Rapid Affinity Measurement of Peptide Ligands and Reagents Therefor

Information

  • Patent Application
  • 20150111773
  • Publication Number
    20150111773
  • Date Filed
    June 07, 2013
    11 years ago
  • Date Published
    April 23, 2015
    9 years ago
Abstract
The present invention provides methods for rapidly screening and measuring the ligand binding affinity of in vitro selected peptides to the cognate and off-target proteins. This general strategy is amenable to high throughput analysis because the peptides are synthesized by cell-free translation, as opposed to solid-phase synthesis required by traditional assays, and affinities can be readily measured in standard formats.
Description
BACKGROUND

Identifying peptides that bind to the surface of a protein with high affinity and high specificity is a time consuming process. In general, peptides are first selected from libraries of vast repertoires using any of a number of in vitro or in vivo selection technologies (i.e., DNA-display, phage display, mRNA display, ribosome display etc.). This process usually requires many cycles of selection and amplification, sometimes followed by additional rounds of directed evolution to optimize a given sequence for improved binding. The output of these selections are then cloned and sequenced, although in some cases, sequencing is done by mass spectrometry. Representative sequences are constructed by solid-phase synthesis, purified by HPLC, and assayed for affinity and specificity. Relative and specific solution binding affinities (Kd's) are typically measured on an individual basis using competitive binding assays or surface plasmon resonance (SPR). In total, this process is a costly endeavor that can easily take 2-3 months to complete per target.


Developing protein affinity reagents on a proteome-wide scale demands advances in peptide and protein selection technologies that reduce the time and cost required to generate and characterize high quality affinity reagents.


SUMMARY OF THE INVENTION

In a first aspect, the present invention provides recombinant double stranded DNA constructs and nucleic acid libraries comprising a plurality of the recombinant double stranded DNA constructs, wherein each double stranded DNA construct comprises


(a) a promoter;


(b) one or more translation enhancement elements downstream of the promoter and upstream of the start codon;


(c) a start codon downstream of the one or more translation enhancing element;


(d) a random region of at least about 18 to about 60 nucleotides immediately downstream from the start codon;


(e) a protease cleavage site downstream of the random region;


(f) a unique restriction enzyme recognition site downstream of the protease cleavage site; and


(g) a heterologous cross-linking region downstream of the unique restriction enzyme recognition site.


In the libraries of this aspect of the invention, at least 1011 different random sequences are represented in the plurality of double stranded nucleic acid constructs.


In one embodiment, expressed RNA from the cross-linking region can serve as a site for ligation to a linker containing a 3′-puromycin residue. In another embodiment, RNA expressed from the cross linking region is complementary to a DNA linker sequence to be used.


In a second aspect, the present invention provides recombinant double stranded DNA constructs and nucleic acid libraries comprising a plurality of the recombinant double stranded DNA constructs, wherein each double stranded DNA construct comprises


(a) a first restriction enzyme recognition site;


(b) one or more translation enhancement elements downstream of the first restriction enzyme recognition site;


(c) a start codon downstream of the one or more translation enhancement elements;


(d) a random region of at least about 18 to about 60 nucleotides immediately downstream from the start codon, wherein the peptide encoded by the random region of each linear recombinant double stranded DNA construct is capable of binding to the same target;


(e) a protease cleavage site downstream of the random region; and


(f) a second restriction enzyme recognition site downstream of the protease cleavage site.


In the libraries of this second aspect of the invention, at least 10 different random sequences are represented in the plurality of double stranded nucleic acid constructs.


In one embodiment, the double stranded DNA constructs comprises plasmids. In another embodiment, the recombinant double stranded DNA constructs further comprises:


(g) a promoter upstream of the first restriction enzyme recognition site; and


(h) a region encoding a peptide purification tag downstream of the second restriction enzyme recognition site.


In a third aspect, the invention provides methods for identifying polypeptide ligands for a target of interest, comprising


(a) contacting the recombinant nucleic acid constructs or nucleic acid library of any embodiment or combination of embodiments of the second aspect of the invention with reagents for RNA transcription under conditions to promote transcription of RNA from the double stranded nucleic acid constructs, resulting in an RNA expression product;


(b) contacting the RNA expression product with reagents for protein expression under conditions to promote translation of detectable polypeptide;


(c) incubating the detectable polypeptide with a target of interest under suitable conditions to promote binding of the detectable polypeptide to the target, to produce binding complexes; and


(d) analyzing the detectable polypeptides bound to the target.


In a fourth aspect, the invention provides methods for identifying peptide ligands for a target of interest, comprising


(a) contacting the recombinant nucleic acid constructs or the nucleic acid library of any embodiment or combination of embodiments of the first aspect of the invention with reagents for RNA transcription under conditions to promote transcription of RNA from the double stranded nucleic acid constructs, resulting in an RNA expression product;


(b) contacting the RNA expression product with reagents for ligating a linker containing a puromycin residue to the 3′ end of the RNA expression product, resulting in a labeled RNA expression product;


(c) contacting the labeled RNA expression product with reagents for protein expression under conditions to promote protein translation from the labeled RNA expression product, resulting in a RNA-polypeptide fusion product;


(d) reverse transcribing the RNA-polypeptide fusion products to produce an RNA-polypeptide fusion product-cDNA heteroduplex;


(e) incubating the RNA-polypeptide fusion product-cDNA heteroduplexes with a target of interest;


(f) removing RNA-polypeptide fusion product-cDNA heteroduplexes that are not bound to the target of interest, resulting in binding complexes; and


(g) amplifying ligand-bound RNA-polypeptide fusion product-cDNA heteroduplexes in the binding complexes, to produce double stranded DNA constructs that can be used to identify the peptide ligands bound to the target of interest.


In a fifth aspect, the present invention provides kits comprising


(a) the nucleic acid library of any embodiment or combination of embodiments of the first aspect of the invention; and


(b) an expression vector, wherein, the expression vector comprises:

    • (i) a promoter upstream of a first restriction enzyme recognition site; and
    • (ii) a region encoding a peptide purification tag downstream of a second restriction enzyme recognition site;
    • wherein the first and second restriction enzyme recognition sites are compatible with the unique restriction enzyme recognition site of the double stranded DNA constructs of the nucleic acid library.


In a sixth aspect, the invention provides separation devices, comprising:


(a) a multiwell plate;


(b) a regenerated cellulose layer below the multiwell plate, wherein the regenerated cellulose layer has a pore size suitable to retain peptides bound to a target, but not to retain unbound peptides; and


(c) a nylon membrane layer below the regenerated cellulose layer, wherein the nylon membrane layer has a pore size suitable to retain unbound peptides


In a seventh aspect, the invention provides an RNA pool resulting from transcription of the library of the first aspect or the second aspect of the invention.





BRIEF DESCRIPTION OF THE FIGURES


FIG. 1. Schematic representation of the mRNA display library and the cell-free expression vector. The library (A) contains a T7 promoter for in vitro transcription [T7], followed by a translation enhancing element [TEE], followed by an ATG start codon, followed by a random region, followed by protease cleavage site [C.S.], followed by a restriction digest site [R.S.] and finally a photo-crosslinking site [X-Link]. Following selection the cDNA is amplified by PCR using a primer that adds a second restriction digest site at the 5′ end (B). Both the vector and the library are then digested using the same restriction enzymes so that they can be ligated back together (C). Colonies are then selected and purified vector will contain all the necessary genetic information for cell-free expression and purification of the peptide of interest (D).



FIG. 2. Cell-free expression and purification of selected peptides using customized vector as a template. In order to express peptides obtained from in vitro selection we use the plasmid vector as template for an in vitro transcription and translation reaction. This produces peptide with a C terminal peptide purification tag. After expression the lysate is passed through a purification column that binds the purification tag. Proteolytic cleavage releases the peptide of interest from the column for use in binding assays. This process does not require the peptide identity to be obtained by DNA sequencing in advance of completing binding studies. Peptide produced from as little as 10 μL of cell free expression lysate is sufficient to perform binding assays.



FIG. 3. Workflow for binding assays. To characterize the binding between a peptide and its cognate target the purified radiolabeled peptide is incubated with its target. After the system reaches equilibrium the sample is passed through a series of membranes in order to separate the bound and free peptides. This separation relies on the size difference between the free peptide and the peptide-target complex and is facilitated by a regenerated cellulose membrane that retains larger molecules while allowing the smaller free peptide to pass through. A nylon membrane then captures the free peptide and the amount of peptide on each membrane can be quantified by detection of the radiolabel.



FIG. 4. Schematic of separation apparatus. Separation of the free and bound peptide is carried out in a 96-well apparatus where samples are loaded into individual wells and then passed through the membranes below.





DETAILED DESCRIPTION OF THE INVENTION

In a first aspect, the present invention provides recombinant double stranded DNA constructs, or nucleic acid libraries comprising a plurality of the recombinant double stranded DNA constructs, wherein each double stranded DNA construct comprises


(a) a promoter;


(b) one or more translation enhancement elements downstream of the promoter and upstream of the start codon;


(c) a start codon downstream of the one or more translation enhancing elements;


(d) a random region of at least about 18 to about 60 nucleotides immediately downstream from the start codon;


(e) a coding region for a protease cleavage site downstream of the random region;


(f) a unique restriction enzyme recognition site downstream of the protease cleavage site; and


(g) a heterologous cross-linking region downstream of the unique restriction enzyme recognition site;


In the libraries of this aspect of the invention, at least 1011 different random sequences are represented in the plurality of double stranded nucleic acid constructs.


The nucleic acid libraries according to all aspects of the present invention can be used, for example, in the methods of the invention for identifying peptide ligands for a target of interest. The libraries comprise a series of linear constructs, which, when used in in vitro selection methods as described herein, permit use of a library diversity of at least 1011 different polynucleotide sequences. As used herein, a “library” is a collection of linear double stranded nucleic acid constructs.


As used herein, “heterologous” means that none of the promoter, translation enhancement element (TEE), random region, and cross-linking region are normally associated with each other (i.e.: they are not part of the same gene in vivo), but are recombinantly combined in the construct.


As used herein, a “promoter” is any DNA sequence that can be used to help drive RNA expression of a DNA sequence downstream of the promoter. Suitable promoters include, but are not limited to, the T7 promoter, SP6 promoter, CMV promoter, and vaccinia virus synthetic-late promoter. As will be understood by those of skill in the art, a given double stranded DNA construct may contain more than one promoter, as appropriate for a given proposed use.


As used herein, a translation enhancement element (TEE) can be any polynucleotide domain that mediates cap-independent protein translation. Any suitable TEE can be used, including but not limited to SEQ ID NO: 7-645, listed in Table 1. In a preferred embodiment, the isolated polynucleotides consist of the recited sequence. In a further embodiment, the isolated polynucleotides comprise the sequence of SEQ ID NO:4 (A/-) (A/G)ATC(A/G)(A/G)TAAA(T/C)G, wherein the isolated polynucleotides is between 13-200 nucleotides in length. SEQ ID NO:4 is a consensus sequence found within a number of the TEES (Clones 985 (SEQ ID NO:448), 1092 (SEQ ID NO:495), 1347 (SEQ ID NO:623), 906 (SEQ ID NO:408), 12 (SEQ ID NO:12), 1200 (SEQ ID NO:553), 958 (SEQ ID NO:434), 1011 (SEQ ID NO:458), 459 (SEQ ID NO:214) in Table 1). In a preferred embodiment, the isolated polynucleotides comprise the sequence of SEQ ID NO:5 5′-AAATCAATAAATG-3′, which is a conserved sequence found in the top-performing TEEs. In various preferred embodiments, the isolated polynucleotides are between 13-180, 13-170, 13-160, 13-150, 13-140, 13-130, 13-120, 13-110, 13-100, 13-90, 13-80, 13-70, 13-60, 13-50, 13-40, 13-30, or 13-20 nucleotides in length.


In one embodiment, the TEE is selected from the group consisting of SEQ ID NO:583 (clone 1267), SEQ ID NO:397 (clone 877), SEQ ID NO:54 (clone 100), SEQ ID NO:401 (clone 884), SEQ ID NO:471 (clone 1033), SEQ ID NO:327 (clone 733), SEQ ID NO:398 (clone 878), SEQ ID NO:301 (clone 675), and SEQ ID NO:310 (clone 694). In a further embodiment, the TEE comprises a nucleic acid sequence according to SEQ ID NO:1. This sequence represents a consensus sequence of a subset of 733 (SEQ ID NO:327), 877 (SEQ ID NO:397), 1033 (SEQ ID NO:471), and 1267 (SEQ ID NO:583), and thus is strongly correlated with TEE activity. In further embodiments, the TEE comprise a nucleic acid sequence according to SEQ ID NO:2 or SEQ ID NO:3, which are longer portions of the consensus sequence between 733 (SEQ ID NO:327), 877 (SEQ ID NO:397), 1033 (SEQ ID NO:471), 1267 (SEQ ID NO:583.











SEQ ID NO: 1:




5′AT(C/G)GAAT(C/G)(G/A)AA(G/T)(A/G/C)








GAATGGA(A/T)(A/T)(C/A/G)(A/G)AA(T/A)







GGAAT(G/A)GAAT(T/G)(G/A)AATGGAATGGAA







(T/A)(T/G)GA(A/T)T(G/C)GAATG-3′







SEQ ID NO: 2:




5′-(A/--)(A/--)(G/A/--)(C/T/--)(G/--)









(G/--)(A/--)(A/--)(T/--)(T/C/--)(--/A/G)









(-/A)AT(C/G)GAAT(C/G)(G/A)AA(G/T)(A/G/C)








GAATGGA(AT)(A/T)(C/A/G)(A/G)AA(T/A)GGAAT







(G/A)GAAT(T/G)(G/A)AATGGAATGGAA(T/A)







(T/G)GA(A/T)T(G/C)GAATG-3′







SEQ ID NO; 3




5′-(A/--)(A/--)(A/--)(G/C/--)(A/--)









(G/--)(A/--)(A/--)(T/--)(C/--)(A/--)








(A/--)(G/A/--)(C/T/--)(G/--)(G/--)(A/--)







(A/--)(T/--)(T/C/--)(--/A/G)(--/A)AT







(C/G)GAAT(C/G)(G/A)AA(G/T)(A/G/C)







GAATGGA(AT)(A/T)(C/A/G)(A/G)AA(T/A)







GGAAT(G/A)GAAT(T/G)(G/A)AATGGAATGGAA







(T/A)(T/G)GA(A/T)T(G/C)GAATG-3′






The “random region” is any DNA sequence of at least 18 nucleotides in length. In one embodiment, the random region is between 18-60 nucleotides in length. The random sequence may be non-naturally occurring, or derived from a naturally occurring source, and may be of any primary sequence.


As used herein, a “cross linking region” is any nucleic acid sequence that can be expressed as RNA, where the expressed RNA can serve as a site for ligation/binding to a linker to form a stable complex between mRNA-ribosome-protein. In a preferred embodiment, expressed RNA from the cross-linking region can serve as a site for ligation to a linker containing a 3′-puromycin residue. In a non-limiting embodiment, the expressed RNA from the cross-linking region can serve as a site for photo-ligation of a psoralen-DNA-puromycin linker (5′-psoralen-(oligonucleotide complementary to linker)-(PEG9)2-A15-ACC-puromycin). In a preferred embodiment, the linker is a DNA linker, and the mRNA expressed from the cross linking region is complementary to the DNA linker sequence to be used.


The “protease cleavage site” can be the cleavage site for any suitable protease to be used in the methods of the invention.


The “unique restriction enzyme recognition site” can be any suitable restriction enzyme recognition site, so long as it is unique to the double stranded construct.


As used herein, “at least 1011 different polynucleotide sequences are represented in the plurality of double stranded nucleic acid constructs” means that the library, in its entirety, contains at least 1011 different polynucleotide sequences that can be tested for peptide binding activity to a target of interest, while each different double stranded nucleic acid construct contains only a single polynucleotide sequence. In various embodiments, at least 1012, 1013, 1014, or 1015 different polynucleotide sequences are represented in the plurality of double stranded nucleic acid constructs.


It will be understood by those of skill in the art that the constructs of the invention may comprise further nucleotide elements as appropriate for a given intended use. In one preferred embodiment, the double stranded nucleic acid constructs further comprise one or more unique restriction sites upstream of the polynucleotide sequence and downstream of the promoter, and one or more unique restriction sites downstream of the polynucleotide sequence


In a second aspect, the present invention provides recombinant double stranded DNA constructs, and nucleic acid libraries that comprise a plurality of the recombinant double stranded DNA constructs, wherein each double stranded DNA construct comprises


(a) a first restriction enzyme recognition site;


(b) one or more translation enhancement elements downstream of the first restriction enzyme recognition site;


(c) a start codon downstream of the one or more translation enhancement elements;


(d) a random region of at least about 18 to about 60 nucleotides immediately downstream from the start codon, wherein the peptide encoded by the random region of each linear recombinant double stranded DNA construct is capable of binding to the same target;


(e) a coding region for a protease cleavage site downstream of the random region; and


(f) a second restriction enzyme recognition site downstream of the protease cleavage site;


wherein at least 10 different random sequences are represented in the plurality of double stranded nucleic acid constructs.


These constructs and libraries can be generated using any techniques, and can be used for identifying peptide ligands for a target of interest, such as disclosed in the methods of the invention. In another embodiment, the library of the first aspect of the invention is incubated with a desired target, washed to remove unbound peptides, and constructs encoding binding peptides to a specific target are amplified by PCR to isolate bound molecules. The linear DNA is restriction digested and cloned into a vector to create the nucleic acid libraries of this second aspect of the invention.


All terms used in this second aspect have the same meaning as used elsewhere herein; similarly, all embodiments of the nucleic acid libraries and components thereof that are disclosed above, and combinations thereof, can be used in the methods of the invention.


In one embodiment, the double stranded DNA constructs comprises plasmids. In another embodiment, the recombinant double stranded DNA constructs further comprises:


(g) a promoter upstream of the first restriction enzyme recognition site; and


(h) a region encoding a peptide purification tag downstream of the second restriction enzyme recognition site.


Any suitable region encoding a peptide purification tag can be used, as will be understood by those of skill in the art, based on the teachings herein. In one non-limiting and exemplary embodiment, the encoded purification tag may comprise streptavidin binding peptide.


The libraries of the third aspect of the invention comprise at least 10 different random sequences represented in the plurality of double stranded nucleic acid constructs. In various preferred embodiments, at least 15, 20, 25, 30, 35, 40, 45, 50, 75, 100, 250, 500, 1000, 2500, 5000, 10,000, 50,000, 100,000, or more different random sequences are represented in the plurality of double stranded nucleic acid constructs


It will be understood by those of skill in the art that the constructs of the invention may comprise further nucleotide elements as appropriate for a given intended use. In one preferred embodiment, the double stranded nucleic acid constructs further comprise one or more unique restriction sites upstream of the polynucleotide sequence and downstream of the promoter, and one or more unique restriction sites downstream of the polynucleotide sequence.


In a third aspect, the present invention provides methods for identifying polypeptide ligands for a target of interest, comprising


(a) contacting the nucleic acid library of any embodiment or combination of embodiments of the second aspect of the invention with reagents for RNA transcription under conditions to promote transcription of RNA from the double stranded nucleic acid constructs, resulting in an RNA expression product;


(b) contacting the RNA expression product with reagents for protein expression under conditions to promote translation of detectable polypeptide;


(c) incubating the detectable polypeptide with a target of interest under suitable conditions to promote binding of the detectable polypeptide to the target, to produce binding complexes; and


(d) analyzing the detectable polypeptides bound to the target.


The methods of the invention can be used, for example, to rapidly identify a plurality of peptides that bind to any target of interest. All terms used in this third aspect have the same meaning as used elsewhere herein; similarly, all embodiments of the nucleic acid libraries and components thereof that are disclosed above, and combinations thereof, can be used in the methods of the invention.


“Analyzing” the detectable polypeptides bound to the target means to make any qualitative or quantitative assessment of the bound polypeptide, including but not limited to determining a fraction of bound polypeptide, determining a binding constant of the bound polypeptide for the target, determining an amino acid sequence of the bound polypeptide, etc. The analyzing may further comprise purifying (partially or completely) bound polypeptide from the target.


The target may any target of interest, including but not limited to proteins, nucleic acids, lipids, polysaccharides, organic molecules, inorganic molecules, metals, polymers, solids, etc.


General conditions for in vitro transcription and translation are well known to those of skill in the art. Similarly, any suitable technique for detectably labeling the expressed polypeptides can be used, including but not limited to radioactive or fluorescent labeling, expressing the polypeptide a fusion protein with a detectable label, etc.


In a further embodiment, the target is immobilized on a solid support during the incubating step. Any suitable solid support can be used, including but not limited to magnetic beads, microarrays, columns, optical fibers, wipes, nitrocellulose, nylon, glass, quartz, diazotized membranes (paper or nylon), silicones, polyformaldehyde, cellulose, cellulose acetate, paper, ceramics, metals, metalloids, semiconductive materials, coated beads, magnetic particles; plastics such as polyethylene, polypropylene, and polystyrene; nanostructured surfaces; nanotubes (such as carbon nanotubes), and nanoparticles (such as gold nanoparticles or quantum dots).


In one embodiment, the target is incubated with an excess of the detectable polypeptide (i.e.: more than 1:1; preferably 1.5:1, 2:1, 3:1, 4:1, 5:1, 6:1, 7:1, 8:1, 9:1, 10:1, or more).


In embodiments where the constructs encode a peptide purification tag, the methods may further comprise passing the translation products through an affinity column with affinity for the peptide purification tag. Any suitable affinity column techniques can be used that permit binding to the peptide purification tag being used in a given method. It is well within the level of skill in the art, based on the teachings herein, to identify an appropriate affinity column technique to be used for a given purpose. In this embodiment, the methods may further comprise releasing isolated peptides from their purification tags, to help isolate the expressed peptide. It is well within the level of skill in the art, based on the teachings herein, to identify an appropriate release technique to be used for a given purpose.


In a further embodiment, the methods may further comprise incubating the in vitro translated peptides with the target of interest to form a second binding complex, and removing unbound in vitro translated peptides. This embodiment helps to further purify the peptide binders of interest. Any suitable technique for removing unbound peptides can be used. In one non-limiting embodiment, removing unbound in vitro translated peptides comprises contacting the binding complexes with a size-limiting membrane, wherein detectable polypeptides bound to the target are retained on the membrane, and unbound polypeptides pass through pores of the membrane. Such membranes may be of any type that possesses suitable pore size, including but not limited to regenerated cellulose.


For example, the separation devices of the invention (see below) can be used for removal of unbound polypeptides. Combining various embodiments, radiolabeled peptides are brought to equilibrium with their cognate target, and the bound fraction is separated from the unbound fraction by passing the mixture through a size-limiting membrane. Peptides that are bound to a given target are retained on the top layer of regenerated cellulose, while unbound peptides are retained on the bottom layer of, for example, nylon. In a further embodiment, following separation, bound peptides can be quantitated using any suitable technique, including but not limited to phosphorimaging.


The methods of the invention provide a means, for example, to rapidly screen peptides identified in the output of an in vitro selection experiment. Traditionally, this was a costly and time consuming process that required generating each peptide by solid phase synthesis and measuring the properties of the peptide by a standard binding technique like SPR.


In a fourth aspect, the present invention provides methods for identifying peptide ligands for a target of interest, comprising


(a) contacting the nucleic acid library of any one embodiment or combination of embodiments of the first aspect of the invention with reagents for RNA transcription under conditions to promote transcription of RNA from the double stranded nucleic acid constructs, resulting in an RNA expression product;


(b) contacting the RNA expression product with reagents for ligating a linker containing a puromycin residue to the 3′ end of the RNA expression product, resulting in a labeled RNA expression product;


(c) contacting the labeled RNA expression product with reagents for protein expression under conditions to promote protein translation from the labeled RNA expression product, resulting in a RNA-polypeptide fusion product;


(d) reverse transcribing the RNA-polypeptide fusion products to produce an RNA-polypeptide fusion product-cDNA heteroduplex;


(e) incubating the RNA-polypeptide fusion product-cDNA heteroduplexes with a target of interest;


(f) removing RNA-polypeptide fusion product-cDNA heteroduplexes that are not bound to the target of interest, resulting in binding complexes; and


(g) amplifying ligand-bound RNA-polypeptide fusion product-cDNA heteroduplexes in the binding complexes, to produce double stranded DNA constructs that can be used to identify the peptide ligands bound to the target of interest.


The methods can be used, for example, to rapidly identify a plurality of peptides that bind to any target of interest. All terms used in this fourth aspect have the same meaning as used elsewhere herein; similarly, all embodiments of the nucleic acid libraries and components thereof that are disclosed above, and combinations thereof, can be used in the methods of the invention.


The target may any target of interest, including but not limited to proteins, nucleic acids, lipids, polysaccharides, organic molecules, inorganic molecules, metals, polymers, solids, etc.


In one embodiment of this fourth aspect, the double stranded DNA constructs comprise:


(a) a first restriction enzyme recognition site;


(b) one or more translation enhancement elements downstream of the first restriction enzyme recognition site;


(c) a start codon downstream of the one or more translation enhancement elements;


(d) a random region of at least about 18 to about 60 nucleotides immediately downstream from the start codon, wherein the peptide encoded by the random region of each linear recombinant double stranded DNA construct is capable of binding to the same target;


(d) a protease cleavage site downstream of the random region; and


(e) a second restriction enzyme recognition site downstream of the protease cleavage site. Any suitable embodiments or combinations thereof of the constructs as described above can be used in the methods of the invention.


