The present disclosure relates to rapid cycle adsorbent beds, systems and assemblies including the same, and methods of making and using the same.
Cycle swing adsorption processes, including rapid cycle swing adsorption processes, are used to separate gas components from gas mixtures using multiple adsorbent beds. These adsorbent beds are generally situated in multiple vessels wherein the adsorbent beds may be structured or unstructured and include at least one adsorbent material. Cycle swing adsorption processes exploit the higher affinity of a gas component within a gas mixture for adsorption onto an adsorbent material relative to the affinity of other gas components within the gas mixture for adsorption onto the adsorbent material. The affinity of a gas component for adsorption onto an adsorbent material may vary with, for example, pressure, temperature, or combinations thereof. Thus, cycle swing adsorption processes utilize variations in pressure (pressure swing adsorption), temperature (temperature swing adsorption), or combinations thereof to selectively facilitate the adsorption of certain gas components from a gas mixture, while selectively avoiding the adsorption of other certain gas components from the gas mixture. The adsorbed gas components are separated from the non-adsorbed gas components. The adsorbed gas components may then be separated from the adsorbent material by varying the conditions within the adsorbent bed. For example, certain gas components have a relatively high affinity for adsorption onto an adsorbent material at relatively high pressures, but have a reduced or eliminated affinity for adsorption onto the adsorbent material at relatively lower pressures. Thus, such adsorbed gas components may be selectively released from the adsorbent material by lowering the pressure. Similar results may be achieved by increases and/or decreases in temperature in temperature swing adsorption processes. The adsorbed gas components and non-adsorbed gas components may then be separately processed, disposed of, stored, transported, or otherwise utilized. Cycle swing adsorption processes may utilize multiple adsorbent beds that cycle through operational stages of adsorption and release, such as high-pressure and low-pressure stages.
In rapid cycle swing adsorption processes, the adsorbent bed is cycled through the operational stages of adsorption and release by rapidly varying a parameter (e.g., pressure and/or temperature) of the system. Rapid cycle swing adsorption processes, including temperature swing adsorption (TSA), pressure swing adsorption (PSA), and other variations and combinations thereof, may be used to separate gas components from gas mixtures. Rapid cycle swing adsorption processes are attractive, in part, due to the reduced mass of adsorbent required compared to conventional cycle swing adsorption processes. The reduced adsorbent mass yields significantly smaller pressure vessels and a smaller overall footprint area compared to conventional swing adsorption processes. In rapid cycle swing adsorption processes, adsorbent material is deployed in a bed that includes numerous (e.g., thousands) of relatively small, structured, adsorbent-containing channels that maximize surface area for contact between the gas mixture and the adsorbent, while minimizing pressure loss through the adsorbent bed.
Rapid cycle adsorbent beds may be constructed of multiple adsorbent modules packaged together into an adsorbent bed assembly. Designers of such adsorbent bed assemblies are confronted with numerous difficulties to ensure that the adsorbent bed assembly simultaneously: (1) is structurally strong enough to withstand cyclic fatigue stresses due to reversing cyclical differential pressures during operations; (2) is sufficiently structurally compliant to be capable of being subject to cyclic thermal fatigue stresses during operations; (3) has a minimum amount of dead volume within and outside the adsorbent bed assembly; (4) is capable of maintaining pre-load on individual adsorbent modules to prevent movement and associated impacts from reversing loads and to keep the modules from telescoping; (5) has minimum heat losses to the supporting structure and to elements external to the bed; and (6) meets relatively tight dimensional tolerances.
One aspect of the present disclosure includes an adsorbent bed assembly for separation of gaseous mixtures. The assembly includes a body. The body at least partially defines an interior cavity. The body includes an outer shell; a first end engaged with the outer shell, including a first input/output in fluid communication with the interior cavity; a second end engaged with the outer shell, including a second input/output in fluid communication with the interior cavity; and a central support structure positioned within the interior cavity and coupled with the first and second ends and extending therebetween. A plurality of anti-telescoping devices are positioned about the central support structure. At least one of the anti-telescoping devices is affixed to the central support structure. Each anti-telescoping device includes a plurality of spokes extending within the interior cavity from or proximate the central support structure towards the outer shell.
Another aspect of the present disclosure includes a rapid cycle swing adsorption process. The process includes providing an adsorbent bed assembly. The adsorbent bed assembly includes a body, the body at least partially defining an interior cavity; a central support structure positioned within the interior cavity and coupled with the body; and a plurality of anti-telescoping devices positioned about the central support structure. At least one of the anti-telescoping devices is affixed to the central support structure. Adsorbent material is positioned within the internal cavity. The process includes passing a gas containing at least a first component and a second component through an input of the adsorbent bed assembly, passing the gas through the adsorbent material, and selectively adsorbing the first component on the adsorbent material. The process includes expelling the gas, enriched in the second component and depleted in the first component, from the adsorbent bed assembly.
Another aspect of the present disclosure includes a method of coupling two components subjected to cyclic thermal or pressure loads. The method includes coupling a first rigid component to a second rigid component via at least one setscrew. At least one friction pad is positioned on the second component, between the second component and the first component. The at least one setscrew engages within the at least one friction pad.
So that the manner in which the features of the compositions, articles, systems and methods of the present disclosure may be understood in more detail, a more particular description briefly summarized above may be had by reference to the embodiments thereof which are illustrated in the appended drawings that form a part of this specification. It is to be noted, however, that the drawings illustrate only various exemplary embodiments and are therefore not to be considered limiting of the disclosed concepts as it may include other effective embodiments as well.
Compositions, articles, apparatus, systems, and methods according to present disclosure will now be described more fully with reference to the accompanying drawings, which illustrate various exemplary embodiments. Concepts according to the present disclosure may, however, be embodied in many different forms and should not be construed as being limited by the illustrated embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough as well as complete and will fully convey the scope of the various concepts to those skilled in the art and the best and preferred modes of practice.
The present disclosure includes rapid cycle adsorbent methods, systems, apparatus, beds, and assemblies thereof, including methods of making and using the same.
Adsorbent Bed Assembly—Exterior
Adsorbent bed assembly 100 includes first input/output 102 and second input/output 104. In operation, gas may flow into first input/output 102, pass through adsorbent material contained within adsorbent bed assembly 100, and flow out of second input/output 104; or gas may flow into second input/output 104, pass through adsorbent material contained within adsorbent bed assembly 100, and flow out of first input/output 102.
