RAP as a therapeutic for regeneration of the optic nerve after insult

Information

  • Research Project
  • 8780535
  • ApplicationId
    8780535
  • Core Project Number
    R41EY024803
  • Full Project Number
    1R41EY024803-01
  • Serial Number
    024803
  • FOA Number
    PA-13-235
  • Sub Project Id
  • Project Start Date
    9/1/2014 - 9 years ago
  • Project End Date
    8/31/2016 - 7 years ago
  • Program Officer Name
    WUJEK, JEROME R
  • Budget Start Date
    9/1/2014 - 9 years ago
  • Budget End Date
    8/31/2016 - 7 years ago
  • Fiscal Year
    2014
  • Support Year
    01
  • Suffix
  • Award Notice Date
    8/15/2014 - 9 years ago
Organizations

RAP as a therapeutic for regeneration of the optic nerve after insult

DESCRIPTION (provided by applicant): Like all neurons of the central nervous system (CNS), retinal ganglion cells fail to regenerate, and often die, after damage to the optic nerve such as occurs in optic nerve stroke or other optic neuropathies. Loss of axonal connectivity and neuronal death that occurs after damage to the optic nerve results in vision loss. While therapeutics targeting secondary damage after neuronal insult have shown benefit in reducing functional deficits after neuronal damage, there are currently no approved agents capable of addressing axon regenerative failure, the primary cause of visual dysfunction after optic nerve damage. As such, novel approaches capable of improving axonal growth (neuroregeneration) have potential to restore visual capacity after damage to the optic nerve. LRP1 was recently identified as a novel receptor of myelin-associated inhibitors (MAIs), the components of degraded myelin responsible for the extrinsic component of regenerative failure. We have shown in vivo that infusion of the LRP1 antagonist RAP into the CNS after injury results in attenuation of RhoA activity, the critical signal involved in extrinsic causes of regenerative failure. Direct inhibition of RhoA enhances neuronal regeneration in rodent models and a pan-RhoA inhibitor has shown evidence of efficacy in humans in exploratory clinical trials. However, current therapeutic candidates have several critical limitations such as lack of neuronal specificity and poor bioavailability limiting drug delivery. In contrast, RAP is readily available o the CNS from the peripheral circulation. Because RAP is both readily soluble and can be delivered to the CNS via multiple doses, it possesses desirable therapeutic advantages over current pan-RhoA inhibitors. As beneficial results have already been observed using direct infusion to the injury site, we first wish to assess whether peripheral administration of RAP has comparable beneficial effects on the signaling events associated with regenerative failure after optic nerve insult. To accomplish this, an intravenous administration protocol capable of resulting in sufficient levels of RAP in the CNS must first be established. We will then perform long term studies (8-week injury course) to assess histological regeneration of damaged neurons with RAP treatment. As LRP1 has been shown to be a critical facilitator of myelin- mediated neuroregenerative failure, we hypothesize that therapeutic application of RAP will result in significant neuronal regeneration of retinal ganglion cells in the optic nerve. Additionally, the unique biological characteristics of RAP such as CNS bioavailability and specific RhoA inhibition in neurons could make it a superior therapeutic approach to the current pan-RhoA inhibitors. As such, RAP is an important candidate to bring through pre-clinical proof-of-concept testing as a high-value potential therapeutic for restoring axonal growth after damage to the optic nerve.

IC Name
NATIONAL EYE INSTITUTE
  • Activity
    R41
  • Administering IC
    EY
  • Application Type
    1
  • Direct Cost Amount
  • Indirect Cost Amount
  • Total Cost
    225000
  • Sub Project Total Cost
  • ARRA Funded
    False
  • CFDA Code
    867
  • Ed Inst. Type
  • Funding ICs
    NEI:225000\
  • Funding Mechanism
    SBIR-STTR RPGs
  • Study Section
    ZRG1
  • Study Section Name
    Special Emphasis Panel
  • Organization Name
    NOVORON BIOSCIENCE, INC.
  • Organization Department
  • Organization DUNS
    078781043
  • Organization City
    SAN DIEGO
  • Organization State
    CA
  • Organization Country
    UNITED STATES
  • Organization Zip Code
    921221937
  • Organization District
    UNITED STATES