General conditions for in vitro transcription and translation, PCR, reverse transcription, and mRNA display techniques are well known to those of skill in the art. Contacting the RNA expression product with reagents for ligating a linker containing a puromycin residue to the 3′ end of the RNA expression product, resulting in a labeled RNA expression product, can be carried out via any suitable method, including photo-crosslinking or Moore-Sharp splint-directed ligation. Any suitable linker may be used. In a preferred embodiment the linker comprises a DNA linker complementary to the transcribed single stranded RNA. The DNA linker may comprise any suitable modifications, including but not limited non-natural residues and pegylation, as can be used in mRNA display.


Similarly, general conditions for incubating the RNA-polypeptide fusion product-cDNA heteroduplexes with a target of interest; removing RNA-polypeptide fusion product-cDNA heteroduplexes that are not bound to the target of interest, resulting in binding complexes; and amplifying ligand-bound RNA-polypeptide fusion product-cDNA heteroduplexes in the binding complexes, to produce double stranded DNA constructs that can be used to identify the peptide ligands bound to the target of interest, are well known to those of skill in the art.


In a further embodiment, the target is immobilized on a solid support during the incubating step. Any suitable solid support can be used, including but not limited to magnetic beads, microarrays, columns, optical fibers, wipes, nitrocellulose, nylon, glass, quartz, diazotized membranes (paper or nylon), silicones, polyformaldehyde, cellulose, cellulose acetate, paper, ceramics, metals, metalloids, semiconductive materials, coated beads, magnetic particles; plastics such as polyethylene, polypropylene, and polystyrene; nanostructured surfaces; nanotubes (such as carbon nanotubes), and nanoparticles (such as gold nanoparticles or quantum dots).


In one embodiment, the target is incubated with an excess of the RNA-polypeptide fusion product-cDNA heteroduplexes (i.e.: more than 1:1; preferably 1.5:1, 2:1, 3:1, 4:1, 5:1, 6:1, 7:1, 8:1, 9:1, 10:1, or more).


In another embodiment, removing RNA-polypeptide fusion product-cDNA heteroduplexes that are not bound to the target of interest comprises incubating the in the presence of a denaturant, including but not limited to guanidine hydrochloride, urea, and heat.


Traditionally, iterative rounds of in vitro selection and amplification are used to identify peptides with low nanomolar affinities to the surface of a given protein target. By combining the high library complexity of mRNA display with stringent washing conditions, we have discovered that high affinity peptides can be discovered without resorting to iterative rounds of selection and amplification. This advance greatly reduces the time required to generate and optimize high quality peptides.


In another embodiment, the methods further comprise cloning the double stranded DNA constructs that encode binders into an expression vector, wherein, after cloning, the vector comprises:


(g) a promoter upstream of the first restriction enzyme recognition site; and


(h) a region encoding a peptide purification tag downstream of the second restriction enzyme recognition site.


These added steps can be used, for example, to rapidly isolate the double stranded DNA constructs that encode peptide binders to a target of interest, and to use the isolated constructs to express the peptides of interest for isolation and identification.


Thus, in a further embodiment, the methods comprise in vitro translation of peptides encoded by the cloned double stranded DNA construct, wherein the peptides are expressed as N-terminal fusions with the peptide purification tag. Any suitable in vitro translation technique can be used. In one embodiment, the in vitro translation comprises use of a detectable amino acid monomer.


In a further embodiment, the methods comprise passing the in vitro translation products through an affinity column with affinity for the peptide purification tag. Any suitable affinity column techniques can be used that permit binding to the peptide purification tag being used in a given method. It is well within the level of skill in the art, based on the teachings herein, to identify an appropriate affinity column technique to be used for a given purpose. In this embodiment, the methods may further comprise releasing isolated peptides from their purification tags, to help isolate the expressed peptide. It is well within the level of skill in the art, based on the teachings herein, to identify an appropriate release technique to be used for a given purpose.


In a further embodiment, the methods may further comprise incubating the in vitro translated peptides with the target of interest to form a second binding complex, and removing unbound in vitro translated peptides. This embodiment helps to further purify the peptide binders of interest. Any suitable technique for removing unbound peptides can be used. In one non-limiting embodiment, removing unbound in vitro translated peptides comprises passing the second binding complex through a size-limiting membrane. Any suitable size-limiting membrane can be used, including but not limited to regenerated cellulose.


Combining various embodiments, radiolabeled peptides are brought to equilibrium with their cognate target, and the bound fraction is separated from the unbound fraction by passing the mixture through a size-limiting membrane. Peptides that are bound to a given target are retained on the top layer of regenerated cellulose, while unbound peptides are retained on the bottom layer of, for example, nylon.


In a further embodiment, following separation, bound peptides can be quantitated using any suitable technique, including but not limited to phosphorimaging.


In a fifth aspect, the present invention provides kits comprising


(a) the nucleic acid library of any embodiment or combination of embodiments of the first aspect of the invention; and


(b) an expression vector, wherein, the expression vector comprises:

    • (i) a promoter upstream of a first restriction enzyme recognition site; and
    • (ii) a region encoding a peptide purification tag downstream of a second restriction enzyme recognition site;
    • wherein the first and second restriction enzyme recognition sites are compatible with the unique restriction enzyme recognition site of the double stranded DNA constructs of the nucleic acid library.


Exemplary expression vectors include any embodiment or combination of embodiments of the vectors disclosed in the third aspect of the invention, and in the examples that follow. The library and vectors of the kits may independently be present on a solid surface or free in solution. The library and vectors of the kits may independently be frozen, lyophilized, or in solution.


In a sixth aspect, the present invention provides a separation device, comprising:


(a) a multiwell plate;


(b) a regenerated cellulose layer below the multiwell plate, wherein the regenerated cellulose layer has a pore size suitable to retain peptides bound to a target, but not to retain unbound peptides; and


(c) a nylon membrane layer below the regenerated cellulose layer, wherein the nylon membrane layer has a pore size suitable to retain unbound peptides.


The multiwell plate may comprise any number of wells as deemed appropriate by a user. The multiwell plate is one in which the wells are separated by barriers that allow peptides to pass through but retain proteins. In this way, peptides bound to a target may be retained on the regenerated cellulose layer, and peptides not bound to a target bind to the nylon membrane when passed through the wells of the multi-well plate.


In a seventh aspect, the present invention provides an mRNA pool resulting from transcription of the library of the nucleic acid library of the first aspect or the second aspect of the invention. Such mRNA pools can be used, for example, in the methods of the invention below. Any suitable technique for RNA transcription can be used. In one non-limiting embodiment, the double stranded DNA constructs each comprise a T7 RNA polymerase promoter, and the library is transcribed in vitro using T7 RNA polymerase, using standard techniques. It will be clear to those of skill in the art how to optimize transcription conditions in terms of buffers, nucleotides, salt conditions, etc., based on the general knowledge of in vitro transcription techniques in the art. The resulting mRNA pools will comprise single stranded RNA from all/almost all the double stranded DNA constructs in the library. In a further embodiment of mRNA pools resulting from transcription of the first aspect of the invention, the transcripts in the pooled mRNA comprise a DNA linker, containing a 3′ puromycin residue, ligated at the 3′end of the transcript. In a further aspect, the invention provides pooled mRNA-peptide fusion molecules resulting from in vitro translation of the pooled mRNA. Methods for in vitro translation of RNA transcripts are well known to those of skill in the art. In one non-limiting embodiment, the methods comprise incubating the pooled mRNA with rabbit reticulocyte lysate and 35S-methionine for a suitable time. The method may further comprise incubating the mixture overnight in the presence of suitable amounts of KCl and MgCl2 to promote fusion formation. When the pool of RNA is translated in vitro, the product is an mRNA-peptide fusion molecule. The chemical bond forming step of mRNA display is due to the natural peptidyl transferase activity of the ribosome, which catalyzes the formation of a non-hydrolyzable amide bond between puromycin and the polypeptide chain. In this embodiment, individual RNA polynucleotides in the pool are covalently linked to a random peptide encoded by their random region. In a further embodiment, the RNA polynucleotides in the pool comprise RNA-cDNA heteroduplexes created via reverse transcription, as described in the methods that follow.


Examples

We have developed methods, reagents, and device improvements that make it possible to select, sequence, and characterize high affinity peptides in days. This technology is automatable and could be performed in 96- or 384-well format. One specific embodiment of our technology is a custom library design and vector characterization strategy. A second embodiment is the use of a novel bar-coding strategy that is compatible with next-generation deep sequencing. Third, is a stringent selection strategy that reduces the number of selection cycles from many to one. Fourth, is a cell-free characterization process that allows for rapid screening and characterization of individual members without the need for solid-phase synthesis.


These advances make it possible to generate peptides with antibody-like affinity in 3-5 days. The process is amenable to automation and can be performed against tens-to-hundreds of proteins simultaneously. By combing in vitro selection with next-generation deep sequencing, it should be possible to map the ligand binding space for human and all other relevant proteomes.


Specific Embodiments
1. Custom Peptide Library—Vector Characterization Design Strategy

We have designed an mRNA display library and cell-free peptide expression vector that when used together make it possible to characterize selected peptides in 2-3 days.


This combined library—vector design strategy greatly reduces the time required to screen individual peptides present in the output of a protein selection. Traditionally, this is done by sequencing the selection output, synthesizing representative peptides by solid-phase synthesis, and purifying the polypeptides by HPLC. This is a time consuming process that can easily take 4-6 weeks. Even when the peptides are ordered from a commercial vendor, they can still take 3-4 weeks to receive and generally cost $200-300 per peptide depending on the level of purity requested.


In this specific embodiment, the library design strategy was made compatible with all of the sequence information needed to synthesize large peptide libraries by mRNA display; however, this strategy is general and could be applied to other selection technologies. The library was constructed at the DNA level and contains a T7 promoter for in vitro transcription, followed by a translation enhancing element, followed by an ATG start codon, followed by a random region, followed by protease cleavage site, followed by a restriction digest site and finally a photo-crosslinking site. Using standard mRNA display technology, the DNA library is transcribed into RNA, the RNA is photo-ligated to a short DNA fragment containing a 3′-puromycin residue. The library is translated in vitro to produce a library of peptides, each of which is covalently linked to their encoding RNA sequence. Prior to selection, the RNA portion of the mRNA-peptide fusion is reverse transcribed to create an RNA-cDNA heteroduplex.


The library is then incubated with a desired protein target, washed to remove unbound peptides, and amplified by PCR to isolate bound molecules. The linear DNA is restriction digested and cloned into our custom peptide expression vector. The custom protein expression vector contains a T7 promoter for in vitro transcription, followed by restriction sites that are compatible with the mRNA display library, followed by a peptide purification tag, followed by a PolyA region and finally a T7 terminator site. Individual clones are isolated by transforming the vector into Escherichia coli and picking individual colonies. Colonies are grown-up in LB or other suitable media and mini-prepped to isolate the vector. Each vector then serves as both a template for in vitro peptide expression and DNA sequencing (see FIG. 1).


To minimize the possibility of cross-contamination when multiple selections are conducted in parallel, multiple variants of the mRNA display library have been constructed and tested. These libraries are distinguished on the basis of their unique translation enhancing elements. In this way the libraries function almost identically under the same conditions, but can be discriminated by DNA sequencing. Development of these libraries also opens the opportunity for next-generation deep sequencing of multiple selection outputs at the same time. Such experiments make it possible to map the entire ligand binding space for a set of target proteins with very little investment of time or money.


2. Stringent Selection Strategy

We have developed methods and conditions that make it possible to identify peptides with antibody-like affinities (nM affinities) from a single mRNA display screen.


Traditionally, iterative rounds of in vitro selection and amplification are used to identify peptides with low nanomolar affinities to the surface of a given protein target. In general, in vitro selection technologies like mRNA display and ribosome display yielded higher affinity binders, because the starting libraries used for these technologies are much larger than what is commonly achieved with technologies that require transforming DNA into cells (i.e., cell-surface display or phage display).


By combining the high library complexity of mRNA display with stringent washing conditions, we have discovered that high affinity peptides can be discovered without resorting to iterative rounds of selection and amplification. This advance greatly reduces the time required to generate and optimize high quality peptides.


The first step of the selection is to immobilize the protein target to a solid support, such as a magnetic bead. The protein is then incubated with an excess of the peptide library, constructed as mRNA-peptide fusion molecules using standard mRNA display technology. Once equilibrium is achieved the beads are washed in selection buffer to remove all of the unbound peptide fusions. Next, the beads are incubated with selection buffer that includes denaturants such as guanidine hydrochloride. Subsequent rounds of washing will remove peptide that are weakly bound to the target protein, but retain all high affinity binders. Finally, the cDNA from the bound peptides are amplified using the polymerase chain reaction (PCR) and cloned into our cell-free expression vector.


3. Cell-Free Peptide Screening and Characterization

We have developed methods and devices that allow peptides present in the output of a selection to be rapidly screened and characterized in 1-2 days.


As described previously, peptides present in the output of a selection are typically synthesized by solid-phase synthesis and purified by HPLC. This is a time consuming process that is not easily amenable to high throughput automation and generally requires 3-4 weeks per peptide.


To eliminate this bottleneck, we have developed a custom peptide expression vector that allows peptides present in the output of a selection to be expressed in vitro as N-terminal fusions to a protein affinity tag. Sufficient peptide can be synthesized from less than 10 μL of cell-free expression lysate. Peptide expression is done in the presence of radiolabeled methionine, which allows the peptides to be detected by scintillation counting or phosphorimaging. Once expressed, peptides are purified by passing the crude lysate mixture through an affinity column with affinity to the peptide affinity tag. After washing the column, proteolytic cleavage then releases the peptide of interest from the purification tag. Alternatively, peptides can be recovered by incubating the beads in a suitable buffer like warm water or a competitive binder. Purified peptides are then used directly to evaluate different binders or obtain solution binding affinity (Kd) values for their cognate targets or off-target proteins (see FIG. 2).


To determine the binding characteristics of each peptide, we developed a high throughput method and device that allows in vitro generated peptides to be rapidly and quantitatively screened for high affinity binding. With this method, radiolabeled peptides are brought to equilibrium with their cognate protein target, and the bound fraction is separated from the unbound fraction by passing the mixture through a size-limiting membrane. Peptides that are bound to a given target protein are retained on the top layer, while unbound peptides are retained on the bottom layer. Following separation, the amount of peptide on each membrane is quantification by phosphorimaging. The membranes used for our method include nylon, and regenerated cellulose. Regenerated cellulose has not previously been used in this way and therefore constitutes a new device (see FIG. 4). This method can be used to determine the binding affinity by running parallel reactions where the concentration of target protein is varied. Specificity measurements can be obtained by incubating peptides with non-target proteins.


We have validated the methods of the invention using two different peptides that are well characterized in the literature. The T10-39 peptide is a peptide selected to bind thrombin, while SBP is a peptide selected to bind streptavidin.


In Vitro Peptide Expression and Purification

Peptides were expressed as fusions with a C-terminal affinity binding tag, the streptavidin binding peptide (SBP), using a coupled in vitro transcription/translation (TnT) rabbit reticulocyte lysate (Promega). One microgram of PCR-generate dsDNA was used as template in a 100 μL reaction that was spiked with 35S-Methionine and left to incubate at 30° C. for 90 minutes. Expressed peptides were purified with 100 μL of streptavidin agarose loaded onto a column. The column was equilibrated with phosphate buffer saline (PBS) and the entire TnT lysate was loaded onto the column along with an equal volume of 2×PBS. The peptides were left on the column with shaking for 30 minutes at 4° C. to allow the peptides to bind. The column was then washed with PBS and peptides eluted in one of two ways. Peptides fused to the SBP tag were eluted as the full length construct with deionized water, or constructs containing a protease cleavage site between the peptide of interest and the affinity tag were incubated with the corresponding protease in order to elute the peptide of interest without the affinity tag. Elutions were monitored by liquid scintillation counting to identify the presence of peptides due to the incorporation of 35S-Methionine during translation.


Dot Blot Protocol

In order to determine the binding affinity of expressed peptides, multiple solutions were prepared that contain a constant amount of peptide and varying concentrations of target protein. These solutions were brought to equilibrium by incubating at 4° C. for one hour. Each solution of peptide and target protein was loaded into one well of a dot blot apparatus. The 96-well dot blot apparatus was prepared by building a stack of membranes that contains one piece of filter paper on the bottom, followed by two pieces of nylon membrane and topped with one piece of dialysis membrane. Once samples were loaded, vacuum was applied to the apparatus, pulling the solutions through the stack of membranes. Each membrane is imaged by phosphorimaging to detect signal from 35S-Methionine, indicating which membranes have bound peptide. Free peptide passes through the dialysis membrane and binds to the nylon, while peptides bound to their target remain on the dialysis membrane once the solution is pulled through. The fraction of bound peptide for each concentration of target protein was used to plot a binding isotherm and determine the binding dissociation constant.


Data from these studies (not shown) demonstrated that the dissociation constants are consistent with literature values for these peptides (Raffler et al. Chemistry & Biology (2003) 10, 69-79; Wilson et al. Proceeding of the Nation Academy of Sciences (2001) 98, 3750-3755.)









TABLE 1







Clones sequenced for characterization


after six rounds of mRNA display selection.










Entry
Clone
Duplicates
Sequence













1
HGL6.1
HGL6.346,
AATCGAATGGAATCAACATCAAACGGAAAAAAACGGAATTATCGAATGGAATCGAAGAGAATCATC




HGL6.670,
GAATGGACC (SEQ ID NO: 7)




HGL6.676,





HGL6.715,





HGL6.961,





HGL6.1106,





HGL6.1182,





HGL6.1338






2
HGL6.5

TGGAATCGAATGGAATCAACATCAAACGGAAAAAAACGGAATTATCGAATGGAATCGAAGAGAATC





ATCGAATGGACC (SEQ ID NO: 8)





3
HGL6.7

AGCATTCATATCTTGCAGTGTTGGGAAAGAGTGAGAGGTTGTGATGTCAAGAAGGATAGGTCAGAA





GTGGAAGGTATGGGGGATTGTGCCTGCTGTCATGGCT (SEQ ID NO: 9)





4
HGL6.8

GGAACGAAATCGAATGGAACGGAATAGAATAGACTCGAATGTAATGGATTGCTATGTAATTGATTC





GAATGGAATGGAATCGAATGGAATGCAATCCAATGGAATGGAATGCAATGCAATGAATGGAATGG





AATGGAATGGAATGGAA (SEQ ID NO: 10)





5
HGL6.9

GGAACGAAATCGAATGGAACGGAATAGAATAGACTCGAATGTAATGGATTGCTATGTAATTGATTC





GAATGGAATGGAATCGAATGGAATGCAATCCAATGGAATGGAATGCAATGCAATGAATGGAATGG





AATGGAATGGAATGGA (SEQ ID NO: 11)





6
HGL6.12

TACGCAAATCGATAAATGTAATCCAGCATATAAACAGAACCAAAGACAAAAACCACATGATTATCTC





AATAGATGCAGAAAAGGCC (SEQ ID NO: 12)





7
HGL6.14

ACTCGAATGCAATCAACATCAAACGGAATCAAACGGAATTATCGAATGGAATCGAAGAGAATCATC





GAACGGACTCGAATGGAATCATCTAATGGAATGGAATGG (SEQ ID NO: 13)





8
HGL6.18

GAAATTCCAATTAAAATGAAATCGACTTATCTTAACAAATATAGCAATGCTGACAACACTTCTCCGGA





TATGGGTACTGCT (SEQ ID NO: 14)





9
HGL6.20

AAGGAAAAGTAAAAGGAACTTAACACCTTCAAGAAAAGACAGACAAATAACAAAACAGCAGTTTGA





TAGAATGAGATATCAGGGGATGGCA (SEQ ID NO: 15)





10
HGL6.21

ATCAACATCAAACGGAAAAAACGGAATTATCGAATGGAATCGAAGAGAATCATCGAACGGACC





(SEQ ID NO: 16)





11
HGL6.22

AAAGAAAGACAGAGAACAAACGTAATTCAAGATGACTGATTACATATCCAAGAACATTAGATGGTC





AAAGACTTTAAGAAGGAATACATTCAAAGGCAAAAAGTCACTTACTGATTTTGGTGGAGTTTGCCAC





ATGGAC (SEQ ID NO: 17)





12
HGL6.23

AAGGGAATTGAATAGAATGAATCCGAATGGAATGGAATGGAATGGAATGGAATGGAATGGAATGG





AATGGAATGGAATG (SEQ ID NO: 18)





13
HGL6.24

GAATGGAATCGAATCAAATTAAATCAAATGGAATGCAATAGAAGGGAATACAATGGAATAGAATG





GAATGGAATGGAATGGACT (SEQ ID NO: 19)





14
HGL6.25

ACAGCAAGAGAGAAATAAAACGACAAGAAAACTACAAAATGCCTATCAATAGTTACTTTAAATATCA





GTGGACCAAATCAGTGAAACAAAAGACACAGAGTGGC (SEQ ID NO: 20)





15
HGL6.27

TAGCAGGAAACAGCAAACTCAAATTAAGTAATTTCAAGAGCGTATCATCAATGAACTATTTTCAAAG





ATGTGGGCAAGAT (SEQ ID NO: 21)





16
HGL6.28

AAACGGAATTATCAAATGGAATCGAAGAGAATCATCGAACGGACTCGAATGGAATCATCTAATGGA





ATGGAATGGAAG (SEQ ID NO: 22)





17
HGL6.30

GAATGAAATGAAATCAAATNGAATGTACATGAATGGAATAGAAAAGAATGCATCTTTCTCGAACGG





AAGTGCATTGAATGGAAAGGAATCTACTGGAATGGATTCGAATGGAATGGAANGGGATGGAATGG





TATGG (SEQ ID NO: 23)





18
HGL6.32

AATGGACTCGAATGAAATCATCATCAAACGGAATCGAATGGAATCATTGAATGGAAAGGATGGGAT





CATCATGGAATGGAAACGAATGGAATCACTG (SEQ ID NO: 24)





19
HGL6.34

AATGGAATCATTGAATGGAATGGAATGGAATCATCAAAGAAAGGAATCGAAGGGAATCATCGAAT





GGAATCAAACGGAATCATCGAATGGAATGGAATGGAATG (SEQ ID NO: 25)





20
HGL6.38
HGL6.537
AGCAGAAGAAATAACTGAAATCAGAGTGAAACTGAATCAAATTGAGATGCAAAAATACATACGAAA





TGGCCAG (SEQ ID NO: 26)





21
HGL6.40

AGTTAATCCGAATAGAATGGAATGGAATGCAATGGAACGGAATGGAACGGAATGGAATGGAATGG





AATGGAATGGAATG (SEQ ID NO: 27)





22
HGL6.42

ATGGAATCAACATCAAACGGAATCAAACGGAATTATCGAATGGAATCGAAGAGAATCATCGAACGG





ATTCGAATGGAATCATCTAATGGAATGGAATGGAAGAATCCATGGACTCGAATGCAATCATCAGCG





AATGGAATCGAATGGAATCATCGAATGGACTCG (SEQ ID NO: 28)





23
HGL6.44

AAAGGAATGGACTGGAACAAAATGAAATCGAACGGTAGGAATCGTACAGAACGGACAGAAATGGA





ACGGCATGGAATGCACTCG (SEQ ID NO: 29)





24
HGL6.47

AAATCAACAACAAACGGAAAAAAAAGGAATTATCGAATGGAATCAAAGAGAATCATCGAATGGACC





(SEQ ID NO: 30)





25
HGL6.50

AAATGAACAAAACTAGAGGAATGACATTACCTGACTTCAAATTATACTACAGAGCTATAGTAACCAA





AACAGCATGGTACAGGCAT (SEQ ID NO: 31)





26
HGL6.51

GTAATGGAATGGAATGGAAAGGAATCGAAACGAAAGGAATGGAGACAGATGGAATGGAATGGAA





CAGAG (SEQ ID NO: 32)





27
HGL6.52
HGL6.496,
ATCGAATGGAATCAACATCAAACGGAAAAAAACGGAATTATCGAATGGAATCGAAGAGAATCATCG




HGL6.881,
AATGGACC (SEQ ID NO: 33)




HGL6.1207






28
HGL6.57

CAATCAGAGCGGACACAAACAAATTGCATGGGAAGAATCAATATCGTGAAAATGGCC 





(SEQ ID NO: 34)





29
HGL6.59

AGACCTTTCTCAGAAGACACACAAATTGCCAACAGGTATATGAAAAAATGTTCAATATCACTAATCA





TCAGGGCGATGCC (SEQ ID NO: 35)





30
HGL6.61

CATGGAATCGAATGGAATTATCATCGAATGGAATCGAATGGTACCAACACCAAACGGAAAAAAACG





GAATTATCGAATGGAATCGAAGAGAATCTTCGAACGGACC (SEQ ID NO: 36)





31
HGL6.63

GAACGATTTATCACTGAAAATTAATACTCATGCAAGTAGTAAACGAATGTAATGACCATGATAAGGA





GACGGACGGTGGTGATAGT (SEQ ID NO: 37)





32
HGL6.65

AAAGATCAANGNNCAAAAATCAGCAGCATTTCTATAAACCAACAATGTCCAGGCTGAGAGNGAAAT





CAAGAAANCAATTC (SEQ ID NO: 38)





33
HGL6.66

ACACACATACCAACAGAACATGACAAAAGAACAAAACCAGCCGCATGCATACTCGATGGAGACAAA





GGTAACACTGCAGAATGGTGAAGGAAGAACAGTCATTTTAATGACAGTGTTGGCT (SEQ ID NO:





39)