Adsorbent bed assembly 100 includes outer canister or shell 106, such as a stainless-steel shell (e.g., 316 SS), defining an exterior thereof, and defining the interior space within which adsorbent material and other components of adsorbent bed assembly 100 are or may be positioned. In some aspects, shell 106 is a seam welded metal canister, including at least one seam weld 108. In some aspects, seam weld 108 is positioned between two spokes of an anti-telescoping device (shown and described in more detail below).
Distributor Plates
With reference to
With reference to
In some aspects, distributor plates 110 and 120 are or include a dimensionally stable, low coefficient of thermal expansion (CTE) metal alloy (e.g., a nickel-iron alloy) or other material, such as INVAR™ (also referred to as FeNi36 or 64FeNi or Nilo 36 or INVAR™ 36).
In some aspects, distributor plate 110 and top flange 114 form a first end of a body of adsorbent bed assembly 100, and distributor plate 120 and bottom cap 124 form a second end of the body of adsorbent bed assembly 100.
Adsorbent Bed Assembly—Internal Components
With reference to
Central Post and Pipe
Adsorbent bed assembly 100 includes central post 126, which is centrally located within adsorbent bed assembly 100 and extends from a location proximate bottom cap 124 to a location proximate top cap 128. Central post 126 may be a rigid structure (e.g., steel pipe or rod). Top cap 128 is engaged with and/or coupled with top flange 114, and top flange 114 and bottom cap 124 are both coupled, at opposite ends, to central pipe 132, which may be a rigid structure (e.g., steep pipe). Top cap 128 is engaged with central pipe 132. In some embodiments, top cap 128 is welded to or otherwise coupled with central pipe 132.
Adsorbent bed assembly 100 is at least partially supported by structural, top flange 114 coupled with rigid, central pipe 132. While structural, top flange 114 is shown and described as being positioned at the uppermost end of adsorbent bed assembly 100 (in the z-direction), in other aspects such a structural flange is positioned at the bottom end of adsorbent bed assembly 100, such that the orientation of adsorbent bed assembly 100 is reversed in the z-direction relative to the orientation shown in
Low-Porosity Filler
Central pipe 132 circumferentially surrounds central post 126, such that a space is defined between central pipe 132, central post 126, bottom cap 124, and top cap 128. This space is filled with low-porosity material 134, such as a stack of ceramic discs. With low-porosity material 134, dead volume (i.e., void volume) within the interior of adsorbent bed assembly 100 is minimized or at least reduced.
Central post 126 and low-porosity material 134 both serve to fill void space within central pipe 132. Central post 126 is positioned and held within central pipe 132 by compressible insulation layer 154, which may be in the form of shims configured to prevent central post 126 from moving within the cavity of central pipe 132.
Adsorbent Material
Adsorbent material 136 is positioned between top distributor plate 110, bottom distributor plate 120, shell 106, and central pipe 132. In some aspects, adsorbent material 136 is or includes a coated, wound core.
Adsorbent material 136 may be in the form of a series of adsorbent modules that are arranged axially along central pipe 132. Adsorbent material 136 may be or include adsorbent coated elements, such as adsorbent-coated metal foil and/or adsorbent-coated wire mesh, including corrugated and flat shaped foils or mesh. Adsorbent material 136 may be or include a porous or mesh material having a shape and/or profile that defines channels through which gas flows when passing through adsorbent bed assembly 100. In some such aspects, adsorbent material 136 defines triangular or substantially triangular shaped channels, i.e., adsorbent material 136 having corrugation of a triangular or substantially triangular shape. In some such aspects, adsorbent material 136 defines trapezoidal or substantially trapezoidal shaped channels, i.e., adsorbent material 136 having corrugation of a trapezoidal or substantially trapezoidal shape.
Adsorbent material 136 may include one or a plurality of coated elements arranged relative to central pipe 132. In some aspects, the coated element of adsorbent material 136 is arranged as a continuous spiral winding about central pipe 132. In other aspects, coated elements of adsorbent material 136 are arranged as separate, radial or curved elements positioned about central pipe 132.
The foil or mesh serves as a substrate upon which adsorbent material is coated or otherwise attached, such that the foil or mesh at least partially supports the adsorbent material thereon. In some aspects, adsorbent material 136 includes uncoated foil.
In some aspects, adsorbent material 136 is engaged with outer compressible insulation that is positioned on the outer diameter thereof (e.g., layer 152), inner compressible insulation that is positioned on the inner diameter thereof (e.g., layer 150), or combinations thereof. During assembly, inner and outer compressible insulation layers 150 and 152 may be adhered with adsorbent material 136, such as to a surface thereof, to hold adsorbent material 136 in place during the remainder of assembly. After assembly of adsorbent bed assembly 100 is complete, the compression of inner and outer compressible insulation layers 150 and 152 maintains adsorbent material 136 in place within adsorbent bed assembly 100, regardless of the presence of adhesive.
Anti-Telescoping Devices
A plurality of anti-telescoping devices (ATDs) 140a and 140b are positioned within shell 106, between top distributor plate 110 and bottom distributor plate 120. Anti-telescoping devices 140a and 140b may be a structure capable of maintaining pre-loading of the modules of adsorbent material 136 positioned within adsorbent bed assembly 100. As used herein, “telescoping” refers to the deformation of a spiral-wound adsorbent core within an adsorbent assembly such that concentric layers of the spiral-wound adsorbent core material slide against each other and extrude axially (along the z-direction), such that the spiral-wound adsorbent core axially extends similar to an extended telescope. Thus, as used herein, “anti-telescoping devices” are devices that reduce or eliminate the occurrence of such “telescoping”.
In some aspects, at least one of anti-telescoping devices 140a and 140b are fixed to center pipe 132. In others aspects, all anti-telescoping devices 140a and 140b are fixed to center pipe 132. In certain aspects, more than one, but less than all, anti-telescoping devices 140a and 140b are fixed to center pipe 132. The location where anti-telescoping devices 140a and 140b are attached to center pipe 132 may be continuously variable along length (z-direction) of center pipe 132 to provide for variable pre-loading of the modules of adsorbent material 136.
In some aspects, one or more of anti-telescoping devices 140a and 140b are free-floating relative to center pipe 132, i.e., the floating anti-telescoping devices 140a and 140b are not fixed to center pipe 132 and are free to move relative thereto in the z-direction. In such aspects, clamping loads are provided by structural ATDs positioned at the ends of center pipe 132. For example, in exemplary adsorbent bed assembly 100, anti-telescoping devices 140a, positioned at the ends of center pipe 132, are structural ATDs affixed to center pipe 132, and intermediate anti-telescoping devices 140b, positioned between the ends of center pipe 132, are floating ATDs. In such aspects, the clamping loads are provided by anti-telescoping devices 140a.
