al. Sep 2005 A1
20050234920 Rhodes Oct 2005 A1
20050251009 Morita et al. Nov 2005 A1
20050262237 Fulton et al. Nov 2005 A1
20050270975 Meylan et al. Dec 2005 A1
20060029096 Babbar et al. Feb 2006 A1
20060045016 Dawdy et al. Mar 2006 A1
20060045017 Yamasaki Mar 2006 A1
20060075358 Ahokas Apr 2006 A1
20060085526 Gulland Apr 2006 A1
20060101068 Stuhec et al. May 2006 A1
20060106743 Horvitz May 2006 A1
20060123477 Raghavan et al. Jun 2006 A1
20060171333 Shimada et al. Aug 2006 A1
20060174343 Duthie et al. Aug 2006 A1
20060184535 Kaluskar et al. Aug 2006 A1
20060188494 Bach et al. Aug 2006 A1
20060191008 Fernando et al. Aug 2006 A1
20060191009 Ito et al. Aug 2006 A1
20060200572 Schcolnik Sep 2006 A1
20060230452 Field Oct 2006 A1
20060230456 Nagabhushan et al. Oct 2006 A1
20060233349 Cooper Oct 2006 A1
20070039051 Duthie et al. Feb 2007 A1
20070043861 Baron et al. Feb 2007 A1
20070067841 Yegneswaran et al. Mar 2007 A1
20070077931 Glinka Apr 2007 A1
20070088845 Memon et al. Apr 2007 A1
20070110053 Soni et al. May 2007 A1
20070143852 Keanini et al. Jun 2007 A1
20070153689 Strub et al. Jul 2007 A1
20070156886 Srivastava Jul 2007 A1
20070156919 Potti et al. Jul 2007 A1
20070157306 Elrod et al. Jul 2007 A1
20070169190 Kolton et al. Jul 2007 A1
20070188494 Agutter et al. Aug 2007 A1
20070192863 Kapoor et al. Aug 2007 A1
20070211625 Liu et al. Sep 2007 A1
20070239639 Loughmiller et al. Oct 2007 A1
20070245420 Yong et al. Oct 2007 A1
20070256122 Foo et al. Nov 2007 A1
20080022401 Cameron et al. Jan 2008 A1
20080031141 Lean et al. Feb 2008 A1
20080034424 Overcash et al. Feb 2008 A1
20080034425 Overcash et al. Feb 2008 A1
20080059582 Hartikainen et al. Mar 2008 A1
20080062995 Kaas et al. Mar 2008 A1
20080069002 Savoor et al. Mar 2008 A1
20080103610 Ebrom et al. May 2008 A1
20080130645 Deshpande et al. Jun 2008 A1
20080130659 Polland Jun 2008 A1
20080133517 Kapoor et al. Jun 2008 A1
20080133518 Kapoor et al. Jun 2008 A1
20080134330 Kapoor et al. Jun 2008 A1
20080141275 Borgendale et al. Jun 2008 A1
20080141374 Sidiroglou et al. Jun 2008 A1
20080147818 Sabo Jun 2008 A1
20080162390 Kapoor et al. Jul 2008 A1
20080172416 Ito Jul 2008 A1
20080212586 Wang et al. Sep 2008 A1
20080219261 Lin et al. Sep 2008 A1
20080222717 Rothstein et al. Sep 2008 A1
20080225740 Martin et al. Sep 2008 A1
20080232359 Kim et al. Sep 2008 A1
20080279111 Atkins et al. Nov 2008 A1
20080282080 Hyndman et al. Nov 2008 A1
20080294384 Fok et al. Nov 2008 A1
20080307219 Karandikar Dec 2008 A1
20080320297 Sabo et al. Dec 2008 A1
20090010259 Sirotkin Jan 2009 A1
20090034426 Luft et al. Feb 2009 A1
20090063665 Bagepalli et al. Mar 2009 A1
20090089326 Balasubramanian Apr 2009 A1
20090109973 Ilnicki Apr 2009 A1
20090168657 Puri et al. Jul 2009 A1
20090187653 Fu et al. Jul 2009 A1
20090220080 Herne et al. Sep 2009 A1
20090225675 Baum et al. Sep 2009 A1
20090228330 Karras et al. Sep 2009 A1
20090245083 Hamzeh Oct 2009 A1
20090265344 Etoh et al. Oct 2009 A1
20090268605 Campbell et al. Oct 2009 A1
20090271469 Benco et al. Oct 2009 A1
20090292954 Jiang et al. Nov 2009 A1
20090296593 Prescott Dec 2009 A1
20090316602 Nandy et al. Dec 2009 A1
20090319773 Frenkel et al. Dec 2009 A1
20090320138 Keanini et al. Dec 2009 A1
20090327695 Molsberry et al. Dec 2009 A1
20090328219 Narayanaswamy Dec 2009 A1
20100027432 Gopalan et al. Feb 2010 A1
20100091770 Ishikawa Apr 2010 A1
20100095367 Narayanaswamy Apr 2010 A1
20100131755 Zhu et al. May 2010 A1
20100135498 Long et al. Jun 2010 A1
20100167713 Hoffman Jul 2010 A1
20100191856 Gupta et al. Jul 2010 A1
20100192225 Ma et al. Jul 2010 A1
20100201573 Lamming Aug 2010 A1
20100226301 Lohmar et al. Sep 2010 A1
20100250918 Tremblay et al. Sep 2010 A1
20100250928 Goto Sep 2010 A1
20100268937 Blom et al. Oct 2010 A1
20100278056 Meloche et al. Nov 2010 A1
20100281539 Burns et al. Nov 2010 A1
20100299158 Siegel Nov 2010 A1
20100316216 Fukushima et al. Dec 2010 A1
20100322248 Ivanov Dec 2010 A1
20100332618 Norton et al. Dec 2010 A1