34
HGL6.67
HGL6.463,
AATGGAATCAACATCAAACGGAAAAAAACGGAATTATCGAATGGAATCGAAGAGAATCATCGAATG




HGL6.775,
GACC (SEQ ID NO: 40)




HGL6.936






35
HGL6.68

ATCAAAAGGAACGGAATGGAATGGAATGGAATGGAATGGAATGGAATGGAATGGAATGAAATCAA





CCCGAATGGAATGGATTGGCATAGAGTGGAATGG (SEQ ID NO: 41)





36
HGL6.70
HGL6.71
TAAAGAAAAACAAACAAACAGAAATCAATGAAAATCCCATTCAAAGGTCAGCAACCTCAAAGACTG





AAGGTAGATAAGCCCACAAGGATG (SEQ ID NO: 42)





37
HGL6.73

AAACGGAAAAAAACGGAATTATCGAATGGAATCGAATAGAATCATCGAATGGACC (SEQ ID NO:





43)





38
HGL6.74

GGAATCAACTCGATTGCAATGGAATGCAATGGAAAGGAATGGAATGCAATTAAAGCGAATAGAAT





GGAATGGAATGGAATGGAACGGAATGGAATG (SEQ ID NO: 44)





39
HGL6.76

GAAGAAGAAAAAACATGGATATACAATGTCAACAGAAATCAAGGAGAAACGGAATTTCACCAATCA





ATTTAGTGATCTGGGTT (SEQ ID NO: 45)





40
HGL6.82

TGGAATCATCTAATGGAATGGAATGGAATAATCCATGGACTCGAATGCAATCATCATAAAATGGAAT





CGAATGGAATCAACATCAAATGGAATCAAATGGGATCATTGAACGGAATTGAATGGAATCGTCAT





(SEQ ID NO: 46)





41
HGL6.83

TGAACAGAGAATTGGACAAAACGCACAAAGTAAAGAAAAAGAATGAAGCAACAAAAGCAGAGATT





TATTGAAAACAAAAGTACACACCACACAGGGTGGGAGTGG (SEQ ID NO: 47)





42
HGL6.85
HGL6.980,
GGAATCAACATCAAACGGAAAAAAACGGAATTATCGAATGGAATCGAAGAGAATCATCGAATGGA




HGL6.1002
CC (SEQ ID NO: 48)





43
HGL6.88

AACACGACTTTGAGAAGAGTAAGTGATTGTTAATTAAAGCAAGAGAATTATTGATGTATCACAGTCA





TGAGAAATATTGGAAGGAATATGGTCCATAC (SEQ ID NO: 49)





44
HGL6.91

TGAAAAGAAGAATGACCATAAGCAAGCAGATGAAAAACAAAACAGAATTTTTACAGACGTCTTGGA





CTGATATCTTGGGC (SEQ ID NO: 50)





45
HGL6.92

AATCAATAAATGTAAACCAGCATATAAACAGAACCAACGACAAAAACCACATGATTATCTCAATAGA





TGCAGAAAAGGCC (SEQ ID NO: 51)





46
HGL6.95

CAACATCAAACGGAATCAAACGGAATTATCGAATGGAATCGAAGAGAATCATCGAATGGACTCGAA





TGGAATCATCTAATGGAATGGAATGGAAG (SEQ ID NO: 52)





47
HGL6.96

AATGGAAGGGAATGGAATGGAATCGAATCGAATGGAACAGAATTCAATGGAATGGAATGGAATGG





AATGGAATCGAATGGAATGG (SEQ ID NO: 53)





48
HGL6.100

AAAGACTTAAACATAAGACCTAAAACCATAAAAACCACAGAAGAAAACATAGGCAATGCCATTCAG





GACATAGGCATGGGCAAAGACTTC (SEQ ID NO: 54)





49
HGL6.101

AGACTTGAAAAGCACAGACAACGAAAGCAAAAATGGACAAATGGAATCACATCAAGCTAAAAGGTT





TTGCATGGCAAAGG (SEQ ID NO: 55)





50
HGL6.112
HGL6.952,
AGCAACTTCAGCAAAGTCTCAGGATACAAAATCAATGTGCAAAAATCACAAGCATTCTTATACACCA




HGL6.955
ACAACAGACAAACAGAGAGCC (SEQ ID NO: 56)





51
HGL6.113

TGAATGCTATAGAGCAGTAAAAACAAATAAATGAACTACATTACAGCTACTTACAACCATATGAAAG





AATATAACCATAACAATGATGAGTGGACAAAAGCTAAGTGTGAAAGAATGCATAGTGCTACAGCAG





CCAACATTTACAGC (SEQ ID NO: 57)





52
HGL6.115

AACAAAATTGAACAACATGCAAAGAAACATAAACGAAGCAATGAAAGTGTGCAGATCCACTGAAAT





GAAAGTGCTGTCCAGAGTGGGAGCCAGCTCGAGA (SEQ ID NO: 58)





53
HGL6.116

TGGAATTATCGTCGAATAGAATCGAATGGTATCAACATCAAACGGAAAAAAACGGAATTATCGAAT





GGAATCGAAGAGAATCATCGAACGGACTCGAATGGAATCATCTAATGGAATGGAATGGAATAATCC





ATGG (SEQ ID NO: 59)





54
HGL6.117

AGATAAGTGGATGAACAGATGGACAGATGGATGGATGGATGGATGGATGGATGGATGCCTGGAA





GAAAGAAGAATGGATAGTAAGCTGGGTATA (SEQ ID NO: 60)





55
HGL6.119

AATCAAAGAATTGAATCGAATGGAATCATCTAATGTACTCGAATGGAATCACCAT 





(SEQ ID NO: 61)





56
HGL6.121

AATGGAATCGAACGGAATCATCATCAAACGGAACCGAATGGAATCATTGAATGGAATCAAAGGCAA





TCATGGTCGAATG (SEQ ID NO: 62)





57
HGL6.122

AGGAATCTATAATACAGCTGTTTATAGCCAAGCACTAAATCATATGATACAGAAAACAAATGCAGAT





GGTTTGAAGGGTGGG (SEQ ID NO: 63)





58
HGL6.125

AACGGAAAAAAACGGAATTATCGAATGGAATCGAAGAGAATCATCGAATGGACC 





(SEQ ID NO: 64)





59
HGL6.126

TGAGAAAATGATGGAAAAGAGGAATAANACGAAACAAAACCACAGGAACACAGGTGCATGTGAAT





GTGCACAGACAAAGATACAGGGCGGACTGGGAAGGAAGTTTCTGCACCAGAATTTGGGG (SEQ ID





NO: 65)





60
HGL6.132

AATGGAATCGAAGAGAATGGAAACAAATGGAATGGAATTGAATGGAATGGAATTGAATGGAATGG





GAAGGAATGGAGTG (SEQ ID NO: 66)





61
HGL6.134

AATGTCAAGTGGAATCGAGTGGAATCATCGAAAGAAATCGAATGGAATCGAAGGGAATCATTGGA





TGGGCTCAAAT (SEQ ID NO: 67)





62
HGL6.137

AAACAATGGAAGATAATGGAAAGATATCGAATGGAATAGAATGGAATGGAATGGACTCAAATGGA





ATGGACTTTAATGGAATGG (SEQ ID NO: 68)





63
HGL6.138

GAACAATCAATGGAAGCAGAAACAAATAAACCAAGGTGTGCATCAAGGAATACATTCACGCATGAT





GGCTGTATGAGTAAAATG (SEQ ID NO: 69)





64
HGL6.139

AAACCGAATGGAATGGAATGGACGCAAAATGAATGGAATGGAAGTCAATGGACTCGAAATGAATG





GAATGGAATGGAATGGAATG (SEQ ID NO: 70)





65
HGL6.140

AGGATACAAAATCAAAGTGCAAAAATCACAAGCATTCTTATACACCAATAACAGACAAACAGAGAG





CC (SEQ ID NO: 71)





66
HGL6.147

GGAATCGAATGGAATCAACATCAAACGGAAAAAAACAGAATTATCGTATGGAATCGAATAGAATCA





TCGAATGGACC (SEQ ID NO: 72)





67
HGL6.148

CAACCCGAGTGGAATAAAATGGAATGGAATGGAATGAAATGGAATGGATCGGAATGGAATCCAAT





GGAATCAACTGGAATGGAATGGAATGGAATG (SEQ ID NO: 73)





68
HGL6.149

TATCATCGAATGGAATCGAATGGAATCAACATCAAACGGAAAAAAACGGAATTATCGAATGGAATC





GAAGAGAATCATCGAATGGACC (SEQ ID NO: 74)





69
HGL6.150

CGGAATAATCATTGAACGGAATCGAATGGAATCATCATCGGATGGAAACGAATGGAATCATCATCG





AATGGAAATGAAAGGAGTCATC (SEQ ID NO: 75)





70
HGL6.151

CAACACACAGAGATTAAAACAAACAAACAAACAATCCAGCCCTGACATTTATGAGTTTACAGACTGG





TGGAGAGGCAGAGAAG (SEQ ID NO: 76)





71
HGL6.152

GGAATGGAATGAACACGAATGTAATGCAACCCAATAGAATGGAATCGAATGGCATGGAATATAAA





GAAATGGAATCGAAGAGAATGGAAACAAATGGAATGGAATTG (SEQ ID NO: 77)





72
HGL6.153

CACTACAAACCACGCTCAAGGCAATAAAAGAACACAAACAAATGGAAAAACATTCCATGCTCATGG





ATGGG (SEQ ID NO: 78)





73
HGL6.158

AATCGAATGGAATTAACATCAAACGGAAAAAAACGGAATTATCGAATGGAATCGAAGAGAATCATC





GAATGGACC (SEQ ID NO: 79)





74
HGL6.161

TGGAAAAGAATCAAATTGAATGGCATCGAACGGAATGGGATGGAATGGAATAGACCCAGATGTAA





TGGACTCGAATGGAATG (SEQ ID NO: 80)





75
HGL6.163

AATCAGTCTAGATCTTAAAGGAACACCAGAGGGAGTATTTAAATGTGCCCAATAAGCAAGAATTAT





GGTGATGTGGAAGTA (SEQ ID NO: 81)





76
HGL6.164

CCATAACACAATTAAAAACAACCTAAATGTCTAATAGAAGAACACTGTTCAGACCGGGCATGGTGGC





TTATACC (SEQ ID NO: 82)





77
HGL6.165

GACTAATATTCAGAATATACAAGGAACTCAAACAACTCAACAGTAGAAAAAAAAACCTGAATAGAC





ATTTCTCAAAAGAAGACATACAAATGGCC (SEQ ID NO: 83)





78
HGL6.171
HGL6.1149
AACAGACCATAAATAAACACAGAAGACACACGAGTGTAAAGTCAGTGCCCCGCTGCGAATTAAATC





GGGGTGATGTGATGGCGAGTGAGTGGGTAGTT (SEQ ID NO: 84)





79
HGL6.174

ATCATTGAATGCAATCACATGGAATCATCACAGAATGGAATCGTACGGAATCATCATCGAATGGAAT





TGAATGGAATCATCAATTGGACTCGAATGGAAACATCAAATGGAATCGATTGGAAGTGTCGAATGG





ACTCG (SEQ ID NO: 85)





80
HGL6.175

GGTCCATTCGATGATTCTCTTCGATTCCATTCGATAATTCCGTTTTTTCCCGTTTGATGTTGATTCC





(SEQ ID NO: 86)





81
HGL6.178

AGCAACTTCAGTAAAGTGTCAGGATACAAAATCAATGTGCAAAAATCACAAGCATTCTTATACATCA





ATAACAGACAAACAGAGAGCCAAA (SEQ ID NO: 87)





82
HGL6.180

AGCAACTTCAGCAAAGTCTCAGGATACAAAATCAATGTGCAAAAATCACAAGCATTCCTATACACCA





ACAACAGACAAACAGAGAGCC (SEQ ID NO: 88)





83
HGL6.181

GAATAATCATTGAACGGAATCGAATGGAATCATCATCGGATGGAAACGAATGGAATCATCATCGAA





TGGAAATGAAAGGAGTCATC (SEQ ID NO: 89)





84
HGL6.182
HGL6.902
TAATCATCTTCGAATTGAAAACAAAGCAATCATTAAATGTACTCTAACGGAATCATCGAATGGACC





(SEQ ID NO: 90)





85
HGL6.184
HGL6.1215
GGAATCGAATGGAATCAACATCAAACGGAAAAAAACGGAATTATCGAATGGAATCGAAGAGAATC





ATCGAATGGACC (SEQ ID NO: 91)





86
HGL6.186

GATCAGCTTAGAATACAATGGAACAGAACAGATTAGAACAATGTGATTTTATTAGGGGCCACAGCA





CTGTTGACTCAAGTACAAGTTCTGACTCATGTAGAACTAACACTTTT (SEQ ID NO: 92)





87
HGL6.187

AGAGAAAAGATGATCATGTAACCATTGAAAAGACAATGTACAAAACTAATACTAATCACACAGGAC





CAGAAAGCAATTTAGACCAT (SEQ ID NO: 93)





88
HGL6.190

AATGGAATCGAATGGAATCAACATCAAACGGAAAAAACGGAATTATCGAATGGAATCAAAGAGAAT





CATCGAATGGACC (SEQ ID NO: 94)





89
HGL6.191

AATGGAATTATCATCGAATGGAATCGAATGGAATCAACATCAAACGGAAAAAAACGGAATTATCGA





ATGGAATCGAAGAGAATCATCGAATGGACC (SEQ ID NO: 95)





90
HGL6.197

GTCAACACAGGACCAACATAGGACCAACACAGGGTCAACACAGGACCAACATAGGACCAACACAG





GGTCAACACAAGACCAACATGGGACCAACACAGGGTCAACATAGGACCAACATGGGACCAACACA





GGGTCAACACAGGACCAAC (SEQ ID NO: 96)





91
HGL6.198

TATAGTTGAATGAACACACATACACACACACATGCCACAAAACAAAAACAAAGTTATCCTCACACAC





AGGATAGAAACCAAACCAAATCCCAACACATGGCAAGATGAT (SEQ ID NO: 97)





92
HGL6.206

GAATCAACTCGATTGCAATCGAATGGAATGGAATGGTATTAACAGAATAGAATGGAATGGAATGGA





ATGGAACGGAACG (SEQ ID NO: 98)





93
HGL6.208

AATGGAATGGAATAATCGACGGACCCGAATGCAATCATCATCGTACAGAATCGAATGGAATCATCG





AATGGACTGGAATGGAATGG (SEQ ID NO: 99)





94
HGL6.210

AATACAAACCACTGCTCAACGAAATAAAAGAGGATACAAACAAATGGAAGAACATTCTATGCTCAT





GGGTAGGATGAATTCATATCGTGAAAATGGCCATACTGCC (SEQ ID NO: 100)





95
HGL6.215

AAACACGCAAACACACACACAAGCACACTACCACACAAGCGGACACACATGCAAACACGCGAACAC





ACACACATATACACACAAGCACATTACAAAACACAAGCAAACACCAGCAGACACACAAACACACAA





ACATACATGG (SEQ ID NO: 101)





96
HGL6.219

AATCGAACGGAATCAACATCAAACGGAAAAAAAACGGAATTATCGAATGGAATCGAAGAGAATCAT





CGAATGGACC (SEQ ID NO: 102)





97
HGL6.220
HGL6.301,
ACACATTTCAAGGAAGGAAACAAGAACAGACAGAAACACAACATACTTCATGAAACCACATTTTAGC




HGL6.1353
ATCCTGGCCGAGTATTCATCA (SEQ ID NO: 103)





98
HGL6.222

GGATACAAAATCAATGTACAAAAATCACAAGCATTCTTATACACCAATAACAGACAAACAGAGAGCC





(SEQ ID NO: 104)





99
HGL6.223

TAATTGATTCGAATGGAATGGAATAGAATGGAATTGAATGGAATGGACCATAATGGATTGGACTTT





AATAGAAAGGGCATG (SEQ ID NO: 105)





100
HGL6.225

AGCAACTTCAGCAAAGTCTCAGGATACAAAATCAATGTACAAAAGTCACAAGCATTCTTATACACCA





ACAAAAGACAAACAGAGAGCC (SEQ ID NO: 106)





101
HGL6.228

ACATCAAACGGAAAAAAAAAACAAAACGGAATTATCGAATGGAATCGAAGAGAATCATCGAATGG





ACC (SEQ ID NO: 107)





102
HGL6.229

ACATCTCACTTTTAGTAATGAACAGATCATTCAGACAGAAAATTAGCAAAGAAACATCAGAGTTAAA





CTACACTCTAAACCAAATGGACCTA (SEQ ID NO: 108)





103
HGL6.231

GAAGAAAGCATTCATTCAAGACATCTAACTCGTTGATATAATGCATACAGTTCAAAATGATTACACTA





TCATTACATCTAGGGCTTTC (SEQ ID NO: 109)





104
HGL6.232

GCAAAAGAAACAATCAGTAGAGTAAACAGACAACTCATAGAATGCAAGAAAATCATCGCAATCTGT





ACATCCAACAAAGGGCT (SEQ ID NO: 110)





105
HGL6.235

ACACACACATTCAAAGCAGCAATATTTACAACAGCCAAAAGGTGGAAACAATTGAGCAATTG (SEQ





ID NO: 111)





106
HGL6.237

ATCATCGAATAGAATCGAATGGTATCAACACCAAACGGAAAAAAACGGAATTATCGAATGGAATCG





AAGAGAATCTTCGAACGGACC(SEQ ID NO: 112)





107
HGL6.238

TGAAAATACAAATGACCATGCAAGTAATTCCGCAGGGAGAGAGCGGATATGAACAAACAGAAGAA





ATCAGATGGGATAGTGCTGGCGGGAAGTCA (SEQ ID NO: 113)





108
HGL6.239

AATCGAAAGGAATGTCATCGAATGGAATGGACTCAAATGGAATAGAATCGGATGGAATGGCATCG





AATGGAATGGAATGGAATTGGATGGAC (SEQ ID NO: 114)





109
HGL6.241

AACATGAACAGTGGAACAATCAGTGAACCAATACAAGGGTTAAATAAGCTAGCAATTAAAAGCTGT





ATCACTGGTCTAAAGATAGAAGATCAAGTAGAAAATCAGCGCAAGAGGAAAGATATACGAAAACTA





ATGGCC (SEQ ID NO: 115)





110
HGL6.243

CGAATGGAATCATTATGGAATGGAATGAAATGGAATAATCAAATGGAATTGAATGGAATCATCGAA





TGGAATCGAACAAAATCCTCTTTGAATGGAATAAGATGGAATCACCAAATGGAATTG 





(SEQ ID NO: 116)





111
HGL6.246

AAACGGAATCAAACGGAATTATCGAATGGAATCGAAGAGAATCATCGAACGGACTCGAATGGAATC





ATCTAATGGAATGGAATGGAAGAATCCATGGACT (SEQ ID NO: 117)





112
HGL6.247

GCTAGTTCAACATATGCAAATCAATAAACGTAATCCATCACATAAACAGAACCAATGACAAAAACCA





CGATTATCTCAATAGATGCAGAAAAGGCC (SEQ ID NO: 118)





113
HGL6.256

ACCAATCAAGAAAACAATGCAACCCACAGAGAATGGACAAAAGCAAGGCAGGACAATGGCT (SEQ





ID NO: 119)





114
HGL6.26

ATCGAATGGAATCAACATCAGACGGAAAAAAACGGAATTATCAAATGGAATCGAAGAGAATCATCG





AATGGACC (SEQ ID NO: 120)





115
HGL6.260

ATGGAATCAACATCAAACGGAAAAAAAAACGGAATTATCGAATGGAATCGAAGAGAATCATCGAAT





GGACCAGAATGGAATCATCTAATGGAATGGAATGG (SEQ ID NO: 121)





116
HGL6.261
HGL6.1088
AATGGAATCATCATCGAATGGAATCGAATGGAATCATGGAATGGAATCAAATGGAATCAAATGGAA





TCGAATGGAATGGAATGGAATG (SEQ ID NO: 122)





117
HGL6.262

AACGGAATCAAACGGAATTACCGAATGGAATCGAATAGAATCATCGAACGGACTCGAATGGAATCA





TCTAATGGAATGGAATGGAAG (SEQ ID NO: 123)





118
HGL6.263

AAACGGAATCAAACGGAATTATCGAATGGAATCGAAAAGAATCATCGAACGGACTCGAATGGAATC





ATCTAATGGAATGGAATGGAAGAATCCATGG (SEQ ID NO: 124)





119
HGL6.266

AGCAACTTCAGCAAAGTCTCAGGATACAAAATCAATGTACAAAAATCACAAGCATTCTTATACACCA





ATAACAGACAAACAGAGAGCC (SEQ ID NO: 125)





120
HGL6.267

GAATGATACGGANTANNNNGNAATGGAACGAAATGAAATGGAATGGAATGGAATGGAATGGAAT





GGAATGG (SEQ ID NO: 126)





121
HGL6.268

AATGGACTCGAATGGATTAATCATTGAACGGAATCGAATGGAATCATCATCGGATGGTAATGAATG





GAATCATCATCGAATGGAATCGG (SEQ ID NO: 127)





122
HGL6.271

GAATGGAATCGAAAGGAATGTCATCGAATGGAATGGAATGGAACGGAATGGAATCGAATGGAATG





GACTCGAATGGAATAGAATCGAATGCAATGGCATCG (SEQ ID NO: 128)





123
HGL6.274
HGL6.466,
GAATAGAATAGAATGGAATCATCGAATGGAATCGAATGGAATCATCATGATATGGAATTGAGTGGA




HGL6.883
ATC (SEQ ID NO: 129)





124
HGL6.276

TAAGCCGATAAGCAACTTCAGCAAAGTCTCAGGAGACAAAATCAATGTGCAAAAAATCACAAGCAT





TCTTATACACTAATAACAGACAAACAGAGAGCCAAATCATG (SEQ ID NO: 130)





125
HGL6.277

AGCAACTTCAGCAAAGTCTCAGGATACAAAATCAATGTGCAAAAATCAAAAGCATTCTTATGCACCA





ATAACAGACACAGAGCCAAAT (SEQ ID NO: 131)





126
HGL6.278

AGGAAAGTTTTCAATATGAGAAAGATACAAACCAACAGAATAAGCAAACTGGATAAACAGAAAATA





CAGAGAGAGCCAAGG (SEQ ID NO: 132)





127
HG16.280

AATGGAATGGAACGCAATTGAATGGAATGGAATGGAACGGAATCAACCTGAGTCAAATGGAATGG





AATGGAATGGAATG (SEQ ID NO: 133)





128
HGL6.289

AGGAAAATGCAAATCAGAACGACTATAACACACCATCTCAAACTCGTTAGGATGGCTATTATCAAAA





AGTCAAGAGATAACAAATGTGGGCAAGGG (SEQ ID NO: 134)





129
HG16.290

GGAACGAAATCGAATGGAACGGAATAGAATAGACTCGAATGTCATGGATTGCTATGTAATTGATTG





GAATGGAATGGAATCG (SEQ ID NO: 135)





130
HG16.291

GAATTGAAAGGAATGTATTGGAATAAAATGGAATCGAATAGGTTGAAATACCATAGGTTCGAATTG





AATGGAATGGGAGGGACACCAATGGAATTG (SEQ ID NO: 136)





131
HGL6.292

AACAAAACAAAAACCCAACTCAATAACAAGAAGACAAACAACCCAATTTAAAATGAGCAAAGAACT





TGATAAACATGTCTCCAAAGAAGATACGGCCAAAGAGCAC (SEQ ID NO: 137)





132
HG16.295

ATGGTTAAAACTCAACAATGAAAACACAAACAGCGCAATTTAAAAATGGGCAAAATGACAGGCCAG





ACCCAGTGGCTCATGCG (SEQ ID NO: 138)





133
HG16.300

AAGCAACTTCAGCAAAGTCTCGGGATACAAAATCAATGTGCAAAAATCACAAGCATTCTTATACACC





ACTAACAGACAAATGGAGAGTC (SEQ ID NO: 139)





134
HG16.302

GAATGGAATCAACATCAAACGGAAAAAAACGGAATTATCGAATGGAATCGAAGAGAATCATCGAAT





GGACCAGAATGGAATCATCTAATGGAATGGAATGGAATAATCCATGG (SEQ ID NO: 140)





135
HG16.305

TAGAAGGAATTTGATACATGCTCAGAAATACAGGCAAAGGAAGTAGGTGCCTGCCAGTGAACACAG





GGGAACTATGGCTCCTA (SEQ ID NO: 141)





136
HG16.310

GGAATCGAATGGAATCAACATCAAACGGAAAAAAACGGAATTATCGAATGGAATCGAAGAGAATC





ATCGAATGGACC (SEQ ID NO: 142)





137
HG16.311

AACTAAGACAACAGATTGATTTACACTACTATTTTCACACAGCCAAAAATATCACTATGGCAATCGTC





AAAAGGTCAATTCAAAGATGGGACAGT (SEQ ID NO: 143)





138
HG16.315

AAAAGCAATTGGACTGATTTTAAATATACGTGGCAACAAGGATAAACTGCTAATGATGGGTTTGCAA





ATACAGATCG (SEQ ID NO: 144)





139
HGL6.317
HGL6.1189
AATGGAATCAACATCGAACGGAAAAAAACGGAATTATCGAATGGAATCGAAGAGAATCATCGAATG





GACC (SEQ ID NO: 145)





140
HG16.319

TGCAAGATAACACATTTTAGTTGACACCATTGAAAACAGTTTTAACCAAGAATATTAGAACCAATGA





AGCAGAGAAATCAAAAGGGTGGATGGAACTGCCAAAGGATG (SEQ ID NO: 146)