Anti-telescoping devices 140a and 140b may be evenly spaced, relative to one another, between top distributor plate 110 and bottom distributor plate 120. In other aspects, anti-telescoping devices 140a and 140b are unevenly or irregularly spaced, relative to one another, between top distributor plate 110 and bottom distributor plate 120.
With reference to
Anti-telescoping device 140 includes a plurality of radial spokes 148 coupled with and extending from inner ring 142. When installed within adsorbent bed assembly 100, radial spokes 148 may extend outward from inner ring 142 toward shell 106. It is noted that the term “radial spokes” is not limited to embodiments as illustrated in
Anti-telescoping device 140 may be composed of or include a structurally rigid material, such as stainless steel. In some aspects, a thermally compliant material is positioned on one or more surfaces of anti-telescoping device 140. For example, as shown in
In one exemplary aspect, the thermally compliant material is composed of an FKM (fluoroelastomer) material, as determined in accordance with ASTM D1418, such as VITON™. In some embodiments, the thermally compliant material is a relatively soft material having a relatively low-elastic modulus (e.g., VITON™), such that that the material can conform to the face of a wound core of adsorbent material, be compressed during preload, and conform to “follow” the thermal expansions and contractions of the wound core. One exemplary thermally compliant material is a 75-durometer grade of VITON™ having an elastic modulus of about 1013 psi at 100% elongation (tensile testing). In some aspects, the thermally compliant material has an elastic modulus of about 525 psi (compression testing). In some embodiments, for the thermally compliant material it may be advantageous under rapid pressure drop conditions to use higher durometer materials, such as DuPont Kalrez™ 7090 (90-durometer), DuPont Kalrez™ 0090 (95-durometer), PPE Endura A90H™ (Aflas type material) (93-durometer), PPE Perlast G92E™ (90-durometer). In preferred embodiments, the thermally compliant material may be an elastomeric material with a durometer of about 70 to 100.
In some aspects, as shown in
With reference to
Compressible Insulation Layers
In some aspects one or more compressible insulation layers are installed within the adsorbent bed assembly, such as on inner diameter (ID) of the modules of adsorbent material, the outer diameter (OD) of the modules of adsorbent material, or combinations thereof. With reference to
In some aspects, adsorbent bed assembly 100 includes center compressible insulation layer 154. Center compressible insulation layer 154 may be positioned at or proximate to bottom distributor plate 120. For example, center insulation layer 154 may be positioned between bottom cap 124 and low-porosity material 134.
Flow Straightening Structure
With reference to
Flow straightening structures 138 may be or include foil or mesh without adsorbent material thereon. In some aspects, flow straightening structures 138 are, or include, fine-celled, flat-on-corrugated foils, which are spiral-wound and brazed together. Such brazing provides flow straightening structures 138 with sufficient structural strength to withstand incoming chaotic gas flow, during operations, and to straighten the gas flow out before the gas flow enters into the remainder of adsorbent bed 100, without being damaged by such chaotic gas flow.
Further Internal Component Detail Views
With reference to
With reference to
With reference to
With reference to
Turning now to
Sealant
In some aspects, sealant is positioned at the ID of adsorbent material 136, such as at the end of each segment of inner compressible insulation layer 150. With reference to
With reference to
Friction Pads
In some aspects, adsorbent bed assembly includes one or more friction pads arranged to allow setscrews to be used to couple anti-telescoping devices 140 with central pipe 132. For example, with reference to
Friction pads 160 may be, or include, a material, such as 316 stainless steel, that is corrosion resistant over a relatively wide temperature range. Friction pads 160 may spread load from setscrews 143 to central pipe 132. During assembly, setscrews 143 turn as setscrews 143 are torqued down and clamping force increases, such that setscrews 143 may, to a relatively small degree, deform and/or scratch friction pads 160. During assembly, friction pads 160 may press against central pipe 132 without turning and/or without scratching central pipe 132. As friction pads 160 spread force out onto central pipe 132, the contact pressure between friction pads 160 and central pipe 132 is lower than the contact pressure between setscrews 143 and friction pads 160. The arrangement of setscrews 143 and friction pads 160 allows for anti-telescoping devices 140 to be positioned at will along central pipe 132.
With reference to
With reference to
Scalability
The adsorbent bed assembly disclosed herein may be a scalable (e.g. fully scalable) 3o bed assembly, such that the OD of the adsorbent bed assembly, the ID of the adsorbent bed assembly, the length (z-direction) of the adsorbent bed assembly, or combinations thereof are variable depending upon the particular application.
Some aspects of the adsorbent bed assembly disclosed herein that contribute to the scalability of the adsorbent bed assembly include, but are not limited to, the anti-telescoping devices, which may be attached with the central pipe at locations that are variable continuously along the length of the central pipe (in the z-direction).
Structural Rigidity
The adsorbent bed assembly disclosed herein may have structural rigidity and resiliency that is sufficient to handle both static and dynamic pressure loads exerted on the adsorbent bed assembly during use thereof. Some aspects that contribute structural rigidity and resiliency of the adsorbent bed assembly include, but are not limited to, the coupling and arrangement of the top flange, central post, bottom cap, and central pipe. This arrangement and coupling of components of the adsorbent bed assembly provides a rigid skeletal structure that bears pressure loads exerted on the adsorbent bed assembly during use thereof.
Additionally, the anti-telescoping devices provide clamping load to the adsorbent material during operations. The variable attachment locations of the anti-telescoping devices allow for the provision of more precise preloads of the foil or mesh substrate to account for variation in dimensional stack up tolerances of the adsorbent material.