20110019574 Malomsoky et al. Jan 2011 A1
20110055138 Khanduja et al. Mar 2011 A1
20110122792 Duffield et al. May 2011 A1
20110126259 Krishnamurthi et al. May 2011 A1
20110126275 Anderson et al. May 2011 A1
20110150220 Breton et al. Jun 2011 A1
20110173441 Bagepalli et al. Jul 2011 A1
20110173490 Narayanaswamy et al. Jul 2011 A1
20110197276 Dorrendorf et al. Aug 2011 A1
20110231652 Bollay et al. Sep 2011 A1
20110280149 Okada et al. Nov 2011 A1
20110296002 Caram Dec 2011 A1
20110320394 McKeown et al. Dec 2011 A1
20110321160 Mohandas et al. Dec 2011 A1
20120016977 Robertson et al. Jan 2012 A1
20120030731 Bhargava et al. Feb 2012 A1
20120084838 Inforzato et al. Apr 2012 A1
20120130745 Jones May 2012 A1
20120131330 Tönsing et al. May 2012 A1
20120166962 Lunsford Jun 2012 A1
20120176917 Matityahu et al. Jul 2012 A1
20120210385 Cirstea et al. Aug 2012 A1
20120215328 Schmelzer Aug 2012 A1
20120216282 Pappu et al. Aug 2012 A1
20120233694 Baliga et al. Sep 2012 A1
20120243533 Leong Sep 2012 A1
20120266209 Gooding et al. Oct 2012 A1
20120278477 Terrell et al. Nov 2012 A1
20120278625 Narayanan et al. Nov 2012 A1
20120278890 Määttä et al. Nov 2012 A1
20120284791 Miller et al. Nov 2012 A1
20120290711 Upham et al. Nov 2012 A1
20120294305 Rose et al. Nov 2012 A1
20120324585 Beckett, III et al. Dec 2012 A1
20130007296 Mukherjee et al. Jan 2013 A1
20130010600 Jocha et al. Jan 2013 A1
20130010608 Ramachandran et al. Jan 2013 A1
20130042323 Narayanaswamy et al. Feb 2013 A1
20130061036 Oliver Mar 2013 A1
20130064084 Babbar et al. Mar 2013 A1
20130067034 Degioanni et al. Mar 2013 A1
20130097203 Bhattacharjee et al. Apr 2013 A1
20130103734 Boldyrev et al. Apr 2013 A1
20130133032 Li et al. May 2013 A1
20130166730 Wilkinson Jun 2013 A1
20130176842 Bauchot et al. Jul 2013 A1
20130188645 Mack-Crane Jul 2013 A1
20130198512 Rubin et al. Aug 2013 A1
20130198827 Bhaskaran et al. Aug 2013 A1
20130212297 Varga Aug 2013 A1
20130227259 Kim Aug 2013 A1
20130232104 Goyal et al. Sep 2013 A1
20130262655 Deschênes et al. Oct 2013 A1
20130291107 Marck et al. Oct 2013 A1
20130305357 Ayyagari et al. Nov 2013 A1
20130305392 Bar-El et al. Nov 2013 A1
20130339514 Crank et al. Dec 2013 A1
20130347018 Limp et al. Dec 2013 A1
20140020067 Kim et al. Jan 2014 A1
20140040451 Agrawal et al. Feb 2014 A1
20140068035 Croy et al. Mar 2014 A1
20140075536 Davis et al. Mar 2014 A1
20140077956 Sampath et al. Mar 2014 A1
20140109168 Ashley et al. Apr 2014 A1
20140149456 Carr et al. May 2014 A1
20140164584 Joe et al. Jun 2014 A1
20140165207 Engel et al. Jun 2014 A1
20140189093 du Toit et al. Jul 2014 A1
20140195797 du Toit Jul 2014 A1
20140201838 Varsanyi et al. Jul 2014 A1
20140222998 Vasseur et al. Aug 2014 A1
20140223325 Melendez et al. Aug 2014 A1
20140241164 Cociglio et al. Aug 2014 A1
20140242972 Slotznick Aug 2014 A1
20140258511 Sima et al. Sep 2014 A1
20140269777 Rothstein et al. Sep 2014 A1
20140304211 Horvitz Oct 2014 A1
20140304339 Hamilton Oct 2014 A1
20140310392 Ho Oct 2014 A1
20140317288 Krueger et al. Oct 2014 A1
20140344633 Li et al. Nov 2014 A1
20140351415 Harrigan et al. Nov 2014 A1
20150006896 Franck Jan 2015 A1
20150007314 Vaughan Jan 2015 A1
20150007316 Ben-Shalom et al. Jan 2015 A1
20150023168 Kotecha et al. Jan 2015 A1
20150026027 Priess et al. Jan 2015 A1
20150058987 Thure et al. Feb 2015 A1
20150063158 Nedeltchev et al. Mar 2015 A1
20150074258 Ferreira et al. Mar 2015 A1
20150074462 Jacoby Mar 2015 A1
20150089034 Stickle et al. Mar 2015 A1
20150096022 Vincent et al. Apr 2015 A1
20150100780 Rubin et al. Apr 2015 A1
20150106616 Nix Apr 2015 A1
20150106930 Honda et al. Apr 2015 A1
20150113588 Wing et al. Apr 2015 A1
20150121461 Dulkin et al. Apr 2015 A1
20150134554 Clais et al. May 2015 A1
20150134776 Kruglick May 2015 A1
20150149828 Mukerji et al. May 2015 A1
20150180759 Fallon Jun 2015 A1
20150180890 Ronen et al. Jun 2015 A1
20150188702 Men et al. Jul 2015 A1
20150199613 Ruiz et al. Jul 2015 A1
20150227859 Ames, II Aug 2015 A1
20150229661 Balabine et al. Aug 2015 A1