141
HG16.321

TAGAACAGAATTGAATGGAATGGCATCAAATGGAATGGAAACGAAAGGAATGGAATTGAATGGAC





TCAAATGTTATGGAATCAAAGGGAATGGACTC (SEQ ID NO: 147)





142
HGL6.323

AAGAGAATCATCGAATGGAATCGAATGGAATCAACATCAAACGGAAAAAAACGGAATTATCGAATG





GAATCGAAGAGAATCATCGAATGGACC (SEQ ID NO: 148)





143
HGL6.324
HG16.431,
ATCAACATCAAACGGAAAAAAACGGAATTATCGAATGGAATCGAAGAGAATCATCGAATGGACC




HGL6.1071
(SEQ ID NO: 149)





144
HGL6.326

GAATCAACATCAAACGGAAAAAAACCGAATTATCGAATGGAATCGAAGAGAATCATCGAATGGACC





(SEQ ID NO: 150)





145
HGL6.327

ATCAACATCAAACGGAATCAAACGGAATTATCGAATGGAATCGAAGAGAATCATCAAATGGACTCG





AATGGAATCATCTAATGGAATGGAATGGAAGAATCCATGG (SEQ ID NO: 151)





146
HGL6.330
HGL6.1005
AAACAGTTCAAAAATTATTGCAACAAAATGAGAGAGATGAGTTTATCTTGCAAACTAATGGATGGTA





GCAGTGACAGTGGCAAAACGTGGTTTGATTCT (SEQ ID NO: 152)





147
HGL6.334

ATCGAATGGAATCATTGAATGGAAAGGAATGGAATCATCATGGAATGGAAACGAATGGAATCACTG





AATGGACTCGAATGGGATCATCA (SEQ ID NO: 153)





148
HG16.335

ATTCAGCCTTTAAAAAAAGAAGACAGTCCTGTCATTTGTGACAATATGAATGAAACAGACATCACAT





TAAATGAAATGAGCCAGGCGCAG (SEQ ID NO: 154)





149
HGL6.336

AGGAGAATAGCAGTAGAATGACAAAATTAGATTTTCACATGAAACTTGATGACAGTGTAGGAAATG





GACTGAAAGGACAAGAC (SEQ ID NO: 155)





150
HGL6.337
HGL6.1095,
AACCCACAAAGACAACAGAAGAAAAGACAACAGTAGACAAGGATGTCAACCACATTTTGGAAGAG




HGL6.1367
ACAAGTAATCAAACACATGGCA (SEQ ID NO: 156)





151
HGL6.338

GAAAATGAACAATATGAACAAACAAACAAAATTACTACCCTTACGAAAGTACGTGCATTCTAGTATG





GTGACAAAAAGGAAAG (SEQ ID NO: 157)





152
HGL6.339

AACATCAAACGGAATCAAACGGAATTATCGAATGGAATCGAAGAGAATCATCGAACGGACTCGAAT





GGAATCATCTAATGGAATGGAATGGAAGAATCCATGGACTCGAATGCAATCATCATCGAATGAAAT





CGAATGGAATCATCGAATGGACTCG (SEQ ID NO: 158)





153
HG16.340

ACCAACATAAGACAAAGAAACATCCAGCAGCTGCCTATGGCAAAAGATTACAATGTGTCAAACAAG





AGGGCAATG (SEQ ID NO: 159)





154
HGL6.342

ATGGAATTCAATGGAATGGACATGANTGNAATGNACTTCAATGGAATGGNATCNAATGGAATGNA





ATTCANT (SEQ ID NO: 160)





155
HGL6.343

TATGACTTTCACAAATTACAGAAAAAGACACCCATTTGACAAGGGAACTGAAGGTGGTGAAGACAT





ACTGGCAGGCTAC (SEQ ID NO: 161)





156
HGL6.344

AATGGAAAGGAATCGAATGGAAGGGAATGAAATTGAATCAACAGGAATGGAAGGGAATAGAATA





GACGGCAATGGAATGGACTCG (SEQ ID NO: 162)





157
HGL6.347

AGCCTATCAAAAAGTGGGCTAAGAATATGAATACACAATTCTCAAAAGAAGATATACAAATGGGCA





ACAAACATATGAAAACATACTCAACATCACTAATGATCAGGGAAATG (SEQ ID NO: 163)





158
HG16.352
HG16.710
AGCAACTTCAGCAAAGTATCAGGATACAAAATCAATGTACAAAAATCCCAAGCATTCTTATACACCA





ACAACAGACAAACAGAGAGCC (SEQ ID NO: 164)





159
HG16.353

AAAGACAATATACAAATGGCCAATAAGCACATGAAAAGACGCTCAACATCCTTAGTCGTTAAGGCA





ATGCAAATCAAAACCACAATG (SEQ ID NO: 165)





160
HGL6.354

AGCAACTTCAGCAAAGTCTCAGGATACAAAATCGATGTGCAAAAATCACAAGCATTCTTATACACCA





ACAACAGATAAACAGAGAGCC (SEQ ID NO: 166)





161
HGL6.356

AACGGAAAAAAAACGGAATTATCGAATGGAATCGAAGAGAATCATCGAATGGACCAGAATGGAAT





CATCTAATGGAATGGAATGGAATAATCCATGGACTCGAATG (SEQ ID NO: 167)





162
HGL6.357

AACAGCAATAGACACAAAGTCAGCACTTACAGTACAAAAACTAATGGCAAAAGCACATGAAGTGGG





ACAT (SEQ ID NO: 168)





163
HGL6.358

GGAATCAAACGGAATTATCGAATGGAATCGAAGAGAATCATAGAACGGACTCAAATGGAATCATCT





AATGGAATGGAATGGGAGAATCCATGGACTCGAATG (SEQ ID NO: 169)





164
HGL6.360
HGL6.1105
AATGGAATCAATATCAAACGGAAAAAAACGGAATTATCGAATGGAATCGAAGAGAATCATCGAATG





GACC (SEQ ID NO: 170)





165
HGL6.362

AAAATGATCATGAGAAAATTCAGCAACAAAACCATGAAATTGCAAAGATATTACTTTTGGGATGGAA





CAGAGCTGGAAGGCAAAGAG (SEQ ID NO: 171)





166
HGL6.364

AACGGAATCAAACGGAATTATCGAATGGAATCGAAAAGAATCATCGAACGGACTCGAATGGAATCA





TCTAATGGAATGGAATGGAAGAATCCATGG (SEQ ID NO: 172)





167
HGL6.367

AAACGGAATTATCGAANGGAATCAAAGAGAATCATCGAANNNNNACGAATGGAATCATATAATGG





AATGGAATGGAATAATCCATGGACC (SEQ ID NO: 173)





168
HGL6.369

AATGGAATCGAATGGATTGATATCAAATGGAATGGAATGGAAGGGAATGGAATGGAATGGAATTG





AACCAAATGTAATGGATTTG (SEQ ID NO: 174)





169
HGL6.371

TAAAAGACGGAACAGATAGAAAGCAGAAAGGAAAGGTGAATTGCATTACCACTATTCATACTGCCA





CACACATGACATTAGGCCAAGTC (SEQ ID NO: 175)





170
HGL6.372

ACAAACAATCCAATTCGAAAATGGGCAAGATATTTCACCAAAGACATGAGCTGATATTTCAC (SEQ





ID NO: 176)





171
HGL6.373

AATGGAATCGAATGGAACAATCAAATGGACTCCAATGGAGTCATCTAATGGAATCGAGTGGAATCA





TCGAATGGACTCG (SEQ ID NO: 177)





172
HGL6.374

TAACACATAAACAAACACAGAGACAAAATCTCCGAGATGTTAATCTGCTCCAGCAATACAGAACAAT





TTCTATTACCAACAGAATGCTTAATTTTTCTGCCT (SEQ ID NO: 178)





173
HGL6.379

GGAATCGAATGGAATCAACATCAAACGGAAAAAAACGGAATTATCGAATGGAATCAAAGAGAATC





ATCGAATGGACC (SEQ ID NO: 179)





174
HGL6.382

AGAATGGAAAGGAATCGAAACGAAAGGAATGGAGACAGATGGAATGGAATG (SEQ ID NO: 180)





175
HGL6.383

GAATGGAATGGAAAGGAATCGAAACGAAAGGAATGGAGACAGATGGAATGGAATGGAACAGAGA





GCAATGG (SEQ ID NO: 181)





176
HGL6.387

GAATCATCATAAAATGGAATCGAATGGAATCAACATCAAATGGAATCAAATGGTCTCGAATGGAAT





CATCTTCAAATGGAATGGAATGG (SEQ ID NO: 182)





177
HGL6.389

AACAACAATGACAAACAAACAACAACGACAAAGACATTTATTTGGTTCACAAATCTCCAGGGTGTAC





AAGAAGCATGGTGCCAGCATCTGCTCAGCTTCTGATGAGGGCTCTGGGAAGCTTTTACTC (SEQ ID





NO: 183)





178
HGL6.390

AACGGACTCGAACGGAATATAATGGAATGGAATGGATTCGAAAGGAATGGAATGGAATGGACAGG





AAAAGAATTGAATGGGATTGGAATGGAATCG (SEQ ID NO: 184)





179
HGL6.393

AGGAAATAAAAGAAGACACAAACAAATGGAAGAACATTCCATGCTTATGGATAGGGAGAATCAGT





ATCGTGAAAATGGCCATACT (SEQ ID NO: 185)





180
HGL6.394
HGL6.1136
AACATCAAACGAAATCAAACGGAATTATCAAATTGAATCGAAGAGAATCATCGAATTGCCACGAAT





GCAATCATCTAATGGTATGGAATGGAATAATCCATGGACCCAGATG (SEQ ID NO: 186)





181
HGL6.395

AGAAATTAACAGCAAAAGAAGGATGCAGTGCAACTCAGGACAACACATACAATTCAAGCAACAAAT





GTATAGTGGCTGGGCACCAAGGATACAG (SEQ ID NO: 187)





182
HGL6.396

GCAATAAAATCGACTCAGATAGAGAAGAATGCAATGGAATGGAATGGAATGGAATGGAATGGGAT





GGAATGGTATGGAATGG (SEQ ID NO: 188)





183
HGL6.397

CCACATAAAACAAAACTACAAGACAATGATAAAGTTCACAACATTAACACAATCAGTAATGGAAAAG





CCTAGTCAATGGCAG (SEQ ID NO: 189)





184
HGL6.399

GGACAACATACACAAATCAGTCAAGATACATCATTTCAACAGAATGAAAGACAAAAACCATTTGATC





ACTTCAATCGATGATGAAAAAGCA (SEQ ID NO: 190)





185
HGL6.400

GAAATCATCATCAAACGGAATCGAATGGAATCATTGAATGGAATGGAATGGAATCATCATGGAATG





GAAACG (SEQ ID NO: 191)





186
HGL6.405

TGGAATGGANTGGAATGNAATCNAATCNNNTGGTAATGAATCAAATGGAATCAAATCGAATGGNA





ATAATGGAATCNANNGGAAACGAATGGNATCGAATTGCACTGATTCTACTGACTTCGAGGAAAATG





AAATGAAATGCGGTGAAGTGGAATGG (SEQ ID NO: 192)





187
HGL6.409

AGCAACTTCAGCAAAGTCTCAGGATACAAAATCAATGGGAAAAAATCACAAGCATTCCTATACATCA





ATAACAGACAAACAGAGAGCC (SEQ ID NO: 193)





188
HGL6.410

GAATGTTATGAAATCAACTCGAACGGAATGCAATAGAATGGAATGGAATGGAATGGAATGGAATG





GAATGG (SEQ ID NO: 194)





189
HGL6.412

AGTAGAATTGCAATTGCAAATTTCACACATATACTCACACACAAGTACACACATCCACTTTTACAACT





AAAAAAACTAGCACCCAGGACAGGTGCAGTGGCT (SEQ ID NO: 195)





190
HGL6.416

GGAATCAACATCAAACGGAAAAAAAACGGAATTATCGAATGGAATCGAAGAGAATCATCGAATGG





ACC (SEQ ID NO: 196)





191
HGL6.420

GGAATAATCATCATCAAACAGAACCAAATGGAATCATTGAATGGAATCAAAGGCAATCATGGTCGA





ATG (SEQ ID NO: 197)





192
HGL6.422

ACTCAGGAAAAATAACGAATCCAACTCACAGGAGAAAGAAGTACAAACCAGAAACCAATTTCAAAT





TACAAGGACCAGAATACTCATGTTGGCTGGCCAGT (SEQ ID NO: 198)





193
HGL6.424

AAACGCACAAACAAAGCAAGGAAAGAATGAAGCAACAAAAGCAGAGATTTATTGAAAATGAAAAA





TACACTCCACAGGGTGGG (SEQ ID NO: 199)





194
HGL6.429

GCATAGAATCGAATGGAATTATCATTGAATGGAATCGAATGGAATCAACATCAAACGGAAAAAAAC





GGAATTATCGAATGGAATCGAAGAGAATCATCGAATGGACCC (SEQ ID NO: 200)





195
HGL6.430

AATGGAATCGAANAGAATCATCGAACGGACTCGAATGGAATCATCTAATGGAATGGAATGGAATAA





TCCATGGACCCGAATG (SEQ ID NO: 201)





196
HGL6.433

AAATGAATCGAATGGAATTGAATGGAATCAAATAGAACAAATGGAATCGAAATGAATCAAATGGAA





TCGAATCGAATGGAATTGAATGGCATGGAATTG (SEQ ID NO: 202)





197
HGL6.436

NTCACAATCACACAACACATTGCACATGNNNANNATGCACTCACAATACACACACAACACATACACA





ACACACATGCAATACAACACAAAACGCAACACAACATATACACNACACACAGCACACANATGCC





(SEQ ID NO: 203)





198
HGL6.442

GAATGGAATCAAATCGAATGAAATGGAATGGAATAGAAAGGAATGGAATGAAATGGAATGGAAAG





GATTCGAAT (SEQ ID NO: 204)





199
HGL6.445

AAAGACTTAAACGTTAGACCTAAAACCATAAAAACCCTAGAGGAAAACCTAGGCATTACCATTCAGG





ACTTAGGCATGGGCAAGGAC (SEQ ID NO: 205)





200
HGL6.446

GTTTACAGTCAAGTGTACAAACAGAATATAAGCAAACAAAAGAGAACATATACTTACAAACTATGCT





AAGTGCCATGAAGGAAAAG (SEQ ID NO: 206)





201
HGL6.447

AAAGTCCAAAGATGAACAAAATATCCAGAAGGAAAACAAATGCACTTGGGGAGTGGGAAAGAAAA





CCAAGACTGAGCAATGCGTCAAGCTCAGACGTGCCTCACTACG (SEQ ID NO: 207)





202
HGL6.448

AAACGGAATCAAACGGAATTATCGAATGGAGTCGAAAAGAATCATCGAACGGACTCGAATGGAATC





ATCTAATGGAATGGAATGGAAGAATCCATGG (SEQ ID NO: 208)





203
HGL6.450
HGL6.1296
AATTGATTCGAAATTAATGGAATTGAATGGAATGCAATCAAATGGAATGGAATGTAATGCAATGGA





ATGTAATAGAATGGAAAGCAATGGAATG (SEQ ID NO: 209)





204
HGL6.453

TACAGAACACATGACTCAACAACAGCAGAAAGCATATTCTTTTCAAATGCACATGAAACATTATCAT





GATGGACCAAAT (SEQ ID NO: 210)





205
HGL6.454

TAAGACACATAGAAAACATAAAGCAAAATGGCAGATGTAAATGCAACCTATCAATCAAAACATTAC





GAATGGCTT (SEQ ID NO: 211)





206
HGL6.456

GGAACAAAATGAAATCGAACGGTAGGAATCATACAGAACAGAAAGAAATGGAACGGAATGGAATG





(SEQ ID NO: 212)





207
HGL6.457

AACGGAAAAAACGGAATTATCGAATGGAATCGAAGAGAATCATCGAATGGAATCGAATGGAGTCA





TCG (SEQ ID NO: 213)





208
HGL6.459
HGL6.806
AACATACGAAAATCAATAAACGTAATCCAGCATATAAACAGAACCAAAGACAAAAACCACATGATTA





TCTCAATAGATGCAGAAAAGGCCTTT (SEQ ID NO: 214)





209
HGL6.460
HGL6.1163
AATCGAACGGAATCAACATCAAACGGAAAAAAACGGAATTATCGAATGGAATCGAAGAGAATCATC





GAATGGACC (SEQ ID NO: 215)





210
HGL6.461

AGAATGGAATGCAATAGAATGGAATGCAATGGAATGGAGTCATCCGTAATGGAATGGAAAGGAAT





GCAATGGAATGGAATGGAATGG (SEQ ID NO: 216)





211
HGL6.462

GGAATAAAACGGACTCAATAGTAATGGATTGCAATGTAATTGATTCGATTTCGAATGGAATCGCATG





GAATGTAATGGAATGGAATGGAATGGAAGGC (SEQ ID NO: 217)





212
HGL6.467

AGCAACTTCAGCAAAGTCTCAGGATACAAAATCAATGTACAAAAATCACAAGCATTCTTATACACCA





ACAACAGACAAACAGAGAGCC (SEQ ID NO: 218)





213
HGL6.476

TAAGCAGAGAAAATATCAACACGAAAATAATGCAAGGAGAAAAATACAGAACAATCCAAAATGTG





GCC (SEQ ID NO: 219)





214
HGL6.487

AATGGAATCAACATCAAACGGAAAAAAACGGAATTATCGTATGGAATCGAAAAGAATTATCGAATG





GACC (SEQ ID NO: 220)





215
HGL6.489
HGL6.587
TCAAACGGAAAAAAACGGAATTATCGAATGGAATCGAAGAGAATCATCGAATGGACC 





(SEQ ID NO: 221)





216
HGL6.490

AACTTCAGCAAATTCTCAGGATACAAAATCAATGTGCAAAAACCACAAGCATTCCTATACACCAATA





ATAGACAGTGAGCCAAAT (SEQ ID NO: 222)





217
HGL6.494
HGL6.1131
ACATCAAACGGAATCAAACGGAATTATCGAATGGAATCGAAAAGAATCATCGAACGGACTCGAATG





GAATCATCTAATGGAATGGAATGGAAGAATCCATGGACTCGAATG (SEQ ID NO: 223)





218
HGL6.497

AATGGAATCGAATGCAATCATCGAACGGAATCGAATGGCATCACCGAATGGAATGGAATGGAATG





GAATGGAATGG (SEQ ID NO: 224)





219
HGL6.499

AATCCAGCATATAAACAGAACCAAAGACAAAAACCACATGATTATCTCAATAGATGCAGAAAAGGC





C (SEQ ID NO: 225)





220
HGL6.500

TGACTAAACAGAGTTGAACAAGAACAAAAAGCAAATTTGCAGAAATGAAATACATACTAATTGAAA





GTCCATGGACAGGCTCAACAGATGATATAGATACAGCTAAAGAGATAATTAGTGAAATGGATCAG





(SEQ ID NO: 226)





221
HGL6.501

GATCATCAGAGAAACAGAGAAATGCAAATTAAAACCACAATGAGATACTATCTCCACACAAGTCAG





AATGGCTAT (SEQ ID NO: 227)





222
HGL6.503

AGGATACAAAATCAATGTACAAAAATCACAAACATTCTTATACACCAACAACAGACAAACAGAGAGC





CAAATCATGGGTG (SEQ ID NO: 228)





223
HGL6.505

TAAGCAACTTCAGCAAAGTCTCAGGATACAAAATCAATGTACAAAAATCACAAGCATTCTTATACAC





CAACAACAGACAAACAAGAGTGCCAAATCATG (SEQ ID NO: 229)





224
HGL6.506

AGAATTGATTGAATCCAAGTGGAATTGAATGGAATGGAATGGATTAGAAAGGAATGGAATGGATT





GGAATGGATTGGAATGGAAAGG (SEQ ID NO: 230)





225
HGL6.508

AATGGAATGCAATCGAATGGAATGGAATCGAACGGAATGGAATAAAATGGAAGAAAACTGGCAAG





AAATGGAATCG (SEQ ID NO: 231)





226
HGL6.509

AACTGCATCAACTAACAGGCAAAATAACCAGCTAATATCATAATGACAGGATTAAATTCACAAATGA





CAATATTAACCGTAAATGTAAATGGGCTA (SEQ ID NO: 232)





227
HGL6.510

TACAAAGAACTCAAACAAATCAGCAAGAACAAAAACAATCCCAACAAAATGTTGGACAAAGACATG





AATAGACAATTCTCGAAAGAAGATGTACAAATGGCT (SEQ ID NO: 233)





228
HGL6.512

AGAGAAATGCAAATCAAAACCACAATGGAATACCATCTCACGCCAGTCAGAATGGCAATTATTAAAA





AATCACAACAATTAATGATGGCAAGGCTGTGG (SEQ ID NO: 234)





229
HGL6.513

GTAAACAAACAATCAAGCAAGTAAGAACAGAAATAACAGCATTTGGCTTTTGAGTTAATGACAAGA





ACACTCGGCATGGGAGCCTGGGTGAGCAAATCACAGATCTTC (SEQ ID NO: 235)





230
HGL6.514

GAATCAACCCGAGCGGAAAGGAATGGAATGGAATGGAATCAACACGAATGGAATGGAACGGAATG





GAATGGGATGGGATGAAATGGAATGG (SEQ ID NO: 236)





231
HGL6.516

AGCAACTTCAGCAAAGTCTCAGGAGACAAAATCAATGTACAAAAATCACAAGCATTCTTATACACCA





ATAACAGACAAACAGAGAGCC (SEQ ID NO: 237)





232
HGL6.520

AAGAAATGGAATCGAAGAGAATGGAAACAAACGGAATGGAATTGAATGGAATGGAATTGAATGGA





ATGGGA (SEQ ID NO: 238)





233
HGL6.522

GACATGCAAACACAACACACAGCACACATGGAACATGCATCAGACATGCAAACACAACACACATAC





CACACATGGCATATGCATCAGACGTGCCTCACTAC (SEQ ID NO: 239)





234
HGL6.528

TACAGATAAGAAAATTGAGACTCAAGAGTATTACATAAATTGTTTCAGCTACCACAGCAAAAAATGG





TATGGTTGGGAATCAAGCTCAGGG (SEQ ID NO: 240)





235
HGL6.529

AAAGGAATGCACTCGAATGGAATGGACTTGAATGGAATGTCTCCGAATGGAACAGACTCGTATGAA





ATGGAATCGAATGGAATGGAATCAAATGGAATTGATTTGAGTGAAATGGAATCAAATGGAATGGCA





ACG (SEQ ID NO: 241)





236
HGL6.530

TGAAACAAATGATAATGAAAATACAACATACCAAACATACGAGATACAGTAAAAGCAGTACTAAGA





TGCAAGTATATATTGCTACAAGTGCCTAC (SEQ ID NO: 242)





237
HGL6.531

GGAACAAAATGAAATCGAACGGTAGGAATCGTACAGAACGGAAAGAAATGGAACGGAATGGAAT





GCACTCGAATGGAAAGGAGTCCAAT (SEQ ID NO: 243)





238
HGL6.532

AAATTGATTGAAATCATCATAAAATGGAATCGAAGGGAATCAACATCAAATGGAATCAAATGGAAT





CATTGAACGGAATTGAATGGAATCGTCAT (SEQ ID NO: 244)





239
HGL6.533

AGAAAGGATTCGAATGGAATGAAAAAGAATTGAATGGAATAGAACAGAATGGAATCAAATCGAAT





GAAATGGAATGGAATAGAAAGGAATGGAATG (SEQ ID NO: 245)





240
HGL6.534

AGAATGGAAAGCAATAGAATGGAACGCACTGGATTCGAGTGCAATGGAATCAATTGGAATGGAAT





CGAATGGAATGGATTGGCA (SEQ ID NO: 246)





241
HGL6.535

AACACCAAACGGAAAAAAACGGAATTATCGAATGGAATCGAAGAGAATCTTCGAACGGACCCGAAT





GGGATCATCTAATGGAATGGAATGGAATAATCCATGG (SEQ ID NO: 247)





242
HGL6.536

AATGGAGACTAATGTAATAGAATCAAATGGAATGGCATCGAATGGAATGGACTGGAATGGAATGT





GCATGAATGGAATGGAATCGAATGGATTG (SEQ ID NO: 248)





243
HGL6.539

TGGGATATGGGTGAAAGAACAAGTTTGCAGAAAAGATACAGTGAATTATGGACCATGAGTTCGGG





AAAGAAGGGTAGGACTGCG (SEQ ID NO: 249)





244
HGL6.540

AAATCGAATGGAACGCAATAGAATAGACTCGAATGTAATGGATTGCTATGTAATTGATTCGAATGG





AATGGAATCGACTGGAATGCAATCCAATGGAATGGAATGCAATGCAATGGAATGGAATCGAACGG





AATGCAGTGGAAGGGAATGG (SEQ ID NO: 250)





245
HGL6.541

AATCAACAAGGAACTGAAACAAGTAAACAAGAAAACAAATAACACCATAAAACATGGGCAAAGGA





CATAAACAGACATTTTTCAAAAAAGACATACAAATGGCCGAG (SEQ ID NO: 251)





246
HGL6.542

AATGGAATCAACATCAAACGGAAAAAAACGGAATTATCGAATGGAATCGAAGAGAATCATCGAATG





GACCCAGGCTGGTCTTGAACTCC (SEQ ID NO: 252)