In some aspects, the use of a top structural flange, top distributor plate, bottom distributor plate, or combinations thereof formed of a dimensionally stable, low coefficient of thermal expansion (CTE) metal alloy (e.g., a nickel-iron alloy) or other material, such as INVAR™, allows for the adsorbent bed assembly to bear increased levels of internal thermal stresses. The use of INVAR™ or other materials having a low CTE in distributor plates 110 and 120 decreases stresses developed by differential thermal expansion therein. As each distributor plate 110 and 120 may be a relatively thick structural plate with a plurality of perforations therethrough for the passage of gas during adsorption operations, the perforated zone of distributor plates 110 and 120 is subjected to wider temperature swings than the non-perforated solid central portions or outer perimeter portions of distributor plates 110 and 120. Such differential in temperature swings creates greater contractions and expansions in the perforated portions of distributor plates 110 and 120 than in the central and perimeters portions of distributor plates 110 and 120; thereby, creating stress between these different areas of distributor plates 110 and 120. Low CTE materials, such as INVAR™, minimize the contractions and expansions of the perforated portions of distributor plates 110 and 120. In some aspects, adsorbent bed assembly 100 is capable of operation at temperatures of up to 500° F. As is evident from
Thermal Compliance
The adsorbent bed assembly disclosed herein may have thermal and/or structural compliance that is sufficient to accommodate the cyclical, thermally induced stresses exerted upon the adsorbent bed assembly during use thereof. Such thermally induced stresses may be caused by rapid temperature cycling within the adsorbent bed assembly.
Some aspects that contribute to the thermal compliance of the adsorbent bed assembly include, but are not limited to, the use of thermally compliant material (e.g., pads 145) on the anti-telescoping devices disclosed herein. Such thermally compliant pads accommodate thermal growth of, for example, the adsorbent material and or other components of the adsorbent bed assembly.
Reduction in Loss of Heat and Occurrence of Bypassing
The adsorbent bed assembly disclosed herein may have a relatively low level of heat loss, relatively low occurrence of gas bypassing the adsorbent material, or combinations thereof. Some aspects that contribute to the low heat loss and/or occurrence of bypassing include, but are not limited to, the use of compressible insulation layers within the adsorbent bed assembly (including adjacent the adsorbent material) and the use of sealants at the ends of at least some of the compressible insulation layers. In some aspects, the shell of the adsorbent assembly is a relatively thin-wall metal canister having an integral flange positioned around the OD of adsorbent bed assembly to compress the outer compressible insulation layer; thereby, reducing or preventing the occurrence of gas bypassing around the adsorbent material. In some aspects, an O-ring, gasket, or other sealing component is positioned at the interface of the structural, top flange and the interior of adsorbent bed assembly, such that the occurrence of gas bypassing around the adsorbent bed assembly is prevented or at least reduced.
Reduction in Dead Volume
The adsorbent bed assembly disclosed herein may have relatively low level of dead volume. Some aspects that contribute to the low level of dead volume include, but are not limited to, the filling of the space between central pipe and central post with low-porosity material, such as ceramic discs.
In some aspects the adsorbent bed assemblies disclosed herein: (1) are structurally strong, rigid, and/or resilient enough to withstand cyclic fatigue stresses due to reversing cyclical differential pressures during operations; (2) are structurally compliant enough to be capable of being subject to cyclic thermal fatigue stresses during operations; (3) have a minimum amount of dead volume within and outside the adsorbent bed assembly; (4) are capable of maintaining pre-load on individual adsorbent modules to prevent movement and associated impacts from reversing loads and to keep the modules from telescoping (e.g., due to the use of the anti-telescoping devices); (5) have minimum heat losses to the supporting structure and to elements external to the bed; (6) meet relatively tight dimensional tolerances; or (7) combinations thereof.
Systems and Methods
Certain aspects of the present disclosure include systems including the adsorbent bed assemblies disclosed herein, and to methods of using the adsorbent bed assemblies disclosed herein. A single or multiple of the adsorbent bed assemblies disclosed herein may be packaged within a single pressure vessel for use thereof. With reference to
The two adsorbent bed assemblies 2200a and 2200b (or “beds” herein with description to
As shown in the embodiment of
In the pressure swing adsorption process, the two adsorbent bed assemblies may be operated through identical swing adsorption process cycles. These cycles in the two adsorbent beds may be simultaneous, or they may be staggered. For instance, adsorbent bed 2200a and adsorbent bed 2200b may both go through an adsorption step at the same time, or for instance, adsorbent bed 2200a may go through an adsorption step while adsorbent bed 2200b is going through a regeneration step.
In this example, with adsorbent bed assembly 2200a and adsorbent bed assembly 2200b operating half-cycle out of phase, a gaseous purge gas inlet stream enters one end of adsorbent bed assembly 2200b at the purge gas inlet 2215 at a second pressure and second temperature and passes through the adsorbent bed assembly and a gaseous purge gas outlet stream is retrieved from the purge gas outlet 2220. This step is utilized to desorb the selectively adsorbed first component of the gaseous feed stream from the adsorbent material. Generally, this purge step is performed at a lower pressure than the adsorption step. In addition to utilizing a pressure swing to desorb the first component of the gaseous feed stream from the adsorbent material, a temperature swing step may also be utilized in conjunction with, or in series with, the pressure swing step(s). This may be accomplished, by way of example, by utilizing a purge gas stream that is higher in temperature than the temperature of the adsorbent material following the adsorption step.
It should also be noted that more than two adsorbent beds or adsorbent bed assemblies may be utilized in a pressure swing process utilizing the adsorbent bed assemblies disclosed herein. Additionally, the regeneration step may alternatively encompass multiple purge steps (each performed with a different pressure, temperature and/or purge stream composition) as well as encompass additional steps besides just a purge step. Additional steps that may be included in the regeneration cycle are discrete depressurization step(s) as well as re-pressurization step(s).
The methods disclosed herein may be applied to, for example, rapid cycle pressure swing adsorption (RCPSA) and rapid cycle partial pressure swing adsorption (RCPPSA), which may be combined with other swing adsorption processes, such as pressure/temperature swing adsorption processes. Some exemplary kinetic swing adsorption processes are described in U.S. Patent Application Publication Nos. 2008/0282892, 2008/0282887, 2008/0282886, 2008/0282885, and 2008/0282884, which are each herein incorporated by reference in their entirety. Exemplary swing adsorption systems are described in United States Patent Application Publication Nos. 2011/0291051; 2013/0327216; and 2013/0061755, and in Intl. Application Publication Nos. 2011/149640; 2012/118755; and 2012/118758; and 2016/0023155, which are each herein incorporated by reference in their entirety.
RCPSA processes generate flow disturbances caused by pressure differences during certain transitions within a vessel (adsorbent bed assembly). For example, when a vessel in an RCPSA system transitions from a high-pressure stage, such as an adsorption stage, to a low-pressure stage, such as a regeneration stage, by blowing-down (BD) through a purge valve, flow disturbances (e.g., pulsations) may be caused by the pressure differential across the purge valve. Also, when a vessel in an RCPSA system transitions from a low-pressure stage, such as a purge stage, to a high-pressure stage, such as an adsorption stage, which includes re-pressurization (RP), flow disturbances may be caused by the pressure differential across the feed valve. Typically, several such vessels are manifolded together to allow for a continuous flow from all vessels. The various stages or steps within the multiple, manifolded vessels are overlapped to maintain continuous flow in the overall system. Such flow disturbances may result in vibrations throughout the system (e.g., within manifold piping), and stress on system components, including the internal components of the vessels. As described above, the adsorbent bed assemblies disclosed herein may be capable of handling such pressure and/or temperature stresses.