20150242627 Lee et al. Aug 2015 A1
20150249512 Adimatyam et al. Sep 2015 A1
20150269358 Hesketh et al. Sep 2015 A1
20150277802 Oikarinen et al. Oct 2015 A1
20150304350 Lin Oct 2015 A1
20150331771 Conway Nov 2015 A1
20150341379 Lefebvre et al. Nov 2015 A1
20150350167 Djakovic Dec 2015 A1
20150365438 Carver et al. Dec 2015 A1
20160006766 Joo Jan 2016 A1
20160026922 Vasseur et al. Jan 2016 A1
20160028755 Vasseur et al. Jan 2016 A1
20160036647 Gonzalez et al. Feb 2016 A1
20160043919 Connelly et al. Feb 2016 A1
20160055335 Herwono et al. Feb 2016 A1
20160056959 Blom et al. Feb 2016 A1
20160080236 Nikolaev et al. Mar 2016 A1
20160093205 Boyer Mar 2016 A1
20160119215 Deschênes et al. Apr 2016 A1
20160127401 Chauhan et al. May 2016 A1
20160134659 Reddy et al. May 2016 A1
20160142435 Bernstein et al. May 2016 A1
20160173288 Li et al. Jun 2016 A1
20160173556 Park et al. Jun 2016 A1
20160182274 Kiesekamp et al. Jun 2016 A1
20160197949 Nyhuis et al. Jul 2016 A1
20160219066 Vasseur et al. Jul 2016 A1
20160226913 Sood et al. Aug 2016 A1
20160241574 Kumar et al. Aug 2016 A1
20160262044 Calin et al. Sep 2016 A1
20160285752 Joshi Sep 2016 A1
20160294870 Banerjee et al. Oct 2016 A1
20160301624 Gonzalez et al. Oct 2016 A1
20160301709 Hassanzadeh et al. Oct 2016 A1
20160308725 Tang et al. Oct 2016 A1
20160337312 Buchanan et al. Nov 2016 A1
20160352761 McGrew et al. Dec 2016 A1
20160357964 Mulchandani Dec 2016 A1
20160357967 Mulchandani Dec 2016 A1
20160359872 Yadav et al. Dec 2016 A1
20160359915 Gupta et al. Dec 2016 A1
20160366020 Ramachandran et al. Dec 2016 A1
20160366186 Kamble Dec 2016 A1
20160373414 MacCarthaigh Dec 2016 A1
20160380885 Jani et al. Dec 2016 A1
20170012836 Tongaonkar et al. Jan 2017 A1
20170041296 Ford et al. Feb 2017 A1
20170048109 Kant et al. Feb 2017 A1
20170070416 Narayanan et al. Mar 2017 A1
20170076206 Lastras-Montano et al. Mar 2017 A1
20170085590 Hsu et al. Mar 2017 A1
20170090906 Reynolds Mar 2017 A1
20170093796 Wang et al. Mar 2017 A1
20170093891 Mitchell Mar 2017 A1
20170093897 Cochin et al. Mar 2017 A1
20170097982 Zhang et al. Apr 2017 A1
20170099196 Barsheshet et al. Apr 2017 A1
20170111272 Liu et al. Apr 2017 A1
20170118092 Dixon et al. Apr 2017 A1
20170123886 Vaideeswaran May 2017 A1
20170126472 Margalit et al. May 2017 A1
20170126709 Baradaran et al. May 2017 A1
20170134937 Miller et al. May 2017 A1
20170195353 Taylor et al. Jul 2017 A1
20170230270 Padinhakara et al. Aug 2017 A1
20170230417 Amar et al. Aug 2017 A1
20170270105 Ninan et al. Sep 2017 A1
20170279837 Dasgupta et al. Sep 2017 A1
20170279838 Dasgupta et al. Sep 2017 A1
20170279839 Vasseur et al. Sep 2017 A1
20170288974 Yoshihira et al. Oct 2017 A1
20170288987 Pasupathy et al. Oct 2017 A1
20170289104 Shankar et al. Oct 2017 A1
20170289168 Bar et al. Oct 2017 A1
20170289185 Mandyam Oct 2017 A1
20170289847 Wetterwald et al. Oct 2017 A1
20170310703 Ackerman et al. Oct 2017 A1
20170317941 Eggleston et al. Nov 2017 A1
20170324758 Hart et al. Nov 2017 A1
20170353437 Ayyadevara et al. Dec 2017 A1
20170353477 Faigon et al. Dec 2017 A1
20170364794 Mahkonen et al. Dec 2017 A1
20170366526 Wood et al. Dec 2017 A1
20180007087 Grady et al. Jan 2018 A1
20180013650 Khanal et al. Jan 2018 A1
20180033089 Goldman et al. Feb 2018 A1
20180075240 Chen Mar 2018 A1
20180084011 Joseph et al. Mar 2018 A1
20180091413 Richards et al. Mar 2018 A1
20180091534 Dubrovsky et al. Mar 2018 A1
20180103056 Kohout et al. Apr 2018 A1
20180109507 Caldera et al. Apr 2018 A1
20180109557 Yoo et al. Apr 2018 A1
20180115566 Azvine et al. Apr 2018 A1
20180131675 Sengupta et al. May 2018 A1
20180131711 Chen et al. May 2018 A1
20180137001 Zong et al. May 2018 A1
20180139227 Martin et al. May 2018 A1
20180167310 Kamble Jun 2018 A1
20180191755 Monaco et al. Jul 2018 A1
20180198812 Christodorescu et al. Jul 2018 A1
20180219879 Pierce Aug 2018 A1
20180260715 Yan et al. Sep 2018 A1
20180262487 Zaifman et al. Sep 2018 A1
20180276561 Pasternack et al. Sep 2018 A1