247
HGL6.545

ATTGAATGGGCTAGAATGGAATCATCTTTGAACGGAATCAAAGGGAATCATCATCGAATGGAATCG





AATGGAAATGTCAACG (SEQ ID NO: 253)





248
HGL6.547

AATGGACTCGAATGGAATCAACATCAAATGGAATCAAGCGGAATTATCGAATGAAATCGAAGAGAA





TCATCGAATGGACTCGAAAGGAATCATCTAATGGAATGGAATGGAATAATCCATGGACTCGAATGC





AATCATCATCG (SEQ ID NO: 254)





249
HGL6.549

ACAGACAGAGATTTAAAACAATAAACAAGCAGTAAGCAAACACAGATAACAAAATGACATGATCCA





ACAAATACTCAGAAGGAGACTTAGAAATGAATTGAGGGTC (SEQ ID NO: 255)





250
HGL6.553

AATGTAATCCAGCATATAAACAGAGCCAAAGACAAAAACCACATGATTATCTCAATAGATGCAGAAA





AAGCCTTTGACAAAATTCAACAACCCTTCATGCTAAAAACTCTCAATAAATTAGGTATTGATGGGAC





G (SEQ ID NO: 256)





251
HGL6.555

AAACGGAAAAAAACGGAATTATTGAATGGAATCGAAGAGAATCTTCGAACGGACCCGAATGGAATC





ATCTAATGGAATGGAATGGAATAATCCATGG (SEQ ID NO: 257)





252
HGL6.557
HGL6.1238
GCTCAAGGAAATAAAATAGGACACAAAGAAATGGAAAAACATTCCATACTCATGGATAGAAAGAAT





CAATATCATGAAATGGCC (SEQ ID NO: 258)





253
HGL6.560

ACTCGAGTGGAATTGACTGTAACAAAATGGAAAGTAACGGATTGGAATCGAATGGAACGGAATGG





AATGGAATGGACAT (SEQ ID NO: 259)





254
HGL6.561

TACAAACTTTAAAAAATGATCAACAGATACACAGTTAGCAAGAAAGAATTGAGGGCAAAGAATATG





CCAGACAAACTCAAGAGGAAGATGATGGTAGAGATAGGTCACATTGGAGTGTCA (SEQ ID NO:





260)





255
HGL6.562
HGL6.154,
GGAATCGAATGGAATCAATATCAAACGGAAAAAAACGGAATTATCGAATGGAATCGAAGAGAATC




HGL6.114
ATCGAATGGACC (SEQ ID NO: 261)





256
HGL6.564

AACGGAATCAAACGGAATTATCGAATGGAATCGAAAAGAATCATCGAACGGACTCGAATGGAATCA





TCTAATGTAATGGAATGGAAGAATCCATGGACTCGAATG (SEQ ID NO: 262)





257
HGL6.565

GGAAATAACAGAGAACACAAACAAATGGGAAAACATTCCATGTTCATGGATAGGAAGAATCAATAT





TGTGAAAATGGCCATACT (SEQ ID NO: 263)





258
HGL6.570

AACGGAAAAAAACGGAATTATCGAATGGAATCGAAGAGAATCATCGAATGGACCAGAATGGAATC





ATCTAATGGAATGGAATGGAATAATCCATGGACTCGAATG (SEQ ID NO: 264)





259
HGL6.581

CAACATCAAACGGAAAAAAACGGAATTATGGAATGGAATCGAAGAGAATCATCGAATGGACCCGA





ATGGAATCATCTGAAATATAATAGACTCGAAAGGAATG (SEQ ID NO: 265)





260
HGL6.589

ATGGAATCGAATGGAATGGACTGGAATGGAATGGATTCGAATGGAATCGAATGGAACAATATGGA





ATGGTACCAAATG (SEQ ID NO: 266)





261
HGL6.595
HGL6.1293
GAATGGAATCAACATCAAACGGAAAAAAACGGAATTATCGAATGGAATCGAAGAGAATCATCGAAT





GGACC (SEQ ID NO: 267)





262
HGL6.606

AAGGAATTTAAGCAAATCAACAAGCAAAACCAAAATAATCCCATTAAAAAGTGGGTAAAGGACATG





AATACACACTTGTCAATAGAGGACATTCAAGTGGCCAAC (SEQ ID NO: 268)





263
HGL6.608

AAATGGACTCGAATGGAATCATCATAGAATGGAATCGAATGCAATGGAATGGAATCTTCCGGAATG





GAATGGAATGGAATGGAATGGAG (SEQ ID NO: 269)





264
HGL6.609

GAATCANCNNNNNNNGGAATCGAATGGAATCAACATCAAATGGAATCAAATGGAATCATTGAACG





GAATTGAATGGAATCGTCAT (SEQ ID NO: 270)





265
HGL6.610

AGCAACTTCAGCAAAGTCTCAGGATACAAAATCAATGTACAAAAATCACAAGCATTCTTATACACCA





ATAACAGACAAACAGAGAGCCAAAA (SEQ ID NO: 271)





266
HGL6.611

TATGCAAATCAATAAACATAATCCATCACATAAACAGAAACAAAGACAAAATGACATGATTATCTCA





ATAGATGCAGAAAAGGCC (SEQ ID NO: 272)





267
HGL6.615

AGTAAATCACCATAAAGAAGGTAAGAGTTCATTCACAAAAACAACAAACTGAAGAATCAGGCCATA





GTA (SEQ ID NO: 273)





268
HGL6.617

AGAAACAGAAAACAGTCAAACCAATGGGCAATCCATATCAGATGCAGTATTATGAACAGAAGTGTA





AAGAATGCACCAGGCACAATGGC (SEQ ID NO: 274)





269
HGL6.619

AGGAAAAACAACAACAACAACAGGAAAACAACCTCAGTATGAAGACAAGTACATTGATTTATTCAA





CATTTACTGATCACTTTTCAGGTGGTAGGCAG (SEQ ID NO: 275)





270
HGL6.623

GATTGGAACGAAATCGAATGGAACGGAATAGAATAGACTCGAATGTAATGGATTGCTATGTAATTG





ATTCGAATGGAATGGAATCGAATGGAATGCAATCCAATGGAATGGAATGCAATGCAATGGAATGG





(SEQ ID NO: 276)





271
HGL6.624

AACATATGGAAAAAAACTCAACATCACTGATCATTAGAGAAATGCAAATCAAAACCACAATGAGATA





CCATCTCACGCCAGTCAGAATGGCG (SEQ ID NO: 277)





272
HGL6.625

ATGGAATGGAATAATCAACGTACTCGAATGCAATCATCATCGTATAGAATCGAATGGAATCATCGAA





TGGACTCGAATGGAATAATCATTGAACGGAGTCGAATGGAATCATCATCGGATGGAAAC (SEQ ID





NO: 278)





273
HGL6.627

AAANAANTCNAATGGAATCNNTGNCGAATGGAATGGAATGGAATCGAANAATTGAATTGNNNAN





AATCNNANGNAANCNTTGNATGGGCTCAAAT (SEQ ID NO: 279)





274
HGL6.629

AGAAAAGATAACTCGATTAACAAATGAACAAACACCTGAATACACAAGTCTCAAAAGAAGACATAA





AAATGGCCAAC (SEQ ID NO: 280)





275
HGL6.632

ATGGAATCAACATCAAACGGAATCACACGGAATTATCGAATGGAATCGAAAAGAATCATCGAACGG





ACTCGAATGGAATCATCTAATGGAATGGAATGGAAG (SEQ ID NO: 281)





276
HGL6.633
HGL6.1135
AATGGAATCAACATCAAACGGAATCAAGCGAAATTATCGAATGGAATCGAAGAGAATCATCGAATG





GACTCGAATGGAATCATCTAATGGAATGGAATGGGAT (SEQ ID NO: 282)





277
HGL6.634

AAACACAGTACAAATACTAATTCAAATCAAACTTACTCAAAGTCATAATCAAACATGCCAGACGGGC





TGAGGGGCAGCATTA (SEQ ID NO: 283)





278
HGL6.638

AACCACTGCTCAAGGAAATAAGAGAGAACACAAACAAATGAAAAAACATTCCATGCTCATGGATAG





GAAGAATCAG (SEQ ID NO: 284)





279
HGL6.641

GGAATCGAGTGGAATCATCGAAAGAAATCGAATGGAATCATTGTCGAATGGAATGGAATGGAATC





AAAGAATGGAATCGAAGGGAATCATTGGATGGGCT (SEQ ID NO: 285)





280
HGL6.642

AAAGAAAGACAGAGAACAAACGTAATTCAAGATGACTGTTTACATATCCAAGAACATTAGATGGTC





AAAGACTTTAAGAAGGAATACATTCAAAGGCAAAAAGTCACTTACTGATTTTGGTGGAGTTTGCCAC





ATGGAC (SEQ ID NO: 286)





281
HGL6.645

AAGATAGAGTTGAAACAGTGGACAATTAAAGAGTAATTTGGAAGAATGGTGAAATTACAGCCATGC





TTTGAATCAGGCGGGTTCACTGGC (SEQ ID NO: 287)





282
HGL6.646

AAGAGTATCAACAGTAAATTACATTAGCAGAAGAATCAACAAACATGAAAATAGAAATTATGGTAG





CCAAAGAACAG (SEQ ID NO: 288)





283
HGL6.647

GAAAGGAATCATCATTGAATGCAATCACATGGAATCATCACAGAATGGAATCGTACGGAATCATCAT





CGAATGGAATTGAATGGAATCATCAATTGGACTCGAATGGAATCATCAAATGGAATCGATTGGAAG





TGTCAAATGGACTCG (SEQ ID NO: 289)





284
HGL6.651

CAGCGCACCACAGCACACACAGTATACACATGACCCACAATACACACAACACACAACACATTCACAC





ACCAC (SEQ ID NO: 290)





285
HGL6.655

GCAAACAGAATTCAACACTACATTAGAACGATCATTCATCACGACCTAGTAGGATGTTTTTCCTGGG





ATGCAAGGATGGTTCAACAT (SEQ ID NO: 291)





286
HGL6.656

CAATCAAAACAGCAATGAGATACCATTTTACACCAATCAAAATGGCTACTAAAAAGTCAAAAGCAAA





TGCC (SEQ ID NO: 292)





287
HGL6.658
HGL6.830
AGAACCATATTGAAGAGACAGAGTGATATATAAAACTGCTAACTCAAGCAGCACAAGAATTAAATG





AATACCAAGAAAATACTTGGCCAG (SEQ ID NO: 293)





288
HGL6.660

TGGAATAGAATGGAATCAATGTTAAGTGGAATCGAGTGGAATCATCGAAAGAAATCGAATGGAATC





ATTGTCGAATGGTATGGAATGGAATCA (SEQ ID NO: 294)





289
HGL6.661

AATGGAATGGAATCATCGCATAGAATNGAATGGAATTATCATCGAATTGAATCGAATGGTATCAAC





ATCAAACGGAAAAAAACGGAAATATCGAANGGAATCGAAGAGAATCATCGAACGGACC (SEQ ID





NO: 295)





290
HGL6.662

ACATACGCAAATCAATAAACATAATCCATCACATAAACAGAACCAAAGACAAAAATCACATGATTAT





CTCAATAGATGCAGAAAAGGCCTTCGAC (SEQ ID NO: 296)





291
HGL6.663

AAAAAATGTTCAACATCACTAGTCAGCAGAGAAATGCAAATCAAAATCACAATGAGATAACTTCTCA





CACCAGACAGCATGGC (SEQ ID NO: 297)





292
HGL6.668

GAAAAACAAAACAAAACAAACAAACAAACAATCAAAAAAGTGGTAGCAGAAACCAGAAAGTCCAT





GTATATAGCTAATTGGCCTGGTTGT (SEQ ID NO: 298)





293
HGL6.671

AACAGCAATGACAATGATCAGTAACAACAAGACTTTTAACTTTGAAAAAATCAGGACC 





(SEQ ID NO: 299)





294
HGL6.672

AAGAGCCTGAATAGCTAAAGTGATCATAAGCAAAAAGAACAAAGTCGGAAGCATCACATTACCTGA





CTTCAAACTATACTCAAAGGCTATG (SEQ ID NO: 300)





295
HGL6.675

AAAAGGAAATACAAGACAACAAACACAGAAACACAACCATCGGGCATCATGAAACCTCGTGAAGAT





AATCATCAGGGT (SEQ ID NO: 301)





296
HGL6.677

AAGCAAAGAAAGAATGAAGCAGCAAAAGAACGAAAGCAGGAATTTATTGAAAACCAAAGTACACT





CCACAGTATGGGAGCGGACCCGAGCA (SEQ ID NO: 302)





297
HGL6.679

GCAAATGATTATAAGTGCTGTTATAGAAACATTCAAAGACCAGAAAAGGACCACAATGGCTGACCA





C (SEQ ID NO: 303)





298
HGL6.681

AGAGCAGAAACAAATGGAATTGAAATGAAGACAACAATCAAAAGCATCAATGAAATGAAAAGTTG





GGTTTTGGAAGAGAGAAACAAT (SEQ ID NO: 304)





299
HGL6.683

ACACAAACACACACACACACACACACACACACACACACACACACACACACACACACACACACACACA





TAC (SEQ ID NO: 305)





300
HGL6.686

AACAAACAAATGAGATGATTTCAGATAGTGATAAACACTATAACATAATTAATTCGTGCCAATCAGA





GCATAACAGTGGTGTGGTGGCTGTGGAACAGATAGCAGAC (SEQ ID NO: 306)





301
HGL6.688

AATGGAATCGAGTGGAATGGAAGGCAATGGAATAGAATGGAATGGAATCGAAAGGAACGGAATG





GAATGGAATGGAATG (SEQ ID NO: 307)





302
HGL6.689

AGCAGTGCAAGAACAACATAACATACAAGTAAACAAACACATGGGGCCAGGTAATAAAAAGTCAG





GCTCAAGAGGTCAG (SEQ ID NO: 308)





303
HGL6.690

AGAAATGGAATCGGAGAGAATGGAAACAAATGGAATGGAATTGAATGGAATGGAATTGAATGGAA





TGGGAACG (SEQ ID NO: 309)





304
HGL6.694

GCACTAGTCAGATCAAGACAGAAAGTCAACGAACAAAGAACAGACTTAAACTACACTCTAGAACAA





ATGGACCTA (SEQ ID NO: 310)





305
HGL6.704

AAGAGAACTGCAAAACACTGCTCAAAGAAATCAGAGATGACAAAAACACATGGAAAAACGTTTCAT





GCTCATGGATTGGAAGACTTA (SEQ ID NO: 311)





306
HGL6.705

AATCAACACGAATAGAATGGAACGGAATGGAATGGAATGGAATGGAATGGAATGGAGTGGAATG





GAACAGAATGGAGTGGAAT (SEQ ID NO: 312)





307
HGL6.707

AACATCAAACGAAATCAAACGGAATTATCAAATTGAATCGAAGAGAATCATCGAATTGCCACGAAT





GCAACCATCTAATGGTATGGAATGGAATAATCCATGGACCCAGATG (SEQ ID NO: 313)





308
HGL6.714

CGGAATTATCATCGAATGTAATCGAATGGAATCAACATCAAACGGAAAAAAACGGAATTATCGAAT





GGAATCGAAGAGAATCATCGAATGGACC (SEQ ID NO: 314)





309
HGL6.719

TGGACACACACGAACACACACCTACACACACGTGGACACACACGGACACATGGACACACACGAACA





CATGGACACACACACGGGGACACACACAGACACACACAGAGACACACACGGACACATGG (SEQ ID





NO: 315)





310
HGL6.720
HGL6.1044
AGCAACTTCAGCAAAGTCTCAGGATACAAAATCAATGTGCAAAAATCACAAGCATTCTTATACACCA





ATAACAGACAAACAGAGAGCC (SEQ ID NO: 316)





311
HGL6.721
HGL6.1020
AAAATCAATATGAAAACAAACACAAGCAGACAAAGAAAATTGGGCAAAAGGTTTGAGCAGACACTT





CACCAAAGAAGTACAAATGGCAAATCAGCA (SEQ ID NO: 317)





312
HGL6.724

ATCAAACGGAATCAAACGGAATTATCGAATGGAATCGAAGAGAATCATCGAATGGACTCGAATGGA





ATCATCTAATGGAATGGAATGGAAGAATCCATGG (SEQ ID NO: 318)





313
HGL6.725

AACAGATTTAAACAAACCAACAAGCAAAAAACGAACAACTCCATTCAAACATGGACAAAAGACACG





AACAGACACTTTTCAAAGAAGACATACATGTGGCC (SEQ ID NO: 319)





314
HGL6.726

AAATGGAATGGAATGCACTTGAAAGGAATAGACTGGAACAAAATGAAATCGAACGGTAGGAATCA





TACAGAACAGAAAGAAATGGAACGGAATGGAATG (SEQ ID NO: 320)





315
HGL6.727

ACCACACACAAAATACACCACACACCACACACACACCACACACTATACACACACCACACACCACACAC





(SEQ ID NO: 321)





316
HGL6.728

AAAGAAATAGAAGGGAGTTGAACAGAATCGAATGGAATCGAATCAAATGGAATCGAATGGCATCA





AATGGAATCGAATGGAATGTGGTGAAGTGGATTGG (SEQ ID NO: 322)





317
HGL6.729

GGAATCATCATAAAATGGAATCGAATGGAATCATCATCAAATGGAATCAAATGGAATCATTGAACG





GAATTGAATGGAATCGTCAT (SEQ ID NO: 323)





318
HGL6.730

TGGAATGGAATGGAATGAAATAAACACGAATAGAATGGAACGGAATGGAACGGAATGGAATGGA





ATGGAATGGAAAG (SEQ ID NO: 324)





319
HGL6.731

AAGAATTGGACAAAACACACAAACAAAGCAAGGAAGGAATGAAAGGATTTGTTGAAAATGAAAGT





ACACTCCACAGTGTGGGAGCAG (SEQ ID NO: 325)





320
HGL6.732

TAATCAGCACAATCAACTGTAGTCACAAAACAAATAGTAACGCAATGATAAAGAAACAGAGAACTA





GTTCAAATAAACATGATAAGATGGGG (SEQ ID NO: 326)





321
HGL6.733

AAGCGGAATTATCAAATGGAATCGAAGAGAATGGAAACAAATGGAATGGAATTGAATGGAATGGA





ATTGAATGGAATG (SEQ ID NO: 327)





322
HGL6.734

AAGCAACTTCAGCAAAGTCTCAGGACACAAAATCAATATGCGAAAATCACAAGCATTCCTATACACC





AATAATAGACAAACAGAGAGCCAAATCATG (SEQ ID NO: 328)





323
HGL6.736

TTCACAGCAGCATTACGCACAATAGCCAGAAGGTGGGAACAGACAAAATGCCTTTTGATGGG (SEQ





ID NO: 329)





324
HGL6.738

AGACCCTAATATCACAGTTAAACGAACTAGAGAAGGAAGAGCAAACAAATTCAAAAGCTAGCGGAA





AGCAAGAAATAACTAAGACCAG (SEQ ID NO: 330)





325
HGL6.739

TAAAAGTGTGCTCAACATCATTGATCATCAGAGAAATGCAAATCAAAACTACAATGAGATATCATCT





CATCCCAGTCAAAGTGGCT (SEQ ID NO: 331)





326
HGL6.740

ACTTGAATCGAATGGAAAGGAATTTAATGAACTTAAATCGAATGGAATATAATGGTATGGAATGGA





CTCATGGAATGGAATGGAAAGGAATC (SEQ ID NO: 332)





327
HGL6.742

TGGAATCATCATCGAAAGCAAGCGAATGGAATCATCAAATGGAAACGAATGGAATCATCGAATGGA





CTCGGATGGAATTGTTGAATGGACT (SEQ ID NO: 333)





328
HGL6.743

TGGAATCAACATCAAACGGAAAAAAACGGAATTATCGAATGGAATCGAAGAGAATCATCGAATGGA





CC (SEQ ID NO: 334)





329
HGL6.745

TAAGTGAATTGAATAGAATCAATCTGAATGTAATGAAATGGAATGGAACGGAATGGAATGGAATG





GAATGGAATGGAATGGAATGG (SEQ ID NO: 335)





330
HGL6.747

AGGAAAATTTAATCAGCAGGAATAGAAACACACTTGAGAAATCCATGTGGAATGAAAAGAGAATG





GCTGAGCAGCAACAGATTGTCAAAAAGGAAATC (SEQ ID NO: 336)





331
HGL6.749
HGL6.897
AACATCAAACGGAAAAAAAACGGAATTATCGAATGGAATCGAAGAGAATCATCGAATGGACC (SEQ





ID NO: 337)





332
HGL6.756

GAAAATGAACAATATGAACAAACAAACAAAATTACTACCCTTACGAAAGTACGTGCATTCTAGTATG





GTGACAAAAAGGAAA (SEQ ID NO: 338)





333
HGL6.757

AGAAAACACACAGACAACAAAAAACACAGAACGACAATGACAAAATGGCCAAGC (SEQ ID NO:





339)





334
HGL6.758
HGL6.1040
AGCAACTTCAGCAAAGACTCAGGATACAAAATCAATGTGCAAAAATCACAAGCATTCTTATACACCA





ATAACAGACAGAGAGCCAAAT (SEQ ID NO: 340)





335
HGL6.759

TGACATGCAAGAAATAAGGAAGTGCAAAAACAAACAAACAAACAACAACAACAACAACAACAACAA





CAACAAAAAACAGTCCCAAAAGGATGGGCAG (SEQ ID NO: 341)





336
HGL6.760

TAATTGAGAATAAGCATTCCAGTGGAAAAAAAACTAAACAATTTGTTGTAAAACATCCTTAAAAGCA





TCAGAAAGTTAATACAGCAATGAAGAATTACAGGACCAAATTAAGAATGGTATGGAAGCCTGTTA





(SEQ ID NO: 342)





337
HGL6.762

TATCATCGAATGGAATCGAATGGAATCAACATCAAACGGAAAAAAACGGAATTATCGAATTGAATC





GAAGAGAATCATCGAATGGACC (SEQ ID NO: 343)





338
HGL6.764

GAATGGAATCAAATAGAATGGAATCGAAACAAATGGAATGGAATGGAATGGGAGCTGAGATTGTG





TCACTGCAC (SEQ ID NO: 344)





339
HGL6.765

AGCAAAACAAACACAATCTGTCGTTCATGGTACTACGACATACTGGGAGAGATATTCAAATGATCAC





ACAAAACAACATG (SEQ ID NO: 345)





340
HGL6.766

AAGGATTCGAATGGAATGAAAAAGAATTGAATGGAATAGAACAGAATGGAATCAAATCGAATGAA





ATGGAGTGGAATAGAAAGGAATGGAATG (SEQ ID NO: 346)





341
HGL6.768

AACGGAATCAAACGGAATTATCGAATGNNNTNNAAGAGAATCATCGAACGGACTCGAATGGAATC





ATCTAATGGAATGGAATGGAAGAATCCATGGACTCGAATGCAATCATCATCGAATGGAATCGAACG





GAATCATCGAATGGCC (SEQ ID NO: 347)





342
HGL6.771

AATCAACTAGATGTCAATGGAATGCAATGGAATAGAATGGAATGGAATTAACACGAATAGAATGGA





ATGGAATGGAATGGAATGG (SEQ ID NO: 348)





343
HGL6.772

TGTAACACTGCAAACCATAAAAACCGTAGAAGAAAACCTAGACAATACTATTCAGGACATAGGCAT





GGGCAAAGAC (SEQ ID NO: 349)





344
HGL6.773

AATGGACTCGAATGGAATAATCATTGAACGGAATCGAATGGAATCATCATCGGATGGAAATGAATG





GAATCATCATCGCATGGAATCG (SEQ ID NO: 350)





345
HGL6.776

GAATGGAATGATACGGAATAGAATGGAATGGAACGAAATGGAATTGAAAGGAAAGGAATGGAAT





GGAATGGAATGG (SEQ ID NO: 351)





346
HGL6.777

AAAAATGACCAGAGCAATAGAATGCATTGACCAGATAAAGACCTTCACGTATGTTGAACTAAAATGT





GTGGTGCAGGTG (SEQ ID NO: 352)





347
HGL6.781

AATCATCATCGAATGGAATCGAATGGTATCATTGANTGNAATCGAATGGAATCATCATCANATGGA





AATGAATGGAATCGTCAT (SEQ ID NO: 353)





348
HGL6.785

ACAAAATCAAACTAACCTCGATAAGAATGCAAGTGAATCAAAATGAGTTTCAAGGGGTTGTGGCTA





GTACACGCTTTCTACAGCTG (SEQ ID NO: 354)





349
HGL6.787

GAATCAAATCAATGGAATCAAATCAAATGGAATGGAATGGAATTGTATGGAATGGAATGGCATGG





(SEQ ID NO: 355)





350
HGL6.789

TAATGCAGTCCAATAGAATGGAATCGAATGGCATGGAATATAAAGAAATGGAATCGAAGAGAATG





GGAACAAATGGAATGGAATTGAGTGGAATGGAATTGAATGGAATGGGAACGAATGGAGTG (SEQ





ID NO: 356)





351
HGL6.792

TGAATAGACACACAGACCAATGGAACAGAATAGAGAACACAGAATAAATCTGCACACTTATAGCCA





GCTGATTTTTGACAAATTTGCCAAG (SEQ ID NO: 357)





352
HGL6.797
HGL6.810,
AACATCNNACGGAAAAAAACGGAATTATCGAATGGAATCGAAGAGAATCATCGAATGGACC (SEQ




HGL6.1172,
ID NO: 358)