Method 2300 includes passing the gas through a flow straightening structure; thereby, straightening the flow of the gas, 2304.
Method 2300 includes passing the gas through adsorbent material, and adsorbing the first component on the adsorbent material, 2306.
Method 2300 includes, during adsorption, bearing at least some pressure load with the top flange, central post, bottom cap, and central pipe of the adsorbent bed assembly, 2308.
Method 2300 includes, during adsorption, providing clamping load to the adsorbent material using anti-telescoping devices positioned within the adsorbent bed assembly, 2310.
Method 2300 includes, during adsorption, accommodating for thermal expansion of adsorbent material or other components of the adsorbent bed assembly using thermally compliant pads positioned on the anti-telescoping devices, 2312.
Method 2300 includes reducing heat loss from the adsorbent bed assembly by positioning compressible insulation layers within the adsorbent bed assembly and positioning sealants at the ends of at least some of the compressible insulation layers, 2314.
Method 2300 includes reducing dead volume of the adsorbent bed assembly by filling void space within the adsorbent bed assembly with ceramic discs, 2316.
Method 2300 includes expelling the gas, enriched in the second component and depleted in the first component, from the adsorbent material and through a flow straightening structure, where the flow of the expelled gas is straightened, 2318.
Method 2300 includes expelling the gas from a distributor plate of the adsorbent bed assembly, 2320.
Method 2300 is provided for exemplary purposes only. The method of use of the adsorbent bed assemblies disclosed herein is not limited to including each step of method 2300, and is not limited to the particular order of steps set forth in method 2300.
Additional Adsorbent Materials
The adsorbent materials used herein may include solid adsorbent material capable of adsorbing one or more components from the feed stream. Such solid adsorbent materials may be selected to be durable against the physical and chemical conditions within the adsorbent bed assemblies, and may include metallic, ceramic, or other materials, depending on the adsorption process.
In one or more applications, the adsorption material may be used for the separation of a target gas from a gaseous mixture. The adsorption material may be supported on a non-adsorbent support, or contactor. Non-limiting examples of the form of the adsorbent material include beds of beaded or pelletized adsorbent particles or an adsorbent material on a structured contactor, such as a parallel channel contactor. Such contactors contain substantially parallel flow channels where 20 volume percent, preferably 15 volume percent or less of the open pore volume of the contactor, excluding the flow channels, is in pores greater than about 20 angstroms. A flow channel is that portion of the contactor in which gas flows, if a steady state pressure difference is applied between the point or place at which a feed stream enters the contactor and the point or place at which a product stream leaves the contactor. In a parallel channel contactor, the adsorbent is incorporated onto and/or into the wall of the flow channel Non-limiting examples of geometric shapes of parallel channel contactors include various shaped monoliths having a plurality of substantially parallel channels extending from one end of the monolith to the other; a plurality of tubular members, stacked layers of adsorbent sheets with and without spacers between each sheet; multi-layered spiral rolls, spiral wound adsorbent sheets, bundles of hollow fibers, as well as bundles of substantially parallel solid fibers. “Parallel channel contactors” are defined as a subset of adsorbent contactors including structured (engineered) adsorbents in which substantially parallel flow channels are incorporated into the adsorbent structure. Parallel flow channels are described in detail in United States Patent Publication Nos. 2008/0282892 and 2008/0282886, both of which herein incorporated by reference in their entirety. These flow channels may be formed by a variety of means and in addition to the adsorbent material, the adsorbent structure may contain items such as, but not limited to, support materials, heat sink materials, void reduction components, and heating/cooling passages.
Non-limiting examples of adsorbent materials that can be used with the method and system include high surface area (>10 m2/gm and preferably >75 m2/gm) alumina, microporous zeolites (preferably zeolites with particle sizes <1 mm), other microporous materials, mesoporous materials and ordered mesoporous materials. Nonlimiting examples of these materials include carbons, cationic zeolites, high silica zeolites, highly siliceous ordered mesoporous materials, sol gel materials, ALPO materials (microporous and mesoporous materials containing predominantly aluminum phosphorous and oxygen), SAPO materials (microporous and mesoporous materials containing predominantly silicon aluminum phosphorous and oxygen), MOF materials microporous and mesoporous materials comprised of a metal organic framework) and ZIF materials (microporous and mesoporous materials comprised of zeolitic imidazolate frameworks). Other materials include microporous and mesoporous sorbents functionalized with functional groups. Examples of functional groups include primary, secondary, tertiary and other non protogenic basic groups such as amidines, guanidines and biguanides.
Applications
Adsorptive kinetic separation processes, apparatus, and systems, as described above, are useful for development and production of hydrocarbons, such as gas and oil processing. Particularly, the provided processes, apparatus, and systems are useful for the rapid, large scale, efficient separation of a variety of target gases from gas mixtures. In particular, the processes, apparatus, and systems may be used to prepare natural gas products by removing contaminants and heavy hydrocarbons, i.e., hydrocarbons having at least two carbon atoms. The provided processes, apparatus, and systems are useful for preparing gaseous feed streams for use in utilities, including separation applications such as dew point control, sweetening/detoxification, corrosion protection/control, dehydration, heating value, conditioning, and purification. Examples of utilities that utilize one or more separation applications include generation of fuel gas, seal gas, non-potable water, blanket gas, instrument and control gas, refrigerant, inert gas, and hydrocarbon recovery. Exemplary “not to exceed” product (or “target”) gas specifications include: (a) 2 volume percent (vol. %) CO2, 4 parts per million (ppm) H2S, (b) 50 ppm CO2, 4 ppm H2S, or (c) 1.5 vol. % CO2, 2 ppm H2S.
The provided processes, apparatus, and systems may be used to remove acid gas from hydrocarbon streams. Acid gas removal technology may be useful for gas reserves exhibit higher concentrations of acid gas, i.e., sour gas resources. Hydrocarbon feed streams vary widely in amount of acid gas, such as from several parts per million acid gas to 90 vol. % acid gas. Non-limiting examples of acid gas concentrations from exemplary gas reserves include concentrations of at least: (a) 1 vol. % H2S, 5 vol. % CO2, (b) 1 vol. % H2S, 15 vol. % CO2, (c) 1 vol. % H2S, 60 vol. % CO2, (d) 15 vol. % H2S, 15 vol. % CO2, and (e) 15 vol. % H2S, 30 vol. % CO2.