20180351781 Movsisyan et al. Dec 2018 A1
20180351970 Majumder et al. Dec 2018 A1
20180375882 Kallos et al. Dec 2018 A1
20180375893 Jordan et al. Dec 2018 A1
20190005205 Dargar et al. Jan 2019 A1
20190007283 Kieviet et al. Jan 2019 A1
20190012441 Tuli et al. Jan 2019 A1
20190028357 Kokkula et al. Jan 2019 A1
20190052554 Mukerji et al. Feb 2019 A1
20190052675 Krebs Feb 2019 A1
20190068465 Khanal et al. Feb 2019 A1
20190079979 Chan Mar 2019 A1
20190095478 Tankersley et al. Mar 2019 A1
20190102469 Makovsky et al. Apr 2019 A1
20190121979 Chari et al. Apr 2019 A1
20190132359 Kraenzel et al. May 2019 A1
20190163678 Bath et al. May 2019 A1
20190171725 Shen et al. Jun 2019 A1
20190196912 Didehban et al. Jun 2019 A1
20190230095 McGrew et al. Jul 2019 A1
20190236149 Kuruvada et al. Aug 2019 A1
20190245734 Wu et al. Aug 2019 A1
20190245763 Wu et al. Aug 2019 A1
20190266999 Chandrasekaran et al. Aug 2019 A1
20190303198 Kim et al. Oct 2019 A1
20190340554 Dotan-Cohen Nov 2019 A1
20190372828 Wu et al. Dec 2019 A1
20200034528 Yang et al. Jan 2020 A1
20200067952 Deaguero et al. Feb 2020 A1
20200082081 Sarin et al. Mar 2020 A1
20200099703 Singh Mar 2020 A1
20200220849 Zaifman et al. Jul 2020 A1
20200236131 Vejman et al. Jul 2020 A1
20200287885 Rodniansky Sep 2020 A1
20200389469 Litichever et al. Dec 2020 A1
20210006589 Kohout et al. Jan 2021 A1
20210185087 Wu et al. Jun 2021 A1
20210250368 Hearty et al. Aug 2021 A1
20210288993 Kraning et al. Sep 2021 A1
20210360004 McGrew et al. Nov 2021 A1
20210360011 O'Hara et al. Nov 2021 A1
20220019688 Nelluri et al. Jan 2022 A1
Foreign Referenced Citations (50)
Number Date Country
2003287262 May 2004 AU
2008328833 Jun 2009 AU
105071987 Nov 2015 CN
106170008 Nov 2016 CN
107646190 Jan 2018 CN
107667510 Feb 2018 CN
109104441 Dec 2018 CN
109542772 Mar 2019 CN
110113349 Aug 2019 CN
107667510 Nov 2020 CN
112085039 Dec 2020 CN
112398876 Feb 2021 CN
107646190 Mar 2021 CN
69533953 Apr 2006 DE
0702477 Mar 1996 EP
0702477 Jul 1999 EP
1026867 Aug 2000 EP
0702477 Jan 2005 EP
1579629 Sep 2005 EP
2057576 May 2009 EP
1579629 Nov 2009 EP
2215801 Apr 2011 EP
2057576 Apr 2012 EP
3089424 Nov 2016 EP
3094061 Nov 2016 EP
3113443 Jan 2017 EP
3306890 Apr 2018 EP
3394784 Oct 2020 EP
3272095 Mar 2021 EP
2924552 Jun 2009 FR
2545910 Jul 2017 GB
2545910 Feb 2018 GB
960012819 Apr 1996 KR
100388606 Nov 2003 KR
20140093060 Jul 2014 KR
101662614 Oct 2016 KR
586270 Dec 2011 NZ
2004040423 May 2004 WO
2004040423 May 2004 WO
2008026212 Mar 2008 WO
2008026212 Mar 2008 WO
2009015461 Feb 2009 WO
2009068603 Jun 2009 WO
2015128613 Sep 2015 WO
2016118131 Jul 2016 WO
2016144932 Sep 2016 WO
2016146610 Sep 2016 WO
2016191486 Dec 2016 WO
2017108575 Jun 2017 WO
2017108576 Jun 2017 WO
Non-Patent Literature Citations (206)
Entry
Office Communication for U.S. Appl. No. 15/971,843 dated May 5, 2021, pp. 1-9.
Office Communication for U.S. Appl. No. 16/820,582 dated May 10, 2021, pp. 1-24.
Office Communication for U.S. Appl. No. 16/525,290 dated Jun. 15, 2021, pp. 1-4.
Examination Report for European Patent Application No. 17210996.9 dated May 21, 2021, pp. 1-6.
Office Communication for U.S. Appl. No. 16/525,290 dated Jul. 9, 2021, pp. 1-7.
Office Communication for U.S. Appl. No. 16/820,582 dated Sep. 27, 2021, pp. 1-25.
Office Communication for U.S. Appl. No. 16/679,055 dated Oct. 12, 2021, pp. 1-3.
Office Communication for U.S. Appl. No. 17/351,866 dated Oct. 18, 2021, pp. 1-12.
Office Communication for U.S. Appl. No. 17/337,299 dated Oct. 21, 2021, pp. 1-34.
Office Communication for U.S. Appl. No. 15/585,887 dated Nov. 2, 2021, pp. 1-4.
Office Communication for U.S. Appl. No. 16/679,055 dated Nov. 12, 2021, pp. 1-34.
Office Communication for U.S. Appl. No. 17/483,435 dated Nov. 30, 2021, pp. 1-21.
International Search Report and Written Opinion for International Patent Application No. PCT/US2017/068585 dated Jul. 4, 2018.
International Search Report and Written Opinion for International Patent Application No. PCT/US2017/068586 dated Aug. 9, 2018.