HGL6.1223






353
HGL6.801

GCCAACAATCATATGAGAAAAAGCTCAACATCACTGATCATTTCAGGAATGCAAATCAAAACCACAA





TGAGATACTATCACACATCAATCAGAATGGCT (SEQ ID NO: 359)





354
HGL6.802
HGL6.118,
GAATCGAATGGAATCAACATCAAACGGAAAAAAACGGAATTATCGAATGGAATCGAAGAGAATCAT




HGL6.590,
CGAATGGACC (SEQ ID NO: 360)




HGL6.1051,





HGL6.1170,





HGL6.1248,





HGL6.1372






355
HGL6.804

AATCAAATGGAATGAAATCGAATGGAATTGAATCGAATGGAATGCAATAGAATGTCTTCAAATGGA





ATCGAATGGAAATTGGTGAAGTGGACGGGAGTG (SEQ ID NO: 361)





356
HGL6.805

TAACAGTACCAAAAAACAGTCATAATCTTCAAGAGCTTAAATTTAGCATGAAAGGAAGACATTCATC





AAAGAATCACACAAAGGAATGTAAAATTAAATGGAGATTAGTGCCAGGAAAGAGC (SEQ ID NO:





362)





357
HGL6.808

TAATGGAATCAACATCAAACGGAAAAAAACGGAATTATCGAATGCAATCGAAGAGAATCATCGAAT





GGACC (SEQ ID NO: 363)





358
HGL6.813

AGCAACTTCAGCAAAGTCTCAGCATACAAAATCAATGTGCAAAAATCACACGCATTCCTATACACCA





ATAACAGACAAACAGAGAGCC (SEQ ID NO: 364)





359
HGL6.815

GAATCAAATGGAATGGACTGTAATGGAATGGATTCGAATGGAATCGAATGGAGTGGACTCAAATG





GAATG (SEQ ID NO: 365)





360
HGL6.816

AACAAGTGGACGAAGGATATGAACAGACACTTCTCAAGACATTTATGCAGCCAACAGACACACGAA





AAAATGCTCATCATCACTGGCCATCAG (SEQ ID NO: 366)





361
HGL6.819

AAACACACAAAGCAACAAAAGAACGAAGCAACAAAAGCATAGATTTATTGAAATGAAAGTACATTC





TACAGAGTGGGGGCAGGCT (SEQ ID NO: 367)





362
HGL6.820

ATACAACTAAAGCAAATATAAGCAACTAAAGCAACAGTACAACTAAAGCAAAACAGAACAAGACTG





CCAGGGCCTAGAAAAGCCAAGAAC (SEQ ID NO: 368)





363
HGL6.822

GCAATCGAATGGAATGGAATCGAACGGAATGGAATAAAATGGAAGAAAACTGGCAAGAAATGGAA





TCG (SEQ ID NO: 369)





364
HGL6.825

AGCAGCCAACAAGCATATGAAATAATGCTCCACAACACTCATCATCAGAGAAATGCAAATCAAAACC





AAAAT (SEQ ID NO: 370)





365
HGL6.826

TGGAACCGAACAAAGTCATCACCGAATGGAATTGAAATGAATCATAATCGAATGGAATCAAATGGC





ATCTTCGAATTGACTCGAATGCAATCATCCACTGGGCTT (SEQ ID NO: 371)





366
HGL6.827
HGL6.829
AACGGAATCACGCGGAATTATCGAATGGAATCGAAGAGAATCATCGAATGGACTCGAATGGAATCA





TCTAATGGAATGGAATGG (SEQ ID NO: 372)





367
HGL6.830

AGAACCATATTGAAGAGACAGAGTGATATATAAAACTGCTAACTCAAGCAGCACAAGAATTAAATG





AATACCAAGAAAATACTTGGCCAG (SEQ ID NO: 373)





368
HGL6.831

AAAACAAACAACAACGACAAATCATGAGACCAGAGTTAAGAAACAATGAGACCAGGCTGGGTGTG





GTG (SEQ ID NO: 374)





369
HGL6.833

AATCGAAAGGAATGCAATATTATTGAACAGAATCGAAAAGAATGGAATCAAATGGAATGGAACAG





AGTGGAATGGACTGC (SEQ ID NO: 375)





370
HGL6.836

AAGGAATCGAATGGAAGTGAATGAAATTGAATCAACAGGAATGGAAGGGAATAGAATAGACTGTA





ATGGAATGGACTCG (SEQ ID NO: 376)





371
HGL6.837

AATGGACTCGAATGAAATCATCATCAAACGGAATCGAATGGAATCATTGAATGGAATGGAATGGAA





TCATCATGGAATGGAAACG (SEQ ID NO: 377)





372
HGL6.838

TTGACCAGAACACATTACACAATGCTAATCAACTGCAAAGGAGAATATGAACAGAGAGGAGGACAT





GGATATTTTGTG (SEQ ID NO: 378)





373
HGL6.839

AACCCGAGTGCAATAGAATGGAATCGAATGGAATGGAATGGAATGGAATGGAATGGAATGGAGTC





(SEQ ID NO: 379)





374
HGL6.843

AAGAGTATTGAAGTTGACATATCTAGACTGATCAAGAACAAAGACAAAAGGTACAGATTATCAAGA





AAATGAGCGGGCAAAGCAAGATGGCC (SEQ ID NO: 380)





375
HGL6.847

GAATGGAATTGAAAGGAATGGAATGCAATGGAATGGAATGGGATGGAATGGAATGCAATGGAATC





AACTCGATTGCAATG (SEQ ID NO: 381)





376
HGL6.849

GAAAAAAACGGAATTATCNAATTGAATCNAATANAATCATCNNNNNGACCANANTGGAATCATCT





AATGNAATGNAATGGAATAATCCATGGACTCNAATG (SEQ ID NO: 382)





377
HGL6.850

GAAAAAAACGGAATTATCGAATTGAATCGAATAGAATCATCGAACGGACCAGAATGGAATCATCTA





ATGGAATGGAATGGAATAATCCATGGACTCGAATG (SEQ ID NO: 383)





378
HGL6.853

AACCACTGCTTAAGGAAATAAGAGAGAACACAAACAAATGGAAAAACGTTCCATGCTCATGGATAG





GAGAATCAATATCGTGAAAATGGCC (SEQ ID NO: 384)





379
HGL6.854

TATCGAATGGAATGGAAAGGAGTGGAGTAGACTCGAATAGAATGGACTGGAATGAAATAGATTCG





AATGGAATGGAATGGAATGAAGTGGACTCG (SEQ ID NO: 385)





380
HGL6.855

GTATCAACATCAAACGGAAAAAAACGGAATTATCGAATGGAATCATCTAATGGAATGGAATGGAAT





AATCCATGGACTCGAATG (SEQ ID NO: 386)





381
HGL6.856

TAAATGGAGACATCATTGAATACAATTGAATGGAATCATCACATGGAATCGAATGGAATCATCGTAA





ATGCAATCAAGTGGAATCAT (SEQ ID NO: 387)





382
HGL6.857

GAATGGAATTGAAAGGTATCAACACCAAACGGAAAAAAAAACGGAATTATCGAATGGAATCGAAG





AGAATCATCGAACGGACC (SEQ ID NO: 388)





383
HGL6.858

AGCAATTTCAGCAAAGTCTCAGGATACAAAATCAATGTACAAATTCACAAGCATTCTTATGGACCAA





CAACAG (SEQ ID NO: 389)





384
HGL6.860

AACCAAATTAGACAAATTGGAAATCATTACACATAACAAAAGTAATAAACTGTCAGCCTCAGTAGTA





TTCATTGTACATAAACTGGCC (SEQ ID NO: 390)





385
HGL6.861

TATTTTACCAGATTATTCAAGCAATATATAGACAGCTTAAAGCATACAAGAAGACATGTATAGATTTA





CATGCAAACACTGCACCACTTTACATAAGGGACTTGAGCAC (SEQ ID NO: 391)





386
HGL6.863

GGAATCGAATGGCATCAACATCAAACGGAAAAAAACGGAATTATCGAATGGAATCGAATGGAATCA





TC (SEQ ID NO: 392)





387
HGL6.864

AAACAAAACACAGAAATGCAAAGACAAAACATAAAACGCAGCCATAAAGGACATATTTTAGATAAC





TGGGGAAATTTGTATGGGCTGTGT (SEQ ID NO: 393)





388
HGL6.866
HGL6.867
AGGAAAAGAAAGAAATAGAAAATGCGAAATGGTAAGAAAAAACAGCATAATAAACATTTGTATGG





TGTTGATGGACAATGCATT (SEQ ID NO: 394)





389
HGL6.869

AATGGAATCAACATCAAACGGAATCAAACGGAATTATCGAATGGAATCGAAGAGAATCATCGAACG





GACTCGAATGGAATCATCTAATGGAATGGAATGGAAG (SEQ ID NO: 395)





390
HGL6.872
HGL6.1072,
AATCGAATGGAATCAGCATCAAACGGAAAAAAACGGAATTATCGAATGGAATCGAAGAGAATCATC




HGL6.1301
GAATGGACC (SEQ ID NO: 396)





391
HGL6.877

AAAGAAATGGAATCGAAGAGAATGGAAACAAATGGAATGGAATTGAATGGAATGGAATTGAATGG





AATGGGAACG (SEQ ID NO: 397)





392
HGL6.878

AGAAAGAATCAAGAGGAAATGCAAGAAATCCAAAACACTGTAACAGATATGATGAATAATGAGGT





ATGCACTCATCAGCAGACTCGACAT (SEQ ID NO: 398)





393
HGL6.879

AAACGGAATTATNNANTGGANNNNAAGNNAATCATCGAACGGANNNNANNGGAATCATNTNNN





NGAANGGAATGGAACAATCCATGGTNTNNNN (SEQ ID NO: 399)





394
HGL6.882
HGL6.971
AGCAACTTCAGCAAAGTTTCAGGATACAAAATCAATGTGCAAAAATCACAAGCATTCTTATACACCA





ACAACAGACAAACAGAGAGCC (SEQ ID NO: 400)





395
HGL6.884

AGACAGTCAGACAATCACAAAGAAACAAGAATGAAAATGAATGAACAAAACCTTCAAGAAATATGG





GATTATGAAGAGGCCAAATGT (SEQ ID NO: 401)





396
HGL6.885

ATCATAACGACANGANCAAATTCACACACAACAATNNNNACNNNAAANNCAAATGGGTTAAATNN





TNCAATTAAAGGATGCAGACGGGCAAATTGGATA (SEQ ID NO: 402)





397
HGL6.891

ATCATAANGACAAGANCAAATTCACACACAACAATNNNNACNNNAAANNCAAATGGGTTNAATGN





TNCAATTAAAGGATGCAGACGGNCAAATTGGATA (SEQ ID NO: 403)





398
HGL6.895

GAATGGAATCGAATGGATTGATATCAACTGGAATGGAATGGAAGGGAATGGAATGGAATGGAATT





GAACCAAATGTNNNNGNCTTGAATGGAATG (SEQ ID NO: 404)





399
HGL6.898

GAATCAACATCAAACGGAAAAAAACGGAATTATCGAATGGAATCGAAGAGAATCATCGAATGGACC





(SEQ ID NO: 405)





400
HGL6.904

ATGGAATCAACATCAAACGGAATCAAACGGAATTATCGAATGGAATCAAAGAGAATCATCGAACGG





ACTCGAATGGAATCATCTAATGGAATGGAATGGAAGAATCCATGGACTCGAATGCAATCATCATCG





AAT (SEQ ID NO: 406)





401
HGL6.905

GGAATGGAATGGAATGGAGCNGAATNGAANGGANNNNANTCAAATGGAATGC (SEQ ID NO:





407)





402
HGL6.906

AACATACGCAAATCAATAAATGTAATCCAGCATATAAACAGAACCAAAGACAAAAACCACATGATT





ATCTCAATAGATGCAGAAAAGGCC (SEQ ID NO: 408)





403
HGL6.911

AAACGATTGGACAGGAATGGAATCACCATCGAATGGAAACGAATGGAATCTTCGAATGGAATTGAA





TGAAATTATTGAACGGAATCAAATAGAATCATCATTGAACAGAATCAAATTGGATCAT 





(SEQ ID NO: 409)





404
HGL6.912

AAAAGATGCAAAAGTAGCAAATGCAATGTTAAAACAAGCAAAGAAAGAATCAGGTGGACCACATA





GTGCAGTGCTTCTC (SEQ ID NO: 410)





405
HGL6.914

AACAATAAACAAACTCCAACTAGACACAATAGTCAAATTGCTGAAAATGAAATATAAAGGAACAATC





TCGATGGTAGCCCAAGGA (SEQ ID NO: 411)





406
HGL6.915
HGL6.916
AGTCAATAACAAGAAGACAAACAACCCAATTACAAAATGGGATATGAATTTAATAGATGTTACTCCA





AGGAAGATACACAAATGGCCAAC (SEQ ID NO: 412)





407
HGL6.919

AAAACACCTAGGAATACAGATAACAAGGGACATTAACTACCTCTTAAAGAGAACTACAAACCACTGC





TCAAGGAAATGAGAGAGGACACAAACACATGGAAAAACATTCCATCCTCATGGATAGGAAGAATCA





ATATTGTGAAAATGGCC (SEQ ID NO: 413)





408
HGL6.921

GATATATAAACAAGAAAACAACTAATCACAACTCAATATCAAAGTGCAATGATGGTGCAAAATGCAA





GTATGGTGGGGACAGAGAAAGGATGC (SEQ ID NO: 414)





409
HGL6.923

ACACATATCAAACAAACAAAAGCAATTGACTATCTAGAAATGTCTGGGAAATGGCAAGATATTACA





(SEQ ID NO: 415)





410
HGL6.924

GGAATCATCATATAATGGAATCGAATGGAATCAACATCAAATGGAATCAAATGGAATCATTGAACG





GAATTGAATGGAATCGTCAT (SEQ ID NO: 416)





411
HGL6.926

CCCAACTTCAAATTATACTACAAGGCTACAGTAATCAAAAAAGCATAGTACTATTACAAAAACAGAC





ACACAGGCCAATGGAATACAAT (SEQ ID NO: 417)





412
HGL6.927

AAACGCAGAAACAAATCAACGAAAGAACGAAGCAATGAAAGACAAAGCAACAAAAGAATGGAGTA





AGAAAGCACACTCCACAAAGTGGAAGCAGGCTGGGACA (SEQ ID NO: 418)





413
HGL6.928

AACTAACACAAGAACAGAAAACCAAACATCACATGTTCTCACTCATAAGCGGGAGCTGAACAATGA





GAACACACGGACACAGGGAGAGGAACATG (SEQ ID NO: 419)





414
HGL6.929

GCCACAATTTTGAAACAACCATAATAATGAGAATACACAAGACAACTCCAATAATGTGGGAAGACA





AACTTTGCAATTCACATCATGGC (SEQ ID NO: 420)





415
HGL6.933

AATGGAATCAACATCAAACGGAATCAAATGGAATTATCGAATGGAATCGAAGAGAATCATCGAATT





GTCACGAATGGAATCATCTAATGGAATGGAATGGAATAATCCATGGCCCCTATGC (SEQ ID NO:





421)





416
HGL6.934
HGL6.935
TAAACAGAACCAAAGACAAAAATCACATGATTATCTCAATAGATGCAGAAAAGGCC (SEQ ID NO:





422)





417
HGL6.937

ATCAACAGACAACAGAAACAAATCCACAAAGCACTTAGTTATTAGAACTGTCATACAGACTGTACAA





CAACCACATTTACCAT (SEQ ID NO: 423)





418
HGL6.938

AATGGACTCGAATGAAATCATCATCAAACAGAATCGAATGGAATCATCTAATGGAATGGAATGGCA





TAATCCATGGACTCGAATG (SEQ ID NO: 424)





419
HGL6.939

TAAAATGAAACAAATATACAACACGAAGGTTATCACCAGAAATATGCCAAAACTTAAATATGAGAAT





AAGACAGTCTCAGGGGCCACAGAG (SEQ ID NO: 425)





420
HGL6.940

AAAATACAGCGTTATGAAAAGAATGAACACACACACACACACACACACACAGAAAATGT (SEQ ID





NO: 426)





421
HGL6.942

TACTCTCAGAAGGGAAGCAGATATTCAGCATAAATCATATTGTTTGTACAAAGAGTCTGGGCATGGT





GAATGACACT (SEQ ID NO: 427)





422
HGL6.943

CAAACAAATAGGTACCAAACAAATAACAACATAAACCTGACAACACACTTATTTACAAGAGACATCC





CTTATATGAAAGGGTACAGAAAAGTCGATGGTAAGATGATGGGGAAAGGTATACCAACCACTAGCA





GAAGG (SEQ ID NO: 428)





423
HGL6.944

TGGAATCGAATGGAATCAATATCAAACGGAAAAAAACGGAATTATCGAATGGAATCGAAAAGAATC





ATCGAATGGGCCCGAATGGAATCATCT (SEQ ID NO: 429)





424
HGL6.945

ACAAATGGAATCAACAACGAATGGAATCGAATGGAAACGCCATCGAAAGGAAACGAATGGAATTA





TCATGAAATTGAAATGGATG (SEQ ID NO: 430)





425
HGL6.947

GACAAGAGTTCAGAAAGGAAGACTACACAGAAATACGCATTTTAAAGTCACTGACATGGAGATGAC





ACTTAAAACCATGAACATGGATGGG (SEQ ID NO: 431)





426
HGL6.956

AAAATAAACGCAAATTAAAATCACAAGATACCAACACATTCCCACGGCTAAGTACGAAGAACAAGG





GCGAATGGTCAGAATTAAGCTCAAACCT (SEQ ID NO: 432)





427
HGL6.957

TAAACTGACACAAACACAGACACACAGATACACACATACATACAGAAATACACATTCACACACAGAC





CTGGTCTTTGGAGCCAGAGATG (SEQ ID NO: 433)





0
HGL6.958

GATCAATAAATGTAATTCATCATATAAACAGAGAACTAAAGACAAAAACACATGATTATCGCAATAC





ATGCAGAAAAGGCC (SEQ ID NO: 434)





429
HGL6.962

AGGACATGAATAGACAATTCTCAAAAGAAGATACACAAGTGGCAAACAAACACATGAAAAAAGACT





CAACATTAGTAATGACCATGGAAATGCAAATC (SEQ ID NO: 435)





430
HGL6.963

ACATCAAACGGAAAAAAACGGAATTATCGAATGGAATCGAAGAGAATCATCGAATGGACC (SEQ ID





NO: 436)





431
HGL6.965

AATGGACTCGAATAGAATTGACTGGAATGGAATGGACTCGAATGGAATGGAATGGAATGGAAGGG





ACTCG (SEQ ID NO: 437)





432
HGL6.966

AAGAAAGACAGAGAACAAACGTAATTCAAGATGACTGATTACATATCCAAGAACATTAGATGGTCA





AAGACTTTAAGAAGGAATACATTCAAAGGCAAAACGTCACTTACTGATTTTGGTGGAGTTTGCCACA





TGGAC (SEQ ID NO: 438)





433
HGL6.967

AACATAATCCATCAAATAAACAGAACCAAAGACAAAAACCACATGATTATCTCAATAGATGCAGAAA





AGGCCTTC (SEQ ID NO: 439)





434
HGL6.969

GAATGGAATCGAATGGAATGAACATCAAACGGAAAAAAACGGAATTATCGAATGGAATCAAAGAG





AATCATCGAATGGACCCG (SEQ ID NO: 440)





435
HGL6.972

ATGGACTCGAATGTAATAATCATTGAACGGAATCGAATGGAATCATCATCGGATGGAAACGAATGG





AATCATCATCGAATGGAATCGAATGGGATC (SEQ ID NO: 441)





436
HGL6.974

GAATGGAATCAACATCAAACGGAATCAAACGGAATTATCGAATGGAATCGAAGAGAATCATCGAAT





GGCCACGAATGGAATCATCTAATGGAATGGAATGGAATAATCCATGG (SEQ ID NO: 442)





437
HGL6.975

GAAATGGAATGGAAAGGAATAAAATCAAGTGAAATTGGATGGAATGGATTGGAATGGATTGGAAT





G (SEQ ID NO: 443)





438
HGL6.978

AAACGGAAAAAAAACGGAATTATCGAATGGAATCGAAGAGAATCATCGAACGAACCAGAATGGAA





TCATCTAATGGAATGGAATGGAATAATCCATGG (SEQ ID NO: 444)





439
HGL6.981

ATTAACCCGAATAGAATGGAATGGAATGGAATGGAACGGAACGGAATGGAATGGAATGGAATGGA





ATGGAATGGATCG (SEQ ID NO: 445)





440
HGL6.982

GCAAAACACAAACAACGCCATAAAAAACTGGGCAAAGGATATGAACAGACATTTTTCAAAACAAAA





CATACTTATGGCCAAC (SEQ ID NO: 446)





441
HGL6.984

AACATCAAACGGAAAAAAACGGAATTATCGTATGGAATCGAAGAGAATCATCGAATGGACC (SEQ





ID NO: 447)





442
HGL6.985



AAATCAATAAATG
TAATTCAGCATATAAACAGAACCAAAGACAAAAACCACATGATTATCTCAATAG






ATGCAGAAAAGGCCTTT (SEQ ID NO: 448)





443
HGL6.986

AGAATCAAATGGAATTGAATCGAATGGAATCGAATGGATTGGAAAGGAATAGAATGGAATGGAAT





GGAATG (SEQ ID NO: 449)





444
HGL6.988

GAATAGAATTGAATCATCATTGAATGGAATCGAGTAGAATCATTGAAATCGAATGGAATCATCATCG





AATGGAATTGGGTGGAATC (SEQ ID NO: 450)





445
HGL6.989

CACCGAATAGAATCGAATGGAACAATCATCGAATGGACTCAAATGGAATTATCCTCAAATGGAATC





GAATGGAATTATCGAATGCAATCGAATAGAATCATCGAATAGACTCGAATGGAATCATCGAATGGA





ATGGAATGGAACAGTC (SEQ ID NO: 451)





446
HGL6.992
HGL6.1286
AAATCATCATCGAATGGAATCGAATGGTATCATTGAATGGAATCGAATGGAATCATCATCAGATGG





AAATGAATGGAATCGTCAT (SEQ ID NO: 452)





447
HGL6.997

GAATGGAATCGAAAGGAATAGAATGGAATGGATCGTTATGGAAAGACATCGAATGGAATGGAATT





GACTCGAATGGAATGGACTGGAATGGAACG (SEQ ID NO: 453)





448
HGL6.998

GAATAGAATTGAATCATCATTGAATGGAATCGAGTAGAATCATTGAAATCGAATGGAATCATCATCG





AATGGAATTGGGTGGAATC (SEQ ID NO: 454)





449
HGL6.1001

GAAAGGAATAGAATGGAATGGATCGTTATGGAAAGACATCGAATGGGATGGAATTGACTCGAATG





GATTGGACTGGAATGGAACGGACTCGAATGGAATGGACTGGAATG (SEQ ID NO: 455)





450
HGL6.1003

TGGATTTCAGATATTTAACACAAAATAGTCAAAGCAGATAAATACTAGCAACTTATTTTTAATGGGTA





ACATCATATGTTCGTGCCTT (SEQ ID NO: 456)





451
HGL6.1004

ACAGCAGAAAACGAACATCAGAAAATCACTCTACATGATGCTTAAATACAGAGGGCAAGCAACCCA





AGAGAAAACACCACTTCCTAAT (SEQ ID NO: 457)





452
HGL6.1011

AACATACACAAATCAATAAACGTAATCCAGCTTATAAACAGAACCAAAGACAAAAACCACATGATTA





TCTCAATAGATGCGGAAAAGGCC (SEQ ID NO: 458)





453
HGL6.1012

ACATCAAACGGAATCAAACGGAATTATCGAATGGAATCGAAAAGAATCATCGAACGGACTCGAATG





GAATCATCTAATGGAATGGAATGGAAG (SEQ ID NO: 459)





454
HGL6.1013

ATCGAATGGAATCAACATCAAACGGAAAAAAACGGAATTATCAAATGGAATCGAAGAGAATCATCG





AATGGACC (SEQ ID NO: 460)





455
HGL6.1014

GAATAATCATTGAACGGAATCGAATGGAAACATCATCGAATGGAAACGAATGGAATCATCATCGAA





TGGAAATGAAAGGAGTCATC (SEQ ID NO: 461)





456
HGL6.1015

CATCAAACGGAATCAAACGGAATTATCGAATGGAATCGAAAAGAATCATCGAACGGACTCGAATGG





AATCATCTAATGGAATGGAATGGAAGAATCCATGGACTCGAATG (SEQ ID NO: 462)





457
HGL6.1016

TCCAGTCGATCATCATATAGTCAGCACTTATCATACACCAAGCCGTGTGCAAGGAAAGGGAATACAA





CCATGAACATGATAGATGGATGGTT (SEQ ID NO: 463)





458
HGL6.1017

ACAAACCACTGCTCAAGGAAATAAGGACACAAACAAATGGAACAACATTCCGTGCTCATGGATAGG





AAGAATCAATATCGTGAAAATGGCCATACT (SEQ ID NO: 464)





459
HGL6.1019

ACAAAATTGATAGACCACTAGCAAGACTAATAAAGAAGAAAAGAGAGAAGAATCATTACCATTCAG





GACATAGGCATGGGCAAGGAC (SEQ ID NO: 465)





460
HGL6.1024

AAACGGAATCAAACGGAATTATCGAATGGAATCGAAGAGAATCATCGAATGGACTCGAATGGAATC





ATCTAATGGAATGGAATGGAAGAATCCATGG (SEQ ID NO: 466)