In one or more application, the streams provided to the adsorbent bed and removed from an adsorbent bed may have different compositions. For example, the hydrocarbon containing stream may have greater than 0.005 volume percent CO2 based on the total volume of the gaseous feed stream and an adsorbent material in the adsorbent bed has a higher selectivity to CO2 as compared to hydrocarbons. Also, the product stream may have greater than 98 volume percent hydrocarbons based on the total volume of the product stream. Further, the gaseous feed stream may be a hydrocarbon containing stream having greater than 20 volume percent CO2 based on the total volume of the gaseous containing stream.
The adsorbent bed assembly disclosed herein, or at least certain features and/or components thereof, are not limited to the particular uses described herein. For example, the use of the friction pads in fastening (e.g., using setscrews) may be applicable in any of numerous other applications outside of the hydrocarbon or chemical reaction technology fields. Such fastening techniques may be applied to other components that are subjected to cyclic thermal or pressure loads.
Certain, non-limiting, embodiments will now be set forth.
Embodiment 1. An adsorbent bed assembly for separation of gaseous mixtures, the assembly comprising: a body, the body at least partially defining an interior cavity, wherein the body includes: an outer shell; a first end engaged with the outer shell, including a first input/output in fluid communication with the interior cavity; a second end engaged with the outer shell, including a second input/output in fluid communication with the interior cavity; and a central support structure positioned within the interior cavity and coupled with the first and second ends and extending therebetween; a plurality of anti-telescoping devices positioned about the central support structure, wherein at least one of the anti-telescoping devices is affixed to the central support structure, and wherein each anti-telescoping device includes a plurality of spokes extending within the interior cavity from or proximate the central support structure towards the outer shell.
Embodiment 2. The adsorbent bed assembly of embodiment 1, further comprising a pad positioned on a surface of each spoke, the pad including an elastomeric material.
Embodiment 3. The adsorbent bed assembly of embodiment 2, wherein the elastomeric material is a non-metallic material.
Embodiment 4. The adsorbent bed assembly of embodiment 2 or 3, wherein the elastomeric material is a thermoplastic elastomer.
Embodiment 5. The adsorbent bed assembly of any of embodiments 2 to 4, wherein the elastomeric material is a fluoroelastomer.
Embodiment 6. The adsorbent bed assembly of any of embodiments 1 to 5, wherein the anti-telescoping devices maintain pre-loading of modules of adsorbent material positioned within the internal cavity.
Embodiment 7. The adsorbent bed assembly of any of embodiments 1 to 6, wherein at least one of the anti-telescoping devices is free-floating relative to the central support structure.
Embodiment 8. The adsorbent bed assembly of any of claims 1 to 7, wherein the anti-telescoping devices are affixable to the central support structure at continuously variable positions along a longitudinal length of the central support structure.
Embodiment 9. The adsorbent bed assembly of any of embodiments 1 to 8, wherein clamping loads are provided by the at least one anti-telescoping device that is affixed to the central support structure.
Embodiment 10. The adsorbent bed assembly of any of embodiments 1 to 9, wherein an uppermost anti-telescoping device, positioned closest to the first end, is affixed to the central support structure, and wherein a remainder of the anti-telescoping devices are free-floating relative to the central support structure.
Embodiment 11. The adsorbent bed assembly of any of embodiments 1 to 10, wherein each anti-telescoping device includes an inner ring positioned about the central support structure, and wherein the spokes are radial spokes that extend from the inner ring towards the outer shell.
Embodiment 12. The adsorbent bed assembly of any of embodiments 1 to 11, wherein each anti-telescoping device includes an outer ring coupled with the spokes opposite the inner ring.
Embodiment 13. The adsorbent bed assembly of any of embodiments 1 to 12, wherein the at least one anti-telescoping device is affixed to the central support structure via at least one setscrew.
Embodiment 14. The adsorbent bed assembly of embodiment 13, further comprising at least one friction pad positioned on the central support structure, between the central support structure and the anti-telescoping devices, wherein the at least one setscrew engages within the at least one friction pad.
Embodiment 15. The adsorbent bed assembly of any of embodiments 1 to 14, wherein the central support structure is coaxially aligned with a longitudinal centerline of the body.
Embodiment 16. The adsorbent bed assembly of any of embodiments 1 to 15, wherein the central support structure comprises: a central post coupled with the first end and the second end, wherein the central post extends within the interior cavity from the first end to the second end; a central pipe positioned about the central post, the central pipe coupled with the first end and the second end, wherein the central pipe extends within the interior cavity from the first end to the second end; and dead-volume defined between the central pipe and the central post.
Embodiment 17. The adsorbent bed assembly of any of embodiments 1 to 16, further comprising a filler material positioned within the dead volume.
Embodiment 18. The adsorbent bed assembly of any of embodiments 1 to 17, wherein the filler material includes a low-porosity material.
Embodiment 19. The adsorbent bed assembly of embodiment 17 or 18, wherein the filler material includes a stack of ceramic discs.
Embodiment 20. The adsorbent bed assembly of any of embodiments 1 to 19, wherein the first input/output and the second input/output each comprise a distributor plate including a plurality of holes positioned therethrough and in fluid communication with the interior cavity.
Embodiment 21. The adsorbent bed assembly of embodiment 20, wherein the first end of the body further comprises a top flange coupled with the distributor plate of the first input/output.
Embodiment 22. The adsorbent bed assembly of embodiment 20, wherein the second end of the body further comprises a bottom cap coupled with the distributor plate of the second input/output.
Embodiment 23. The adsorbent bed assembly of any of embodiments 20 to 22, wherein the top flange, the distributor plates, or combinations thereof comprise a dimensionally stable, low-coefficient of thermal expansion (CTE) metal alloy.
Embodiment 24. The adsorbent bed assembly of embodiment 23, wherein the metal alloy is a nickel-iron alloy.
Embodiment 25. The adsorbent bed assembly of embodiment 24, wherein the nickel-iron alloy includes 64FeNi.
Embodiment 26. The adsorbent bed assembly of any of embodiments 1 to 25, further comprising adsorbent material positioned within the internal cavity between the central support structure and the outer shell.