Extended European Search Report for European Patent Application No. 17210996.9 dated Jun. 13, 2018, pp. 1-7.
International Search Report and Written Opinion for International Patent Application No. PCT/US2019/030015 dated Aug. 7, 2019.
International Search Report and Written Opinion for International Patent Application No. PCT/US2019/018097 dated May 28, 2019.
Office Communication for U.S. Appl. No. 16/679,055 dated Jul. 26, 2021, pp. 1-34.
Office Communication for U.S. Appl. No. 16/718,050 dated Jul. 27, 2021, pp. 1-23.
Office Communication for U.S. Appl. No. 15/971,843 dated Jul. 28, 2021, pp. 1-9.
Office Communication for U.S. Appl. No. 15/585,887 dated Aug. 17, 2021, pp. 1-41.
Office Communication for U.S. Appl. No. 16/820,582 dated Jan. 14, 2022, pp. 1-13.
Office Communication for U.S. Appl. No. 16/989,025 dated Jan. 19, 2022, pp. 1-12.
Supplementary European Search Report for European Patent Application No. 19804040.4 dated Jan. 25, 2022, pp. 1-4.
Office Communication for U.S. Appl. No. 17/351,866 dated Feb. 9, 2022, pp. 1-9.
International Search Report and Written Opinion for International Patent Application No. PCT/US2021/051757 dated Jan. 11, 2022, pp. 1-9.
“Kerberos Overview—an Authentication Service for Open Network Systems,” Cisco Systems, Inc., Jan. 19, 2006, https://www.cisco.com/c/en/us/support/docs/security-vpn/kerberos/16087-1.html, Accessed: Feb. 9, 2022, pp. 1-16.
Office Communication for U.S. Appl. No. 17/337,299 dated Feb. 17, 2022, pp. 1-14.
Office Communication for U.S. Appl. No. 16/679,055 dated Mar. 2, 2022, pp. 1-35.
Office Communication for U.S. Appl. No. 15/585,887 dated Mar. 24, 2022, pp. 1-40.
Office Communication for U.S. Appl. No. 17/318,423 dated Mar. 29, 2022, pp. 1-21.
Office Communication for U.S. Appl. No. 16/989,343 dated Mar. 29, 2022, pp. 1-5.
Office Communication for U.S. Appl. No. 16/813,649 dated Apr. 1, 2022, pp. 1-4.
Extended European Search Report for European Patent Application No. 19846527.0 dated Apr. 4, 2022, pp. 1-9.
Conry-Murray, Andrew, “Security Event Management Gets Specialized,” Network Magazine, CMP Media, vol. 20, Nov. 2005, pp. 1-6.
Office Communication for U.S. Appl. No. 13/831,673 dated Sep. 30, 2013, pp. 1-10.
Office Communication for U.S. Appl. No. 13/831,673 dated Mar. 6, 2014, pp. 1-12.
Office Communication for U.S. Appl. No. 13/831,673 dated May 22, 2014, pp. 1-5.
Office Communication for U.S. Appl. No. 13/831,626 dated Sep. 3, 2013, pp. 1-17.
Office Communication for U.S. Appl. No. 13/831,959 dated Aug. 22, 2013, pp. 1-9.
Handel, Theodore G. et al., “Hiding data in the OSI network model.” In: Anderson R. (eds) Information Hiding. IH 1996. Lecture Notes in Computer Science, vol. 1174. Springer, Berlin, Heidelberg. pp. 23-38.
Office Communication for U.S. Appl. No. 14/500,893 dated Nov. 20, 2014, pp. 1-15.
Office Communication for U.S. Appl. No. 14/107,580 dated Mar. 6, 2014, pp. 1-13.
Office Communication for U.S. Appl. No. 14/107,580 dated Sep. 15, 2014, pp. 1-15.
Office Communication for U.S. Appl. No. 13/831,908 dated Aug. 9, 2013, pp. 1-29.
Office Communication for U.S. Appl. No. 13/831,908 dated Jan. 13, 2014, pp. 1-31.
Office Communication for U.S. Appl. No. 13/831,908 dated Apr. 9, 2014, pp. 1-3.
Office Communication for U.S. Appl. No. 13/831,908 dated Jun. 25, 2014, pp. 1-15.
Office Communication for U.S. Appl. No. 14/518,996 dated Nov. 20, 2014, pp. 1-41.
Office Communication for U.S. Appl. No. 14/107,631 dated Feb. 20, 2014, pp. 1-16.
Office Communication for U.S. Appl. No. 14/107,631 dated Sep. 26, 2014, pp. 1-14.
Office Communication for U.S. Appl. No. 14/107,631 dated Dec. 30, 2014, pp. 1-12.
Handley, Mark et al., “Network Intrusion Detection: Evasion, Traffic Normalization, and End-to-End Protocol Semantics,” 2011, International Computer Science Institute, pp. 1-17.
Information Sciences Institute, “Internet Protocol Darpa Internet Program Protocol Specification,” Sep. 1981, pp. 1-36.
Fuertes, Juan Antonio Cordero, “Evaluation of OSPF Extensions in MANET Routing,” Paris, 2007, pp. 1-192.
Parsons, Christopher, “Moving Across the Internet: Code-Bodies, Code-Corpses, and Network Architecture,” May 9, 2010, pp. 1-20.
Zander, Sebastian et al., “Covert Channels and Countermeasures in Computer Network Protocols,” Dec. 2007, pp. 1-7.
Office Communication for U.S. Appl. No. 14/107,580 dated Mar. 17, 2015, pp. 1-5.
Lin, Mark, “An Overview of Session Hijacking at the Network and Application Levels,” Jan. 18, 2005, pp. 1-16.
U.S. Appl. No. 11/683,643, filed Mar. 8, 2007, pp. 1-48.