461
HGL6.1026

ATACACAAATCAATAAATGTAATCCAGCATATAAACAGAACCAAAGACAAAAACCATATGATTATCT





CAATGGATGCAGAAAAGGCC (SEQ ID NO: 467)





462
HGL6.1027

AATNGAATAGAATCATCGAATGGACTCGAATGGAATCATCGANNNTANTGATGGAACAGTC (SEQ





ID NO: 468)





463
HGL6.1030

TGGAATGGAATCATCGCATAGAATCGAATGGAATTACCATCGAATGGGATCGAATGGTATCAACAT





CAAACGCAAAAAAACGGAATTATCGAATGGAATCGAAGAGAATCTTCGAACGGACCCG (SEQ ID





NO: 469)





464
HGL6.1031

GAATTGAATTGAATGGAATGGAATGCAATGGAATCTAATGAAACGGAAAGGAAAGGAATGGAATG





GAATGGAATG (SEQ ID NO: 470)





465
HGL6.1033

AACAGAATGGAATCAAATCGAATGAAATGGAATGGAATAGAAAGGAATGGAATGAAATGGAATGG





AAAGGATTCGAATGGAATGCAATCG (SEQ ID NO: 471)





466
HGL6.1034

ATGGAATGGAATGGAATGGAATTAAATGGAATGGAAAGGAATGGAATCGAATGGAAAGGAATC





(SEQ ID NO: 472)





467
HGL6.1037
HGL6.1245
GTCGAAATGAATAGAATGCAATCATCATCAAATGGAATCCAATGGAATCATCATCAAATAGAATCGA





ATGGAATCATCAAATGGAATCGAATGGAGTCATTG (SEQ ID NO: 473)





468
HGL6.1039

TGGAATTATCGAAAGCAAACGAATAGAATCATCGAATGGACTCGAATGGAATCATCGAATGGAATG





GAATGGAACAG (SEQ ID NO: 474)





469
HGL6.1045

AAAGGAATGGAATGCAATGGAATGCAATGGAATGCACAGGAATGGAATGGAATGGAATGGAAAG





GAATG (SEQ ID NO: 475)





470
HGL6.1046

AATCTAATGGAATCAACATCNAACGGAAAAAAACGGAATTATCGAATGGAATCNAAGAGAATCATC





NAATGGACC (SEQ ID NO: 476)





471
HGL6.1047

TACACAACAAAAGAAATACTCAACACAGTAAACAGACAACCTTCAGAACAGGAGAAAATATTTGCA





AATACATCTAACAAAGGGCTAATATCCAGAATCT (SEQ ID NO: 477)





472
HGL6.1048

NGCAATCNTAGTNTCAGATAAAACAGACATTAAACCAACAAAGATCAAAAGAGACAAAGAAGGCC





ANTAC (SEQ ID NO: 478)





473
HGL6.1052

GAATCGAATGGAATCAACATCAAACGGAAAAAAACGGAATTATCGAATGGAATCNAAAAGAATCAT





CNAATGGACC (SEQ ID NO: 479)





474
HGL6.1055

ACAGTTAACAAAAACCGAACAATCTAATTACGAAATGAACAAAAGATATGAACAGACATTTCACCCG





AGAGTATACAGGGGCCAGGCATGGT (SEQ ID NO: 480)





475
HGL6.1056

AATGGAATCGAATGGAATGCAATCCAATGGAATGGAATGCAATGCAATGGAATGGAATCGAACGG





AATGCAGTGGAAGGGAATGG (SEQ ID NO: 481)





476
HGL6.1057

GAACACAGAAAAATTTCAAAGGAATAATCAACAGGGATTGATAACTAACTGGATTTAGAGAGCCAA





GGCAAAGAGAATCAAAGCACAGGGCCTGAGTCGGAG (SEQ ID NO: 482)





477
HGL6.1058

TATACCACACAAATGCAAAAGATTATTAGCAACAATTATCAACAGCAATATGTCAACAAGTTGACAA





ACCTAGAGGACATGGAT (SEQ ID NO: 483)





478
HGL6.1061

CACCATGAGTCATTAGGTAAATGCAAATCAAAACCACAATGAAATACTTCACACCCATGAAGATGGC





TATAATAAAAAAACAGACA (SEQ ID NO: 484)





479
HGL6.1067

AGTTGAATAGAACCAATCCGAATGAAATGGAATGGAATGGAACGGAATGGAATTGAATGGAATGG





AATGGAATGCAATGGA (SEQ ID NO: 485)





480
HGL6.1069

AAGTAATAAGACTGAATTAGTAATACAAAGTGTCTCAACAAAGAAAATTGCGGGACTGTTCATGCTC





ATGGACAGGAAGAATCAATATCATGAAAATGGCC (SEQ ID NO: 486)





481
HGL6.1070

AACTCGATTGCAATGGAATGTAATGTAATGGAATGGAATGGAATTAACGCGAATAGAATGGAATGG





AATGTAATGGAACGGAATGGAATG (SEQ ID NO: 487)





482
HGL6.1074

AAGCGGAATAGAATTGAATCATCATTGAATGGAATCGAGTAGAATCATTGAAATCGAATGGAATCA





TAGAATGGAATCCAAT (SEQ ID NO: 488)





483
HGL6.1076

AAAGGAAAACTACAAAACACTGCTGAAAGAAATCATTGACAACACAAACAAATGGAAACACATCCC





AAGATCATGGGTGGGTGGAATCAAT (SEQ ID NO: 489)





484
HGL6.1077

AATGGAATCNAAAGGAATAGAATGGAATGGATCGTTATGGAAAGATATCGAATGGAATGGAATTG





ACTCGAATGGAATGGACTGGAATGGAACG (SEQ ID NO: 490)





485
HGL6.1078

TAACGGAATAATCATCGAACAGAATCAAATGGAATCATCATTGAATGGAATTGAATGGAATCTTCGA





ATAGACATGAATGGACCATCATCG (SEQ ID NO: 491)





486
HGL6.1084

AAAGACCGAAACAACAACAGAAACAGAAACAAACAACAATAAGAAAAAATGTTAAGCAAAACAAA





TGATTGCACAACTTACATGATTACTGAGTGTTCTAATGGT (SEQ ID NO: 492)





487
HGL6.1085

AAGATTTAAACATAAGACCTAAAACGACAAAAATCCTAGGAGAAAACCTAAGCAATACCATTCAGG





ACATAGGCATGGGCAAAGACTTCATG (SEQ ID NO: 493)





488
HGL6.1090

AGAAACAGCCAGAAAACAATTATTACCTACAGCATTAAAACTATTCAAATGACAGCATATTTTTCAGC





AGAAATCATGAAGGCCAGAAGGACGTGTCAT (SEQ ID NO: 494)





489
HGL6.1092

ATGTACACAAATCAATAAATGCAGTCCAGCATATAAACAGAACCAAACACAAAAACCACATGATTAT





CTCAATAGATGCAGAAAAGGCCTTT (SEQ ID NO: 495)





490
HGL6.1093

AGCAACTTCAGCAAAGTCTCAGGACACAAAATCAATGTGCAAAAATCACAAGCATTCTTATACACCA





ATAACAGACAAACAGAGAGCC (SEQ ID NO: 496)





491
HGL6.1094

TTGAATCGAATGGAATCGAATGGATTGGAAAGGAATAGAATGGAATGGAATGGAATTGACTCAAAT





GGAATG (SEQ ID NO: 497)





492
HGL6.1097
HGL6.1241
AACGGAATCAAACGGAATTATCGAATGGAATCGAATAGAATCATCGAACGGACTCGAATGGAATCA





TCTAATGGAATGGAATGGAAG (SEQ ID NO: 498)





493
HGL6.1098

AACATCACTGATCATTAGAAACACACAAATCAAAACCACAATAAGATACCATCTAACACCAGTCACA





ATGGCTATT (SEQ ID NO: 499)





494
HGL6.1100

TAAGCAATTTCAGCAGTCTCAGGATACAAAATCAATGTGCAAAAATCACAAGCATTCTTATACACCA





ACAACAGACAAACAGAGAGCCAAATCG (SEQ ID NO: 500)





495
HGL6.1101

AGAAAAAAACAAACAGCCCATTAAAAGGTAGACAAAGGACATGAACACTTTTCAAAAGAAGACATA





CATGTGGCCAAACAGCATG (SEQ ID NO: 501)





496
HGL6.1103

ATTGGAATGGAACGGAACAGAACGGAATGGAATGGAATAGAATGGAATGGAATGGAATGGTATG





GAATGGAATGGAATGGTACG (SEQ ID NO: 502)





497
HGL6.1104

AGAGCATCCACAAGGCCCAATTCAAAGAATCTGAAATAATGTATTGTTACTGCAACAGTTGTGAGTA





CCAGTGGCATCAG (SEQ ID NO: 503)





498
HGL6.1107

AATCCACAAAGACAACAGAAGAAAAGACAACAGTAGACAAGGATGTCAACCACATTTTGGAAGAG





ACAAGTAATCAAACACATGGCA (SEQ ID NO: 504)





499
HGL6.1109

AAACAGAACCACAGATATCTGTAAAGGATTACACTATAGTATTCAACAGAGTATGGAACAGAGTATA





GTATTCAACAGAGTATGCAAAGAAACTAAGGCCAGAAAG (SEQ ID NO: 505)





500
HGL6.1110

AGCAAACAAACAAACAAACAAACAAACTATGACAGGAACAAAACGTCACATATCAACATTAACAAA





GAATGTAAACAGCCTAAATGCTTCACTTAAAAGTTATAGACAGGGGCTGGGCATGGTGGCTCACGC





C (SEQ ID NO: 506)





501
HGL6.1111

AAAAGTACAGAAGACAACAAAAAATGAGAGAGAGAAAGATAACAGACTATAGCAGCATTGGTGAT





CAGAGCCACCAG (SEQ ID NO: 507)





502
HGL6.1114

TACAAGAAAATCACAGTAACATTTATAAAACACAGAAGTGTGAACACACAGCTATTGACCTTGAAAA





CAGTGAAAGAGGGTCAGCTGTAGAACTAAGACATAAGCAAAGTTTTTCAATCAAGAATACATGGGT





GGCC (SEQ ID NO: 508)





503
HGL6.1116

GAATCGAATGGAATCAACATCAAACGGAAAAAAACGGAATTATCGAATGGAATCGAAAAGAATCAT





CGAACGGACTCGAATGGAATCATCTAATGGAATGGAATGGAAGAATCCATGG (SEQ ID NO: 509)





504
HGL6.1117

AATGGAATCGAATGGAATCATCATCAAATGGAATCTAATGGAATCATTGAACGGAATTGGATGGAA





TCGTCAT (SEQ ID NO: 510)





505
HGL6.1118

AACGGAATCAAACGGAATTATCGAATGGAATCGAAGAGAATCATCGAATGGCCACGAATGGAATCA





TCTAATGGAATGGAATGGAATAATCCATGGACCCGAATG (SEQ ID NO: 511)





506
HGL6.1121

CAACATCAAACGGAAAAAAACGGAATTATCGAATGGAATCGAAGAGAATCATCGAATGGACC (SEQ





ID NO: 512)





507
HGL6.1122

CACAACCAAAGCAATGAAAGAAAAGCACAGACTTATTGAAATGAAAGTACACACCACAGAATGGGA





GCAGGCTCAAGCAAGC (SEQ ID NO: 513)





508
HGL6.1123
HGL6.1229
ATCAAAGGGAATCAAGCGGAATTATCGAATGGAATCGAAGAGAATCATCGAATGGACTCGAATGG





AATCATGTGATGGAATGGAATGGAATAATCCACGGACT (SEQ ID NO: 514)





509
HGL6.1125

AAGAAACAATCAAAAGGAAGTGCTAGAAATAAAACACACTGTAATAGAAAAGAAGAATGCCTTATG





GGCTTATCAATAGACTAGACATGGCCAGG (SEQ ID NO: 515)





510
HGL6.1127

AGATAAGAATAAGGCAAACATAGTAATAGGGAGTTCATGAATAACACACGGAAAGAGAACTTACA





GGGCTGTGATCAGGAAACG (SEQ ID NO: 516)





511
HGL6.1128

GGAATCGAATGGAATCAATATCAAACGGAGAAAAACGGAATTATCGAATGGAATCGAAGAGAATC





ATCGAATGGACC (SEQ ID NO: 517)





512
HGL6.1130

TCAGACCATAGCAGATAACATGCACATTAGCAATACGATTGCCATGACAGAGTGGTTGGTG 





(SEQ ID NO: 518)





513
HGL6.1132

AGGAATGGACACGAACGGAATGCAATCGAATGGAATGGAATCTAATAGAAAGGAATTGAATGAAA





TGGACTGG (SEQ ID NO: 519)





514
HGL6.1133

GGAAGGGAATCAAATGCAACAGAATGTAATGGAATGGAATGCAATGGAATGCAATGGAATGGAAT





GGAATGCAATGGAATGG (SEQ ID NO: 520)





515
HGL6.1138

AAATTGGATTGAATCGAATCGAATGGAAAAAATGAAATCAAATGAAATTGAATGGAATCGAAATGA





ATGTAAACAATGGAATCCAATGGAATCCAATGGAATCGAATCAAATGGTTTTGAGTGGCGTAAAAT





G (SEQ ID NO: 521)





516
HGL6.1139

AAGGATTCGAATGGAATGCAATCGAATGGAATGGAATCGAACGGAATGGAATAAAATGGAAGAAA





ACTGGCAAGAAATGGAATCG (SEQ ID NO: 522)





517
HGL6.1141

GAAAAATCATTGAACGGAATCGAATGGAATCATCATCGGATGGAAACGAATGGAATCATCATCGAA





TGGAAATGAAAGGAGTCATC (SEQ ID NO: 523)





518
HGL6.1147

GGTTCAACTTACAATATTTTGACTTGACAACAGTGCAAAAGCAATACACGATTAGTAGAAACACACT





TCCAATGCCCATAGGACCATTCTGC (SEQ ID NO: 524)





519
HGL6.1150

GGAATCGAATGGAATCAACATCAAACGGAGAAAAACGGAATTATCGAATGGAATCGAAGAGAATC





ATCGAATGGACC (SEQ ID NO: 525)





520
HGL6.1152

TAACCTGATTTGCCATAATCCACGATACGCTTACAACAGTGATATACAAGTTACATGAGAAACACAA





ACATTTTGCAAGGAAACTGTGGCCAGATG (SEQ ID NO: 526)





521
HGL6.1153

TAACTACTCACAGAACTCAACAAAACACTATACATGCATTTACCAGTTTATTATAAAGATACAAGTCA





GGAACAGCCAAATGGAAGAAATGTAAATGGCAAG (SEQ ID NO: 527)





522
HGL6.1155

GCTCAAAGAAATCAGAAATGACACAAGCAAATGGAAAAACATGCCATGTTCATGAATATGAAGAAT





CAATATTGTTAAAATGGCCATACTGCTCA (SEQ ID NO: 528)





523
HGL6.1157

AAAGAAATGTCACTGCGTATACACACACACGCACATACACACACCATGGAATACTACTCAGCTATAC





AAAGGAATGAAATAATCCACAGCCAC (SEQ ID NO: 529)





524
HGL6.1159

GAATAGAACAGAATGGAATCAAATCGAATGAAATGGAATGGAATAGAAAGGAATGGAATGAAATG





GAATGGAAAGGATTCGAATGGAATG (SEQ ID NO: 530)





525
HGL6.1162

TGAACGGAATCGAATGGAATCATCATCGGATGGAAACGAATGGAATCATCATCGAATGGAAATGAA





AGGAGTCATC (SEQ ID NO: 531)





526
HGL6.1165

GAATAGAACGAAATGGAATGGAATGGAATGGAATGGAAAGGAATGGAATGGAATGGAACG (SEQ





ID NO: 532)





527
HGL6.1166

AACGTGACATACATACAAAAAGTTTTTAGAGCAAGTGAAATTTTAGCTGCTATATGTTAATTGGTGG





TAATCCC (SEQ ID NO: 533)





528
HGL6.1169

GGAATAACAACAACAACAACCAAAAGACATATAGAAAACAAACAGCACGATGGCAGATGTAAAGC





CTACC (SEQ ID NO: 534)





529
HGL6.1174

GACAAAAAGAATCATCATCGAATAGAATCAAATGGAATCTTTGAATGGACTCAAAAGGAATATCGTC





AAATGGAATCAAAAGCCATCATCGAATGGACTGAAATGGAATTATCAAATGGACTCG (SEQ ID NO:





535)





530
HGL6.1175

GTAACAAAACAGACTCATAGACCAATAGAACAGAATAGAGAATTCAGAAATAAGACTGCACTTCTAT





GACCATGTGATCTTAGACAAACCT (SEQ ID NO: 536)





531
HGL6.1176

AGATAAAAAGAACAGCAGCCAAAATGACAAAAGCAAAAAGCAAAATCGTGTTAGAGCCAGGTGTG





GTGATGTGTGCT (SEQ ID NO: 537)





532
HGL6.1178

GCAATCTCAGGATACAAAATCAATGTGCAAAAATCACAAGCATTCTCATACACCAATAACAGACAAA





CAGAGCCAAATCATG (SEQ ID NO: 538)





533
HGL6.1179

AACCAAACCAAGCAAACAAACAAACAGTAAAAACTCAATAACAACCAACAAACAGGAAATACCAGG





TAATTCAGATTATCTAGTTATGTGCCATAGT (SEQ ID NO: 539)





534
HGL6.1181

GAATGAATTGAATGCAAACATCGAATGGTCTCGAATGGAATCATCTTCAAATGGAATGGAATGGAA





TCATCGCATAGAATCGAATGGAATTATCAACGAATGGAATCGAATGGAATCATCATCAGATGGAAA





TGAATGGAATCGTCAT (SEQ ID NO: 540)





535
HGL6.1183

TGGAATGGAATCAAATCGCATGGAATCGAATGGAATAGAAAAGAATCAAACAGAGTGGAATGGAA





TGGAATGGAATGGAATCATGCCGAATGGAATG (SEQ ID NO: 541)





536
HGL6.1184

GAATCCATGTTCATAGCACAACAACCAAACAGAAGAAATCACTGTGAAATAAGAAACAAAGCAAAA





CACAGATGTCGACACATGGCA (SEQ ID NO: 542)





537
HGL6.1185

AAATGGAATAATGAAATGGAATCGAACGGAATCATCATCAAAAGGAACCGAATGAAGTCATTGAAT





GGAATCAAAGGCAATCATGGTCGAATGGAATCAAATGGAAACAGCATTGAATAGAATTGAATGGA





GTCATCACATGGAATCG (SEQ ID NO: 543)





538
HGL6.1186

GAATTAACCCGAATAGAATGGAATGGAATGGAATGGAACAGAACGGAACGGAATGGAATGGAATG





GAATGGAATGGAATG (SEQ ID NO: 544)





539
HGL6.1188

AAGATATACAAGCAGCCAACAAACATACGAAAGAATGCTCAACATCACTAATCCTCAGAGAAATTTA





AATCAAAACCACAATGAGTTACAATCTCATACCAGTCAGAAT (SEQ ID NO: 545)





540
HGL6.1190

AGAATTACAAACCACTGCTCAACAAAATAAAAGAGTACACAAACAAATGGAAGAATATTCCATGCTT





ATGGATAGGAAGAATCAATATTGTGAAAATGGCCATACT (SEQ ID NO: 546)





541
HGL6.1192

CATCGAATGGACTCGAATGGAATAATCATTGAACGGAATCGAAGGGAATCATCATCGGATGGAAAC





GAATGGAATCATCATCGAATGGAAATG (SEQ ID NO: 547)





542
HGL6.1194

CACCCATCTGTAGGACCAGGAAGCCTGATGTGGGAGAGAACAGCAGGCTAAATCCAGGGTTGGTCT





CTACAGCAGAGGGAATCACAAGCCTGTTAGCAAGTGAAGAACCAACACTGGCAAGAGTGTGAAGG





CC (SEQ ID NO: 548)





543
HGL6.1195

TAATGCAAACTAAAACGACAATGAGATATCAATACATAACTACCAGAAAGGCTAACAAAAAAACAG





TCATAACACACCAAAGGCTGATGAGTGAGGATGTGCAG (SEQ ID NO: 549)





544
HGL6.1196

AAAGGAATCAAACGGAATTATCGAATGGAATCGAAAAGAATCATCGAACGGACTCGAATGGAATCA





TCTAATGGAATGGAATGGAAGAATCCATGGACTCGAATG (SEQ ID NO: 550)





545
HGL6.1198

AGCAACTTCAGCAAAGTCTCAGGATACAAAATCAATGAGCAAAAATCACAAGCATTCTTACACACCA





ATAACAGACAAACAGAGAGCC (SEQ ID NO: 551)





546
HGL6.1199

GGATATAAACAAGAAAACAACTAATCACAACTCAATATCAAAGTGCAATGATGGTGCAAAATGCAA





GTATGGTGGGGACAGAGAAAGGATGC (SEQ ID NO: 552)





547
HGL6.1200

AATCAGTAAACGTAATACAGCATATAAACAGAACCAAAGACAAAAACCACATGATTATCTCAATAGA





TGCAGAAAAGGCC (SEQ ID NO: 553)





548
HGL6.1202

AACATCAAACGGAAAAAAACGGAAATATCGAATGGAATCGAAGAGAATCATCGAATGGACC (SEQ





ID NO: 554)





549
HGL6.1203

TAAAATGGAATCGAATGGAATCAACATCAAATGGAATCAAATGGAATCATTGAACGGAATTGAATG





GAATCGTCAT (SEQ ID NO: 555)





550
HGL6.1204

AATCATCATCGAATGGAATCGAATGGTATCATTGAATGGAATCGAATGGAATCATCATCAGATGGA





AATGAATGGAATCGTCAT (SEQ ID NO: 556)





551
HGL6.1205

CAATGCGTCAAGCTCAGACGTGCCTCACTACGGCAATGCGTCAAGCTCAGGCGTGCCTCACTAT





(SEQ ID NO: 557)





552
HGL6.1206

AAGACAGAACACTGAAACTCAACAGAGAAGTAACAAGAACACCTAAGACAAGGAAGGAGAGGGA





AGGCAGGCAG (SEQ ID NO: 558)





553
HGL6.1209

TAAGCTGATAAGCAACTTTAGCAAAGTCTCAGGATACAAAATCAATGTACAAAAATCACAAGCATTC





TTATACACCAACAACAGACAGACGGAGAGCCAAA (SEQ ID NO: 559)





554
HGL6.1212

ATGAACACGAATGTAATGCAATCCAATAGAATGGAATCGAATGGCATGGAATATAAAGAAATGGAA





TCGAAGAGAATGGAAACAAATGGAATGGAATTGAATGGAATGGAATTG (SEQ ID NO: 560)





555
HGL6.1216

AACAATCACTAGTCCTTAAGTAAGAGACAACACCTTTTGTCACACACAGTTTGTCCTAACTTTAT





CTTGGTAATTGGGGAGACC (SEQ ID NO: 561)





556
HGL6.1217

TAATGAGAAGACACAGACAACACAAAGAATCACAGAAACATGACACAGGTGACAAGAACAGGCAA





GGACCTGCAGTGCACAGGAGCC (SEQ ID NO: 562)





557
HGL6.1218

TGTTGAGAGAAATTAAACAAAGCACAGATAAATGGAAAAACGTGTTCATAGATTGAAAGACTTCAT





GTTGTATGGTGTC (SEQ ID NO: 563)





558
HGL6.1219

ATCAAACGGAATCAAACGGAATTATCGAATGGAATCGAAGAGAATCATCGAACGGACTCGAATGGA





ATCATCTAATGGAATGGGATGG (SEQ ID NO: 564)





559
HGL6.1222

ACACAACAACCAAGAAACAACCCCATTAAGAAGTGGGAAAAATACATGAATAAACACATCTCAAAA





GAAGACAAACAAGTGGCTAAC (SEQ ID NO: 565)





560
HGL6.1225

AATGGAAAGGAATCAAATGGAATATAATGGAATGCAATGGACTCGAATGGAATGGAATGGAATGG





ACCCAAATGGAATGGAATGGAATGGAATG (SEQ ID NO: 566)





561
HGL6.1226

GGAATACAACGGAATGGAATCGAAAAAAATGGAAAGGAATGAAATGAATGGAATGGAATGGAAT





GGAATGGATGGGAATGGAATGGAATGG (SEQ ID NO: 567)





562
HGL6.1227

GAATCAAGCGGAATTATCGAATGGAATCGAAGAGAATCATCGAAAGGACTCGAATGGAATCATCTA





ATGGAATGGAATGGAATAATACACGGACC (SEQ ID NO: 568)





563
HGL6.1232

AACAACAACAACAACAGGAAAACAACCTCAGTATGAAGACAAGTACATTGATTTATTCAACATTTAC





TGATCACTTTTCAGGTGGTAGGCAGACC (SEQ ID NO: 569)





564
HGL6.1233

AAGATAACCTGTGCCCAGGAGAAAAACAATCAATGGCAACAAAAGCAGAAACAACACAAATGATAC





AATTAGCAGACAGAAACATTGAGATTGCTATT (SEQ ID NO: 570)





565
HGL6.1234

AATGGACTCCAATGGAATAATCATTGAACGGAATCNAATGGAATCATCATCGGATGGAAATGANTG





GAATCNTCNTCNAATGGAATCN (SEQ ID NO: 571)