Embodiment 27. The adsorbent bed assembly of embodiments 26, wherein the adsorbent material comprises a coated, wound core.
Embodiment 28. The adsorbent bed assembly of embodiment 26 or 27, wherein the adsorbent material comprises a series of adsorbent modules arranged axially along the central support structure.
Embodiment 29. The adsorbent bed assembly of any of embodiments 26 to 28, wherein the adsorbent material comprises adsorbent coated elements.
Embodiment 30. The adsorbent bed assembly of any of embodiments 26 to 29, wherein the adsorbent material comprises adsorbent-coated metal foil, uncoated foil, adsorbent-coated wire mesh, or combinations thereof.
Embodiment 31. The adsorbent bed assembly of any of embodiments 26 to 30, wherein the adsorbent material comprises adsorbent-coated corrugated foil, adsorbent-coated corrugated mesh, adsorbent-coated flat foil, uncoated foil, adsorbent-coated flat mesh, or combinations thereof.
Embodiment 32. The adsorbent bed assembly of any of embodiments 26 to 31, wherein the adsorbent material defines triangular or substantially triangular shaped channels of porosity, or wherein the adsorbent material defines trapezoidal or substantially trapezoidal shaped channels of porosity.
Embodiment 33. The adsorbent bed assembly of any of embodiments 26 to 32, wherein the adsorbent material comprises one or more coated elements arranged relative to the central support structure.
Embodiment 34. The adsorbent bed assembly of any of embodiments 26 to 33, wherein the adsorbent material comprises a continuous spiral winding about the central support structure, or comprises multiple, separate, radial or curved elements positioned about the central support structure.
Embodiment 35. The adsorbent bed assembly of any of embodiments 1 to 34, further comprising one or more flow straightening structure.
Embodiment 36. The adsorbent bed assembly of embodiment 35, wherein the one or more flow straightening structures comprise a flow straightening structure positioned between the first input/output and adsorbent material within the internal cavity, a flow straightening structure positioned between the second input/output and adsorbent material within the internal cavity, or combinations thereof.
Embodiment 37. The adsorbent bed assembly of embodiment 35 or 36, wherein the one or more flow straightening structures are free of adsorbent material.
Embodiment 38. The adsorbent bed assembly of any of embodiments 1 to 37, further comprising compressible insulation positioned on an inner diameter of modules of adsorbent material disposed within the internal cavity, compressible insulation positioned on an outer diameter of modules of adsorbent material disposed within the internal cavity, or combinations thereof.
Embodiment 39. The adsorbent bed assembly of embodiment 38, wherein the compressible insulation at least partially seals the modules of adsorbent material from heat loss, bypassing of gas thereabout, or combinations thereof.
Embodiment 40. The adsorbent bed assembly of embodiment 38 or 39, wherein the compressible insulation positioned on the inner diameter of modules of adsorbent material includes a plurality of segments of compressible insulation, including segments of compressible insulation positioned between adjacent anti-telescoping devices.
Embodiment 41. The adsorbent bed assembly of any of embodiments 38 to 40, further comprising center compressible insulation positioned between the second end of the body and the internal cavity.
Embodiment 42. The adsorbent bed assembly of any of embodiments 1 to 41, further comprising sealant disposed adjacent an inner diameter of modules of adsorbent material within the internal cavity, sealant disposed adjacent an outer diameter of modules of adsorbent material within the internal cavity, or combinations thereof.
Embodiment 43. The adsorbent bed assembly of embodiment 42, wherein the sealant is disposed between an end of each segment of inner compressible insulation and one of the anti-telescoping devices, wherein the sealant is disposed within a channel in the outer compressible insulation, or combinations thereof.
Embodiment 44. The adsorbent bed assembly of embodiment 42 or 43, wherein the sealant at least partially seals the modules of adsorbent material from bypassing of gas thereabout.
Embodiment 45. The adsorbent bed assembly of any of embodiments 1 to 44, wherein the adsorbent bed assembly is a cylindrical or generally cylindrical structure.
Embodiment 46. The adsorbent bed assembly of any of embodiments 1 to 45, wherein the adsorbent bed assembly is installed in a vertical orientation within a pressure vessel.
Embodiment 47. The adsorbent bed assembly of any of embodiments 1 to 46, wherein the outer shell is a seam welded metal canister, including at least one seam weld.
Embodiment 48. The adsorbent bed assembly of embodiment 47, wherein the at least one seam weld is positioned between two spokes of one of the anti-telescoping devices.
Embodiment 49. The adsorbent bed assembly of any of embodiments 38 to 48, wherein adsorbent material is engaged with the compressible insulation positioned on the outer diameter of modules of adsorbent material disposed within the internal cavity, wherein adsorbent material is engaged with the compressible insulation positioned on the inner diameter of modules of adsorbent material disposed within the internal cavity, or combinations thereof.
Embodiment 50. The adsorbent bed assembly of any of embodiments 1 to 49, wherein the outer shell comprises a metal canister having an integral flange positioned around the compressible insulation that is positioned on the outer diameter of modules of adsorbent material, the metal canister compressing the compressible insulation that is positioned on the outer diameter of modules of adsorbent material.
Embodiment 51. The adsorbent bed assembly of any of embodiments 1 to 50, wherein the anti-telescoping devices are positioned and arranged to maintain pre-load on individual adsorbent modules within the internal cavity, and to prevent telescoping movement of the individual adsorbent modules.
Embodiment 52. A rapid cycle swing adsorption process, the process comprising: providing an adsorbent bed assembly comprising: a body, the body at least partially defining an interior cavity; a central support structure positioned within the interior cavity and coupled with the body; a plurality of anti-telescoping devices positioned about the central support structure, wherein at least one of the anti-telescoping devices is affixed to the central support structure; and adsorbent material positioned within the internal cavity; passing a gaseous feed stream containing at least a first component and a second component through an input of the adsorbent bed assembly; passing the gaseous feed stream through the adsorbent material, and selectively adsorbing the first component on the adsorbent material; and expelling a product stream, enriched in the second component and depleted in the first component, from the adsorbent bed assembly.
Embodiment 53. The process of embodiment 52, further comprising providing clamping load to the adsorbent material using the anti-telescoping devices.
Embodiment 54. The process of embodiment 52 or 53, further comprising accommodating thermal expansion of adsorbent material or other components of the adsorbent bed assembly using thermally compliant pads positioned on the anti-telescoping devices.