U.S. Appl. No. 11/679,356, filed Feb. 27, 2007, pp. 1-45.
Office Communication for U.S. Appl. No. 12/326,672 dated Jun. 9, 2010, pp. 1-9.
Office Communication for U.S. Appl. No. 12/326,672 dated Dec. 23, 2010, pp. 1-15.
Office Communication for U.S. Appl. No. 12/326,672 dated Jun. 22, 2011, pp. 1-16.
Office Communication for U.S. Appl. No. 12/326,672 dated Oct. 24, 2011, pp. 1-9.
Office Communication for U.S. Appl. No. 11/683,643 dated Apr. 28, 2010, pp. 1-35.
Office Communication for U.S. Appl. No. 11/683,643 dated Oct. 14, 2010, pp. 1-43.
Office Communication for U.S. Appl. No. 11/683,643 dated Aug. 25, 2011, pp. 1-43.
Office Communication for U.S. Appl. No. 11/683,643 dated Jan. 23, 2012, pp. 1-22.
Office Communication for U.S. Appl. No. 15/014,932 dated Jun. 10, 2016, pp. 1-20.
Office Communication for U.S. Appl. No. 15/207,213 dated Oct. 25, 2016, pp. 1-18.
Office Communication for U.S. Appl. No. 15/014,932 dated Dec. 14, 2016, pp. 1-26.
Digital Imaging and Communications in Medicine (DICOM), Part 6: Data Dictionary, PS 3.6-2011. 2011, http://dicom.nema.org/Dicom/2011 /11_06pu.pdf, pp. 1-216.
Health Level Seven, Version 2.6, Appendix A. Nov. 2007, https://www.hl7.org/special/committees/vocab/V26_Appendix_A.pdf, pp. 1-255.
Office Communication for U.S. Appl. No. 15/207,213 dated Feb. 23, 2017, pp. 1-24.
Office Communication for U.S. Appl. No. 15/014,932 dated Mar. 3, 2017, pp. 1-6.
Office Communication for U.S. Appl. No. 15/207,213 dated May 8, 2017, pp. 1-6.
Office Communication for U.S. Appl. No. 15/207,213 dated Jun. 1, 2017, pp. 1-24.
Office Communication for U.S. Appl. No. 15/014,932 dated Aug. 1, 2017, pp. 1-27.
Office Communication for U.S. Appl. No. 15/690,135 dated Jan. 18, 2018, pp. 1-6.
Office Communication for U.S. Appl. No. 15/891,311 dated Apr. 23, 2018, pp. 1-18.
Office Communication for U.S. Appl. No. 15/892,327 dated Apr. 23, 2018, pp. 1-6.
Office Communication for U.S. Appl. No. 15/014,932 dated May 15, 2018, pp. 1-23.
Office Communication for U.S. Appl. No. 15/891,273 dated Jun. 19, 2018, pp. 1-20.
Office Communication for U.S. Appl. No. 15/014,932 dated Jul. 16, 2018, pp. 1-4.
Office Communication for U.S. Appl. No. 15/690,135 dated May 22, 2018, pp. 1-7.
Office Communication for U.S. Appl. No. 15/984,197 dated Aug. 31, 2018, pp. 1-25.
Office Communication for U.S. Appl. No. 15/891,311 dated Sep. 24, 2018, pp. 1-14.
Office Communication for U.S. Appl. No. 16/048,939 dated Sep. 19, 2018, pp. 1-9.
Office Communication for U.S. Appl. No. 16/113,442 dated Nov. 6, 2018, pp. 1-10,.
Office Communication for U.S. Appl. No. 16/100,116 dated Nov. 15, 2018, pp. 1-7.
Office Communication for U.S. Appl. No. 15/014,932 dated Nov. 23, 2018, pp. 1-10.
Office Communication for U.S. Appl. No. 16/107,509 dated Oct. 26, 2018, pp. 1-2 6.
Office Communication for U.S. Appl. No. 15/891,273 dated Jan. 15, 2019, pp. 1-23.
Office Communication for U.S. Appl. No. 15/891,311 dated Jan. 29, 2019, pp. 1-8.
Office Communication for U.S. Appl. No. 16/174,051 dated Jan. 29, 2019, pp. 1-21.
Office Communication for U.S. Appl. No. 15/671,060 dated May 8, 2019, pp. 1-19.
Office Communication for U.S. Appl. No. 16/113,442 dated Jun. 5, 2019, pp. 1-8.
Office Communication for U.S. Appl. No. 15/891,273 dated May 28, 2019, pp. 1-14.
Office Communication for U.S. Appl. No. 16/107,509 dated Apr. 1, 2019, pp. 1-21.
Office Communication for U.S. Appl. No. 16/048,939 dated Jun. 20, 2019, pp. 1-8.
Office Communication for U.S. Appl. No. 16/100,116 dated May 30, 2019, pp. 1-5.
Office Communication for U.S. Appl. No. 16/384,574 dated May 31, 2019, pp. 1-12.
Office Communication for U.S. Appl. No. 16/107,509 dated Jun. 14, 2019, pp. 1-5.
Office Communication for U.S. Appl. No. 16/107,509 dated Aug. 21, 2019, pp. 1-25.
Office Communication for U.S. Appl. No. 16/384,574 dated Oct. 8, 2019, pp. 1-13.
Office Communication for U.S. Appl. No. 16/543,243 dated Sep. 27, 2019, pp. 1-24.
Office Communication for U.S. Appl. No. 16/048,939 dated Dec. 5, 2019, pp. 1-9.
Office Communication for U.S. Appl. No. 16/565,109 dated Nov. 27, 2019, pp. 1-18.
Office Communication for U.S. Appl. No. 16/525,290 dated Oct. 31, 2019, pp. 1-9.
Office Communication for U.S. Appl. No. 16/532,275 dated Oct. 24, 2019, pp. 1-29.