566
HGL6.1237

ANNCNNTAAACGTAATCCATCACATAAACANGANCNAANAGNNNAACCGCNNGATTATCTCNNN





NNNTGCNNAAAAGGCC (SEQ ID NO: 572)





567
HGL6.1240
HGL6.1277
TAATTGATTCGAAATTAATGGAATTGAATGGAATGCAATCAAATGGAATGGAATGTAATGCAATGG





AATGTAATAGAATGGAAAGCAATGGAATG (SEQ ID NO: 573)





568
HGL6.1242

AAAGGAATGGACTTGAACAAAATGAAATCGAACGATAGGAATCGTACAGAACGGAAAGAAATGGA





ACGGAATGGAATG (SEQ ID NO: 574)





569
HGL6.1243

AGCAACTTCAGCAAAATCTCAGGATACAAAATCAATGTACAAAAATCACAAGCATTCTTATACACCA





ACAACAGACAAACAGAGAGCC (SEQ ID NO: 575)





570
HGL6.1247

TGAGCAGGGAACAATGCGGATAAATTTCACAAATACAATGTTGAGCAAAAGAAAGACACAAAANA





ATACACACATACACACCATATGGGCTAGG (SEQ ID NO: 576)





571
HGL6.1254

AATGGAATGGAATGTACAAGAAAGGAATGGAATGAAACCGAATGGAATGGAATGGACGCAAAATG





AATGGAATGGAAGTCAATGG (SEQ ID NO: 577)





572
HGL6.1260

AAGTTCAAACATCAGTATTAACCTTGAACATCAATGGCCTACATGCATCACTTAAAACATACAGACA





GGCAAATTGGGTTAAGAAAACAAACAAGCAAACAAAACATGTTCCAAACATTTGTTGGCTAT (SEQ





ID NO: 578)





573
HGL6.1262

GGAATAATCATTGAACGGAATCGAATGGAATCATCATCGGATGGAAACGAATGGAATCATCATCGA





ATGGAAATGAAAGGAGTCATC (SEQ ID NO: 579)





574
HGL6.1264

GGAACGAAATCGAATGGAACGGAATAGAATAGACTCGAATGTAATGGATTGCTATGTAATTGATTC





GAATGGAATGGAATCG (SEQ ID NO: 580)





575
HGL6.1265

TGAAAGGAATAGACTGGAACAAAATGAAATCGAATGGTAGGAATCATACAGAACAGAAAGAAATG





GAACGGAATGGAATG (SEQ ID NO: 581)





576
HGL6.1266

AACCCGAATAGAATGGAATGGAATGGAATGGAACGGAACGGAATGGAATGGAATGGATTGGAAT





GGAATGGAATG (SEQ ID NO: 582)





577
HGL6.1267

AAAGAGAATCAAATGGAATTGAATCGAATGGAATCGAATGGATTGGAAAGGAATAGAATGGAATG





GAATGGAATGGAATGGAATGGAATG (SEQ ID NO: 583)





578
HGL6.1269

AAAACACACAAACATACATGTGGATGCACATATAAACATGCACATACACACACACATAAATGCACAA





ACACACTTAACACAAGCACACATGCAAACAAACACATGG (SEQ ID NO: 584)





579
HGL6.1270

AATGGAATCATCAGTAATGGAATGGAAAGGAATGGAAAGGACTGGAATGGAATGGAATGGAATG





GAATGG (SEQ ID NO: 585)





580
HGL6.1271

GGAACAAAATGAAATCGAACGGTAGGAATCGTACAGAACGGAAAGAAATGGAACGGAATGGAAT





GCACTCAAATGGAAAGGAGTCCAATGGAATCGAAAGGAATAGAATGGAATGG (SEQ ID NO: 586)





581
HGL6.1272

AGAATGAGATCAAGCAGTATAATAAAGGAAGAAGTAGCAAAATTACAACAGAGCAGTGAAATGGA





TATGCTTTCTGGCAATAATTGTGAAAGGTCTGGTAATGAGAAAGTAGCAACAGCTAGTGGCTGCCAC





(SEQ ID NO: 587)





582
HGL6.1273

AACAAATGGAATCAACATCGAATGGAATCGAATGGAAACACCATCGAATTGAAACGAATGGAATTA





TCATGAAATTGAAATGGATGGACTCATCATCG (SEQ ID NO: 588)





583
HGL6.1278

TAACATGCAGCATGCACACACGAATACACAACACACAAACATGTATGCACGCACACGTGAATACACA





ACACACACAAACATGCATGCATGCATACATGAATACACAGCACACAAATATCCAGCAT 





(SEQ ID NO: 589)





584
HGL6.1279

GAATGGAATCAACATCAAACGGAAAAAAAACGGAATTATCGAATGGAATCGAATAGAATCATCGAA





TGGACC (SEQ ID NO: 590)





585
HGL6.1281

AATCGAATGAAATGGAGTCAAAAGGAATGGAATCGAATGGCAAGAAATCGAATGTAATGGAATCG





CAAGGAATTGATGTGAACGGAACGGAATGGAAT (SEQ ID NO: 591)





586
HGL6.1282

AATGGAATTGAACGGAAACATCAGCGAATGGAATCGAAAGGAATCATCATGGAATAGATTCGAATG





GAATGGAAAGGAATGGAATGGAATG (SEQ ID NO: 592)





587
HGL6.1283

ATGGAATCAACATCAAACAGAATCAAACGGAATTATCGAATGGAATCGAAGACAATCATCGAATGG





ACTCGAATGGAATCATCTAATGGAATGGAATGGAAGAATCCATGGTCTCGAATGCAATCATCATCG





(SEQ ID NO: 593)





588
HGL6.1284

GAATAATCATTGAACGGAATCGAATGGAATCATCTTCGGATGGAAACGAATGGAATCATCATCGAA





TGGAAATGAAAGGAGTCATC (SEQ ID NO: 594)





589
HGL6.1288

AATGGACTCGAATGGAATAATCATTGAACGGAATCGAATGGAATCATCATCGGATGGAAATGAGTG





GAATCATCATCGAATGGAATCG (SEQ ID NO: 595)





590
HGL6.1290

AAATGAAATCGAACGGTAGGAATCGTACAGAACGGAAAGAAATGGAACGGAATGGAATGCAATCG





AATGGAAAGGAGTCCAATGGAAGGGAATCGAAT (SEQ ID NO: 596)





591
HGL6.1291

TACCAAACATTTAAAGAACAAATATCAATCCTACGCAAACCATTCTGAAACACAGAGATGGAGGATA





TACAGCGAAACTCATTCTACATGGCC (SEQ ID NO: 597)





592
HGL6.1292

TATTGGAATGGAATGGAATGGAGTCGAATGGAACGGAATGCACTCGAATGGAAGGCAATGCAATG





GAATGCACTCAACAGGAATAGAATGGAATGGAATGGAATGG (SEQ ID NO: 598)





593
HGL6.1294

AGAGAGTATTCATCATGAGGAGTATTACTGGACAAATAATTCACAAACGAACAAACCAAAGCGATC





ATCTTTGTACTGGCTGGCTA (SEQ ID NO: 599)





594
HGL6.1295

GGAATTTAATAGAATGTACCCGAATGGAACGGAATGGAATGGAATTGTATGGCATGGAATGGAA





(SEQ ID NO: 600)





595
HGL6.1298

GCAATCCANTANAATGGAATCGAATGGCATGGAATATAAAGAAATGGAATCGAAGAGAATGGAGA





CAAATGGAATGGAATTGAATGGAATGGAATTG (SEQ ID NO: 601)





596
HGL6.1299

AATGGAATCGAATGGAATCATCATCAAATGGAATCTAATGGAATCATTGAACGGAATTAAATGGAA





TCGTCATCGAATGAATTCAATGCAATCAACGAATGGTCTCGAATGGAACCAC (SEQ ID NO: 602)





597
HGL6.1300

AATTGCAAAAGAAACACACATATACACATATAAAACTCAAGAAAGACAAAACTAACCTATGGTGATA





GAAATCAGAAAAGTACAGTACATTGGTTGTCTTGGTGGG (SEQ ID NO: 603)





598
HGL6.1303

TGACATCATTATTATCAAGAAACATTCTTACCACTGTTACCAACTTCCCAACACAGACTATGGAGAGA





GAGATAAGACAGAATAGCATT (SEQ ID NO: 604)





599
HGL6.1305

GGAATCTATAATACAGCTGTTTATAGCCAAGCACTAAATCATATGATACAGAAAACAAATGCAGATG





GTTTGAAGGGTGGG (SEQ ID NO: 605)





600
HGL6.1308

AAAGAATTGAATTGAATAGAATCACCAATGAATTGAATCGAATGGAATCGTCATCGAATGGAATCG





AAGGGAATCATTGGATGGGCTCA (SEQ ID NO: 606)





601
HGL6.1311

ATCATCGAATGGAATCGAATGGAATCAATATCAAACGGAAAAAAACGGAATTATCGAATGGAATCG





AATAGAATCATCGAATGGACC (SEQ ID NO: 607)





602
HGL6.1314

GAATGAAATCGTATAGAATCATCGAATGCAACTGAATGGAATCATTAAATGGACTTGAAAGGAATT





ATTATGGAATGGAATTG (SEQ ID NO: 608)





603
HGL6.1316

TAAGCAACTTCAGCAAAGTCTCAGGATACAAAATCAATGTGCAAAAATCTCAAGCATTCTTATACAC





GAACAACAGACAAACAGAGAGCT (SEQ ID NO: 609)





604
HGL6.1317

ACTCAAAAGGAATTGATTCGAATGGAATAGAATGGCAAGGAATAGTATTGAATTGAATGGAATGGA





ATGGACCCAAATG (SEQ ID NO: 610)





605
HGL6.1319

GAATGGAATTTAAAGGAATAGAATGGAAGGAATCGGATGGAATGGAATGGAATAGAATGGAGTCG





AATGGAATAGAATCGAATGGAATGGCATTG (SEQ ID NO: 611)





606
HGL6.1323

AACAAAAAATGAGTCAAGCCTTAAATAAAATCAGAGCCAAAAAAGAAGACATTACATCTGATAAGA





CAAAAATTCAAAGGACCATC (SEQ ID NO: 612)





607
HGL6.1324

AACCCAGTGGAATTGAATTGAATGGAATTGAATGGAATGGAAAGAATCAATCCGAGTCGAATGGAA





TGGTATGGAATGGAATGGCATGGAATCAAC (SEQ ID NO: 613)





608
HGL6.1327

ATCAACATCAAACGGAAAAAAAACGGAATTATCGAATGGAATCGAAGAGAATCATCGAATGGACC





(SEQ ID NO: 614)





609
HGL6.1331

AAGGAATGGAATGGTACGGAATAGAATGGAATGGAACGAATTGTAATGGAATGGAATTTAATGGA





ACGGAATGGAATGGAATGGAATCAACG (SEQ ID NO: 615)





610
HGL6.1334

AACGGAATGGAAAGCAATTTAATCAAATGCAATACAGTGGAATTGAAGGGAATGGAATGGAATGG





C (SEQ ID NO: 616)





611
HGL6.1335

AATCGAATGGAACGGAATAGAATAGACTCGAATGTAATGGATTGCTATGTAATTGATTCGAATGGA





ATGGAATCGAATGGAATGCAATCCAATGGAATGGAATGCAATGCAATGGAATGGAATCGAACGGA





ATGCAGTGGAAGGGAATGG (SEQ ID NO: 617)





612
HGL6.1336

TAGCAACATTTTAGTAACATGATAGAAACAAAACAGCAACATAGCAATGCAATAGTAACACAACAGC





AACATCATAACATGGCAGCA (SEQ ID NO: 618)





613
HGL6.1337

GGACAAATTGCTAGAAATAAACAAATTACCAAAAATGATTCAAGTAGAGACAGAGAATCAAAATAG





AACTACACATAAGTGGGCCAAG (SEQ ID NO: 619)





614
HGL6.1340

AAAATAGAATGAAAGAGAATCAAATGGAATTGAATCGAATGGAATCGAATGGATTGGAAAGGAAT





AGAATGGAATGGAATGGAATG (SEQ ID NO: 620)





615
HGL6.1342

AGCAAACAAGTGAATAAACAAGCAAACAAGTGAACAAGCAAACAAGTGAATAAACAAGCAAACAA





GTGAACAAGCAAACAAGTGAATAAACAAGCAAACAAGTGAACAAGGAAACAAGTGAATAAACAAA





GGCTCT (SEQ ID NO: 621)





616
HGL6.1346

AATGGAATCAACACGAGTGCAATTGAATGGAATCGAATGGAATGGAATGGAATGGAATGAATTCA





ACCCGAATGGAATGGAAAGGAATGGAATC (SEQ ID NO: 622)





617
HGL6.1347

AATATACGCAAATCAATAAATGTAATCCAGCATATAAACAGTACTAAAGACAAAAACCACATGATTA





TCTCAATAGATGCAGAAAAGGCC (SEQ ID NO: 623)





618
HGL6.1352

GAATCGAATGGAATCAACATCAAACGGAAAAAAACGGAATTATCGAATGGAATCGAAGAGNNNNN





NCGAATGGACC (SEQ ID NO: 624)





619
HGL6.1354

AACACGAATGTAATGCAATCCAATAGAATGGAATCGAATGGCATGGAATATAAAGAAATGGAATCG





AAGAGAATGGAAACAAACGGAATGGAATTGAATGGAATGGAATTGAATGGAATGGGAACGAATG





GAGTGAAATTG (SEQ ID NO: 625)





620
HGL6.1355

GAATGGAACGGAATAGAACAGACTCGAATGTAATGGATTGCTATGTAATTGATTCGAATGGAATGG





AATCGAATGGAATGCAATCCAATGGAATGGAATGCAATGCAATGGAATGGAATCGAATGGAATGC





AGTGGAAGGGAATGG (SEQ ID NO: 626)





621
HGL6.1356

GAATCGAATGGAATCAATATCAAACGGAAAAAAACGGAATTATCGAATGGAATCGAAGAGAATCAT





CGAATGGACC (SEQ ID NO: 627)





622
HGL6.1359

TAAACAACGAGAACACATGAACACAAAGAGGGGAACAACAGACACCAAGACCTTCTTGAGGGTGG





AGGATGGGAGGAGGGAG (SEQ ID NO: 628)





623
HGL6.1360

AGCAACTTCAGCAGTCTCAGTATACAAAAACAATGTGCAAAAATCACAAGCATTCCTATATGCCAAT





AACAGACAAACAGAGAGCC (SEQ ID NO: 629)





624
HGL6.1361

ATCAAAAGAAAAGCAACCTAACAAATACGGGAAGAATATTTGAATAGACATTTCACAGGAAAAGAT





ATATGAATGGCCAAAAAGCAAATGAAAAG (SEQ ID NO: 630)





625
HGL6.1364

ATAAACATCAAACGGAATCAAACGGAATTATCGAATGGAATCGAAGAGAATAATCGAATGGACTCA





AATGGAGTCATCTAATGGAATGGTATGGAAGAATCCATGGACTCCAACGCAATCATCAGCGAATGG





AATC (SEQ ID NO: 631)





626
HGL6.1365

AAAAGAAAAGACAAAAGACACCAATTGCCAATACTGAAATGAAAAAACAGGTAATAACTATTGATC





CCATGGACATTAAAATGATGTTGAAGGAACACCAC (SEQ ID NO: 632)





627
HGL6.1368

AGCAATAACCAAACAACCTCATTAAAAAGTAGGCAAAGGACATAAACAGACACTTTTCAAAAGAAG





ACATACACGTGGCCAACAAACATATG (SEQ ID NO: 633)





628
HGL6.1370

AGCAACTTCAGCAAAGTCTCAGGATACAAAATCGATGTGCAAAAATCACAAGCATTCTTATACACCA





ATAACAGGCAAACAGAGAGCC (SEQ ID NO: 634)





629
HGL6.1371

GTCATATTTGGGATTTATCATCTGTTTCTATTGTTGTTGTTTTAGTACACACAAAGCCACAATA





AATATTCTAGGCT (SEQ ID NO: 635)





630
HGL6.1373

ATCATCGAATGGAATAGAATGGTATCAACATCAAACGGAGAAAAACGGAATTATCGAATGGAATCG





AAGAGAATCTTCGAACGGACC (SEQ ID NO: 636)





631
HGL6.1374

AAATAAGCCAACGGTCATAAATTGCAAAGCCTTTTACAATCCAAACATGATGGAAACGATATGCCAT





TTTGAAGGTGATTTGAAAAGCACATGGTTT (SEQ ID NO: 637)





632
HGL6.1375

GAATGGAATCATCGCATAGAATCGGATGGAATTATCATCGAATGGAATCGAATGGTATCAACATCA





AACGGAAAAAAACGGAATTATCGAATGGAATCGAATTGAATCATCGAACGGACCCG (SEQ ID NO:





638)





633
HGL6.1378

AATGGACTCGAATGGAATAATCATTGAACGGAATCGAATGGAATCATCATCGGATGGAAATGAATG





GAATAATCCATGGACTCGAATGCAATCATCATCGAATGGAATCGAATGGAATCATCGAATGGACTC





G (SEQ ID NO: 639)





634
HGL6.1379

AATGCAATCATCAACTGGCTTCGAATGGAATCATCAAGAATGGAATCGAATGGAATCATCGAATGG





ACTC (SEQ ID NO: 640)





635
HGL6.1380

AAGAGACCAATAAGGANTANGTAAGCAACANGAGGAAGGAGANANGGGCAAGAGAGATGACCA





GAGTT (SEQ ID NO: 641)





636
HGL6.1382

TGGAATCATCATAAAATGGAATCGAATGGAATCAACATCAAATGGAATCAAATGGAATCATTGAAC





GGAATTGAATGGAATCGTCAT (SEQ ID NO: 642)





637
HGL6.1383

GGAATCATCGCATAGAATCGAATGGAATTATCATCGAATGGAATCGAATGGAATCAACATCAAACG





AAAAAAAACCGGAATTATCGAATGGAATCGAAGAGAATCATCGAACGGACC (SEQ ID NO: 643)





638
HGL6.1384

AAATCATCATCGAATGGGATCGAATGGTATCCTTGAATGGAATCGAATGGAATCATCATCAGATGG





AAATGAATGGAATCGTCAT (SEQ ID NO: 644)





639
HGL6.1386

GGAATGTAATAGAACGGAAAGCAATGGAATGGAACGCACTGGATTCGAGTGCAATGGAATCTATT





GGAATGGAATCGAATGGAATGGTTTGGCATGGAATGGAC (SEQ ID NO: 645)








Claims
  • 1. A recombinant double stranded DNA construct, comprising: (a) a first restriction enzyme recognition site;(b) one or more translation enhancement elements downstream of the first restriction enzyme recognition site;(c) a start codon downstream of the one or more translation enhancement elements;(d) a random region of at least about 18 to about 60 nucleotides immediately downstream from the start codon, wherein the peptide encoded by the random region of each linear recombinant double stranded DNA construct is capable of binding to the same target;(e) a protease cleavage site downstream of the random region; and(f) a second restriction enzyme recognition site downstream of the protease cleavage site.
  • 2. The recombinant double stranded DNA construct of claim 1, wherein the double stranded nucleic acid comprises a plasmid.
  • 3. The recombinant double stranded DNA construct of claim 1, further comprising: (g) a promoter upstream of the first restriction enzyme recognition site; and(h) a region encoding a peptide purification tag downstream of the second restriction enzyme recognition site.
  • 4. A nucleic acid library comprising a plurality of the recombinant double stranded DNA constructs of claim 1, wherein at least 10 different random sequences are represented in the plurality of double stranded nucleic acid constructs.
  • 5. The nucleic acid library of claim 4, wherein at least 1000 different random sequences are represented in the plurality of double stranded nucleic acid constructs.
  • 6. (canceled)
  • 7. A method for identifying polypeptide ligands for a target of interest, comprising (a) contacting the nucleic acid library of claim 4 with reagents for RNA transcription under conditions to promote transcription of RNA from the double stranded nucleic acid constructs, resulting in an RNA expression product;(b) contacting the RNA expression product with reagents for protein expression under conditions to promote translation of detectable polypeptide;(c) incubating the detectable polypeptide with a target of interest under suitable conditions to promote binding of the detectable polypeptide to the target, to produce binding complexes; and(d) analyzing the detectable polypeptides bound to the target.
  • 8. The method of claim 7, further comprising removing unbound polypeptides prior to step (d).
  • 9. The method of claim 8, wherein removing unbound polypeptides comprises contacting the binding complexes with a size-limiting membrane, wherein detectable polypeptides bound to the target are retained on the membrane, and unbound polypeptides pass through pores of the membrane.
  • 10. The method of claim 9, wherein the size-limiting membrane comprises regenerated cellulose.
  • 11.-14. (canceled)
  • 15. A separation device, comprising: (a) a multiwell plate;(b) a regenerated cellulose layer below the multiwell plate, wherein the regenerated cellulose layer has a pore size suitable to retain peptides bound to a target, but not to retain unbound peptides; and(c) a nylon membrane layer below the regenerated cellulose layer, wherein the nylon membrane layer has a pore size suitable to retain unbound peptides.
  • 16. A recombinant double stranded DNA construct, comprising (a) a promoter;(b) one or more translation enhancement elements downstream of the promoter and upstream of the start codon;(c) a start codon downstream of the one or more translation enhancing elements;(d) a random region of at least about 18 to about 60 nucleotides immediately downstream from the start codon;(e) a protease cleavage site downstream of the random region;(f) a unique restriction enzyme recognition site downstream of the protease cleavage site; and(g) a heterologous cross-linking region downstream of the unique restriction enzyme recognition site.
  • 17. A nucleic acid library comprising a plurality of recombinant double stranded DNA constructs of claim 16, wherein at least 1011 different random sequences are represented in the plurality of double stranded nucleic acid constructs.
  • 18. The nucleic acid library of claim 17, wherein expressed RNA from the cross-linking region can serve as a site for ligation to a linker containing a 3′-puromycin residue.
  • 19.-20. (canceled)
  • 21. A method for identifying peptide ligands for a target of interest, comprising (a) contacting the nucleic acid library of claim 17 with reagents for RNA transcription under conditions to promote transcription of RNA from the double stranded nucleic acid constructs, resulting in an RNA expression product;(b) contacting the RNA expression product with reagents for ligating a linker containing a puromycin residue to the 3′ end of the RNA expression product, resulting in a labeled RNA expression product;(c) contacting the labeled RNA expression product with reagents for protein expression under conditions to promote protein translation from the labeled RNA expression product, resulting in a RNA-polypeptide fusion product;(d) reverse transcribing the RNA-polypeptide fusion products to produce an RNA-polypeptide fusion product-cDNA heteroduplex;(e) incubating the RNA-polypeptide fusion product-cDNA heteroduplexes with a target of interest;(f) removing RNA-polypeptide fusion product-cDNA heteroduplexes that are not bound to the target of interest, resulting in binding complexes; and(g) amplifying ligand-bound RNA-polypeptide fusion product-cDNA heteroduplexes in the binding complexes, to produce double stranded DNA constructs that can be used to identify the peptide ligands bound to the target of interest.
  • 22. The method of claim 21, wherein the double stranded DNA constructs comprise: (a) a first restriction enzyme recognition site;(b) one or more translation enhancement elements downstream of the first restriction enzyme recognition site;(c) a start codon downstream of the one or more translation enhancement elements;(d) a random region of at least about 18 to about 60 nucleotides immediately downstream from the start codon, wherein the peptide encoded by the random region of each linear recombinant double stranded DNA construct is capable of binding to the same target;(d) a protease cleavage site downstream of the random region; and(e) a second restriction enzyme recognition site downstream of the protease cleavage site.
  • 23. (canceled)
  • 24. The method of claim 21, wherein the target is incubated with an excess of the RNA-polypeptide fusion product-cDNA heteroduplexes.
  • 25. The method of claim 21, wherein removing RNA-polypeptide fusion product-cDNA heteroduplexes that are not bound to the target of interest comprises incubating the in the presence of a denaturant.
  • 26. (canceled)
  • 27. The method of claim 21, further comprising in vitro translation of peptides encoded by the cloned double stranded DNA construct, wherein the peptides are expressed as N-terminal fusions with the peptide purification tag.
  • 28.-30. (canceled)
  • 31. The method of claim 27, further comprising incubating the in vitro translated peptides with the target of interest to form a second binding complex, and removing unbound in vitro translated peptides.
  • 32. The method of claim 31, wherein removing unbound in vitro translated peptides comprises passing the second binding complex through a size-limiting membrane.
  • 33.-34. (canceled)
  • 35. A kit comprising: (a) the nucleic acid library of claim 17; and(b) an expression vector, wherein, the expression vector comprises: (i) a promoter upstream of a first restriction enzyme recognition site; and(ii) a region encoding a peptide purification tag downstream of a second restriction enzyme recognition site;wherein the first and second restriction enzyme recognition sites are compatible with the unique restriction enzyme recognition site of the double stranded DNA constructs of the nucleic acid library.
  • 36. (canceled)
  • 37. An RNA pool resulting from transcription of the library of claim 17.
  • 38.-39. (canceled)
RELATED APPLICATIONS

This application claims priority to U.S. Provisional Patent Application Ser. No. 61/657,694 filed Jun. 8, 2012, incorporated by reference herein in its entirety.

STATEMENT OF GOVERNMENT RIGHTS

This invention was made with government support under DK093449 awarded by the National Institute of Health. The government has certain rights in the invention.

PCT Information
Filing Document Filing Date Country Kind
PCT/US2013/044731 6/7/2013 WO 00
Provisional Applications (1)
Number Date Country
61657694 Jun 2012 US