Office Communication for U.S. Appl. No. 16/560,886 dated Dec. 6, 2019, pp. 1-17.
Office Communication for U.S. Appl. No. 14/500,893 dated Feb. 18, 2015, pp. 1-11.
Office Communication for U.S. Appl. No. 14/518,996 dated Apr. 20, 2015, pp. 1-37.
Office Communication for U.S. Appl. No. 14/500,893 dated Jun. 15, 2015, pp. 1-12.
Office Communication for U.S. Appl. No. 14/518,996 dated Jul. 21, 2015, pp. 1-17.
Office Communication for U.S. Appl. No. 14/695,690 dated Sep. 9, 2015, pp. 1-41.
Office Communication for U.S. Appl. No. 14/695,690 dated Feb. 24, 2016, pp. 1-11.
Office Communication for U.S. Appl. No. 15/150,354 dated Jul. 5, 2016, pp. 1-18.
Mozilla Developer Network, “NSS Key Log Format,” https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSS/Key_Log_Format, Jan. 8, 2010, p. 1.
Extended European Search Report for European Patent Application No. 16166907.2 dated Sep. 30, 2016, pp. 1-7.
Office Communication for U.S. Appl. No. 15/150,354 dated Feb. 8, 2017, pp. 1-8.
Office Communication for U.S. Appl. No. 15/466,248 dated Jun. 5, 2017, pp. 1-30.
Office Communication for U.S. Appl. No. 15/466,248 dated Oct. 3, 2017, pp. 1-34.
Office Communication for U.S. Appl. No. 15/457,886 dated Jan. 5, 2018, pp. 1-11.
Office Communication for U.S. Appl. No. 15/466,248 dated Jan. 11, 2018, pp. 1-2.
Examination Report for European Patent Application No. 16166907.2 dated Mar. 9, 2018, pp. 1-4.
Shaver, Jim, “Decrypting TLS Browser Traffic with Wireshark the easy way”, https://jimshaver.net/2015/02/11/decrypting-tls-browser-traffic-with-wireshark-the-easy-way/, Feb. 11, 2015, pp. 1-30.
Office Communication for U.S. Appl. No. 15/466,248 dated Mar. 8, 2018, pp. 1-34.
Office Communication for U.S. Appl. No. 15/457,886 dated Jul. 18, 2018, pp. 1-11.
Office Communication for U.S. Appl. No. 15/466,248 dated Jul. 11, 2018, pp. 1-31.
International Search Report and Written Opinion for International Patent Application No. PCT/US2017/068585 dated Jul. 4, 2018, pp. 1-11.
Extended European Search Report for European Patent Application No. 17210995.1 dated Jul. 6, 2018, pp. 1-11.
Office Communication for U.S. Appl. No. 15/466,248 dated Oct. 18, 2018, pp. 1-31.
Office Communication for U.S. Appl. No. 15/457,886 dated Mar. 20, 2019, pp. 1-9.
Office Communication for U.S. Appl. No. 15/466,248 dated May 16, 2019, pp. 1-33.
Office Communication for U.S. Appl. No. 15/466,248 dated Sep. 10, 2019, pp. 1-27.
Office Communication for U.S. Appl. No. 15/971,843 dated Oct. 22, 2019, pp. 1-15.
Office Communication for U.S. Appl. No. 14/750,905 dated Sep. 22, 2015, pp. 1-12.
Office Communication for U.S. Appl. No. 14/750,905 dated Jan. 19, 2016, pp. 1-5.
Office Communication for U.S. Appl. No. 15/082,925 dated Sep. 13, 2016, pp. 1-7.
Office Communication for U.S. Appl. No. 15/289,760 dated Dec. 12, 2016, pp. 1-12.
Office Communication for U.S. Appl. No. 15/219,016 dated Nov. 22, 2016, pp. 1-12.
Office Communication for U.S. Appl. No. 15/356,381 dated Jan. 6, 2017, pp. 1-57.
Office Communication for U.S. Appl. No. 15/082,925 dated Feb. 1, 2017, pp. 1-6.
Office Communication for U.S. Appl. No. 15/219,016 dated Mar. 16, 2017, pp. 1-9.
Office Communication for U.S. Appl. No. 15/443,868 dated Apr. 27, 2017, pp. 1-7.
Office Communication for U.S. Appl. No. 15/585,887 dated Jun. 27, 2017, pp. 1-24.
Office Communication for U.S. Appl. No. 15/356,381 dated Jul. 3, 2017, pp. 1-21.
Office Communication for U.S. Appl. No. 15/675,216 dated Jun. 7, 2018, pp. 1-4.
Office Communication for U.S. Appl. No. 15/443,868 dated Aug. 11, 2017, pp. 1-11.
Office Communication for U.S. Appl. No. 15/675,216 dated Nov. 20, 2017, pp. 1-7.
Office Communication for U.S. Appl. No. 15/585,887 dated Nov. 28, 2017, pp. 1-23.
International Search Report and Written Opinion for International Patent Application No. PCT/US2018/030145 dated Aug. 10, 2018, pp. 1-12.
Svoboda, Jakub, “Network Traffic Analysis with Deep Packet Inspection Method,” Masaryk University, Faculty of Informatics, Master's Thesis, 2014, pp. 1-74.
International Search Report and Written Opinion for International Patent Application No. PCT/US2017/068586 dated Aug. 9, 2018, pp. 1-14.
Extended European Search Report. For European Patent Application No. 17210996.9 mailed Jun. 13, 2018, pp. 1-7. 1.
Office Communication for U.S. Appl. No. 15/855,769 dated Feb. 5, 2019, pp. 1-10.
Office Communication for U.S. Appl. No. 15/855,769 dated May 1, 2019, pp. 1-7.
Office Communication for U.S. Appl. No. 16/459,472 dated Aug. 14, 2019, pp. 1-15.
Office Communication for U.S. Appl. No. 15/585,887 dated Mar. 20, 2019, pp. 1-26.
Office Communication for U.S. Appl. No. 15/675,216 dated Aug. 28, 2018, pp. 1-14.
Office Communication for U.S. Appl. No. 15/675,216 dated Jan. 29, 2019, pp. 1-8.
Office Communication for U.S. Appl. No. 16/384,697 dated May 30, 2019, pp. 1-12.
Office Communication for U.S. Appl. No. 16/384,574 dated Jan. 13, 2020, pp. 1-9.
Office Communication for U.S. Appl. No. 16/107,509 dated Jan. 23, 2020, pp. 1-12.
Office Communication for U.S. Appl. No. 15/585,887 dated Jan. 22, 2020, pp. 1-28.
Office Communication for U.S. Appl. No. 16/384,697 dated Oct. 17, 2019, pp. 1-8.
Office Communication for U.S. Appl. No. 16/459,472 dated Feb. 3, 2020, pp. 1-7.
Office Communication for U.S. Appl. No. 16/679,055 dated Feb. 14, 2020, pp. 1-32.
Office Communication for U.S. Appl. No. 16/048,939 dated Feb. 18, 2020, pp. 1-6.
Office Communication for U.S. Appl. No. 16/424,387 dated Feb. 24, 2020, pp. 1-15.
Office Communication for U.S. Appl. No. 16/718,050 dated Feb. 27, 2020, pp. 1-21.
Wade, Susan Marie, ““SCADA Honeynets: The attractiveness of honeypots as critical infrastructure security tools for the detection and analysis of advanced threats”” (2011). Graduate Theses and Dissertations. 12138. https://lib.dr.iastate.edu/etd/12138, pp. 1-67.
Office Communication for U.S. Appl. No. 16/525,290 dated Mar. 12, 2020, pp. 1-10.
Office Communication for U.S. Appl. No. 15/971,843 dated Mar. 26, 2020, pp. 1-14.
Office Communication for U.S. Appl. No. 16/048,939 dated Mar. 26, 2020, pp. 1-6.
Office Communication for U.S. Appl. No. 16/543,243 dated Apr. 7, 2020, pp. 1-22.
Office Communication for U.S. Appl. No. 16/532,275 dated Apr. 20, 2020, pp. 1-8.
Office Communication for U.S. Appl. No. 16/560,886 dated Apr. 22, 2020, pp. 1-10.
Office Communication for U.S. Appl. No. 16/565,109 dated May 8, 2020, pp. 1-19.
Examination Report for European Patent Application No. 16166907.2 dated Dec. 19, 2019, pp. 1-6.
Examination Report for European Patent Application No. 17210996.9 dated May 27, 2020, pp. 1-3.
Office Communication for U.S. Appl. No. 15/585,887 dated Aug. 28, 2020, pp. 1-30.
Office Communication for U.S. Appl. No. 16/679,055 dated Sep. 4, 2020, pp. 1-5.
Office Communication for U.S. Appl. No. 16/718,050 dated Sep. 4, 2020, pp. 1-23.
Office Communication for U.S. Appl. No. 16/525,290 dated Sep. 23, 2020, pp. 1-10.
International Search Report and Written Opinion for International Patent Application No. PCT/US2019/030015 dated Aug. 7, 2019, pp. 1-6.
International Search Report and Written Opinion for International Patent Application No. PCT/US2019/018097 dated May 28, 2019, pp. 1-9.
Office Communication for U.S. Appl. No. 15/971,843 dated Oct. 27, 2020, pp. 1-11.
Office Communication for U.S. Appl. No. 16/424,387 dated Nov. 24, 2020, pp. 1-23.
Office Communication for U.S. Appl. No. 16/543,243 dated Dec. 16, 2020, pp. 1-13.
Office Communication for U.S. Appl. No. 16/565,109 dated Jan. 19, 2021, pp. 1-9.
Office Communication for U.S. Appl. No. 16/813,649 dated Feb. 24, 2021, pp. 1-7.
Office Communication for U.S. Appl. No. 16/679,055 dated Mar. 16, 2021, pp. 1-33.
Office Communication for U.S. Appl. No. 15/585,887 dated Mar. 26, 2021, pp. 1-31.
Office Communication for U.S. Appl. No. 16/525,290 dated Mar. 31, 2021, pp. 1-11.
Office Communication for U.S. Appl. No. 17/483,148 dated Dec. 13, 2021, pp. 1-28.
Office Communication for U.S. Appl. No. 16/813,649 dated Dec. 20, 2021, pp. 1-44.
Office Communication for U.S. Appl. No. 16/679,055 dated May 11, 2022, pp. 1-3.
Office Communication for U.S. Appl. No. 16/813,649 dated May 11, 2022, pp. 1-16.
Beckett, David et al., “New Sensing Technique for Detecting Application Layer DDoS Attacks Targeting Back-end Database Resources,” IEEE International Conference on Communications (ICC 2017), May 2017, pp. 1-7.
Office Communication for U.S. Appl. No. 16/989,025 dated May 23, 2022, pp. 1-14.
Office Communication for U.S. Appl. No. 16/679,055 dated Jun. 3, 2022, pp. 1-34.
Office Communication for U.S. Appl. No. 17/708,311 dated Jun. 20, 2022, pp. 1-15.
Office Communication for U.S. Appl. No. 17/722,217 dated Jun. 29, 2022, pp. 1-23.
Related Publications (1)
Number Date Country
20220029875 A1 Jan 2022 US
Continuations (2)
Number Date Country
Parent 16543243 Aug 2019 US
Child 17226947 US
Parent 15891273 Feb 2018 US
Child 16543243 US