Embodiment 55. The process of any of embodiments 52 to 54, further comprising reducing heat loss from the adsorbent bed assembly by positioning compressible insulation layers within the adsorbent bed assembly, about the inner and outer diameters of the adsorbent material, and positioning sealants between the inner compressible insulation layers and the anti-telescoping devices, or within channels in the outer compressible insulation layers.
Embodiment 56. The process of any of embodiments 52 to 55, further comprising reducing dead volume of the adsorbent bed assembly by filling void space within the adsorbent bed assembly with a filler material.
Embodiment 57. The process of embodiment 56, wherein the filler material comprises ceramic discs.
Embodiment 58. The process of any of embodiments 52 to 57, further comprising: prior to passing the gaseous feed stream through the adsorbent material, passing the gaseous feed stream through a first flow straightening structure; after passing the gaseous feed stream through the adsorbent material and prior to expelling the product stream from the adsorbent bed assembly, passing the gas through a second flow straightening structure; or combinations thereof.
Embodiment 59. The process of embodiment 58, wherein passing the gas through the flow straightening structures straightens a flow of the gaseous feed stream.
Embodiment 60. The process of any of embodiments 52 to 59, wherein the rapid cycle swing adsorption processes is a rapid cycle pressure swing adsorption process, a rapid cycle temperature swing adsorption process, or combinations thereof.
Embodiment 61. A method of coupling two components subjected to cyclic thermal or pressure loads, the method comprising: coupling a first rigid component to a second rigid component via at least one setscrew; wherein at least one friction pad is positioned on the second component, between the second component and the first component, and wherein the at least one setscrew engages within the at least one friction pad.
Although the present embodiments and advantages have been described in detail, it should be understood that various changes, substitutions and alterations can be made herein without departing from the spirit and scope of the disclosure. Moreover, the scope of the present application is not intended to be limited to the particular embodiments of the process, machine, manufacture, composition of matter, means, methods and steps described in the specification. As one of ordinary skill in the art will readily appreciate from the disclosure, processes, machines, manufacture, compositions of matter, means, methods, or steps, presently existing or later to be developed that perform substantially the same function or achieve substantially the same result as the corresponding embodiments described herein may be utilized according to the present disclosure. Accordingly, the appended claims are intended to include within their scope such processes, machines, manufacture, compositions of matter, means, methods, or steps.
This application claims the priority of U.S. Provisional Application No. 62/840,770 filed Apr. 30, 2019, the disclosure of which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
1868138 | Fisk | Jul 1932 | A |
2646391 | Houdry | Jul 1953 | A |
3103425 | Meyer | Sep 1963 | A |
3124152 | Payne | Mar 1964 | A |
3142547 | Marsh et al. | Jul 1964 | A |
3432995 | Karl | Mar 1969 | A |
3508758 | Strub | Apr 1970 | A |
3594983 | Yearout | Jul 1971 | A |
3602247 | Bunn et al. | Aug 1971 | A |
3788036 | Lee et al. | Jan 1974 | A |
3967464 | Cormier et al. | Jul 1976 | A |
4187092 | Woolley | Feb 1980 | A |
4261815 | Kelland | Apr 1981 | A |
4324565 | Benkmann | Apr 1982 | A |
4325565 | Winchell | Apr 1982 | A |
4329162 | Pitcher | May 1982 | A |
4340398 | Doshi et al. | Jul 1982 | A |
4386947 | Mizuno et al. | Jun 1983 | A |
4421531 | Dalton, Jr. et al. | Dec 1983 | A |
4445441 | Tanca | May 1984 | A |
4461630 | Cassidy et al. | Jul 1984 | A |
4496376 | Hradek | Jan 1985 | A |
4559065 | Null et al. | Dec 1985 | A |
4631073 | Null et al. | Dec 1986 | A |
4673420 | Haker | Jun 1987 | A |
4693730 | Miller et al. | Sep 1987 | A |
4705627 | Miwa et al. | Nov 1987 | A |
4711968 | Oswald et al. | Dec 1987 | A |
4737170 | Searle | Apr 1988 | A |
4770676 | Sircar et al. | Sep 1988 | A |
4783205 | Searle | Nov 1988 | A |
4784672 | Sircar | Nov 1988 | A |
4790272 | Woolenweber | Dec 1988 | A |
4814146 | Brand et al. | Mar 1989 | A |
4816039 | Krishnamurthy et al. | Mar 1989 | A |
4877429 | Hunter | Oct 1989 | A |
4977745 | Heichberger | Dec 1990 | A |
5110328 | Yokota et al. | May 1992 | A |
5125934 | Krishnamurthy et al. | Jun 1992 | A |
5169006 | Stelzer | Dec 1992 | A |
5169414 | Panzica et al. | Dec 1992 | A |
5174796 | Davis et al. | Dec 1992 | A |
5224350 | Mehra | Jul 1993 | A |
5234472 | Krishnamurthy et al. | Aug 1993 | A |
5292990 | Kantner et al. | Mar 1994 | A |
5306331 | Auvil et al. | Apr 1994 | A |
5354346 | Kumar | Oct 1994 | A |
5365011 | Ramachandran et al. | Nov 1994 | A |
5370728 | LaSala et al. | Dec 1994 | A |
5486227 | Kumar et al. | Jan 1996 | A |
5503782 | Dyrud et al. | Apr 1996 | A |
5547641 | Smith et al. | Aug 1996 | A |
5565018 | Baksh et al. | Oct 1996 | A |
5595910 | Kant | Jan 1997 | A |
5647891 | Blizzard et al. | Jul 1997 | A |
5669962 | Dunne | Sep 1997 | A |
5672196 | Acharya et al. | Sep 1997 | A |
5700310 | Bowman et al. | Dec 1997 | A |
5733451 | Coellner et al. | Mar 1998 | A |
5735938 | Baksh et al. | Apr 1998 | A |
5750026 | Gadkaree et al. | May 1998 | A |
5769928 | Leavitt | Jun 1998 | A |
5779768 | Anand et al. | Jul 1998 | A |
5792239 | Reinhold, III et al. | Aug 1998 | A |
5807423 | Lemcoff et al. | Sep 1998 | A |
5811616 | Holub et al. | Sep 1998 | A |
5827358 | Kulish et al. | Oct 1998 | A |
5827577 | Spencer | Oct 1998 | A |
5882380 | Sircar | Mar 1999 | A |
5906673 | Reinhold, III et al. | May 1999 | A |
5908480 | Ban | Jun 1999 | A |
5912426 | Smolarek et al. | Jun 1999 | A |
5914294 | Park et al. | Jun 1999 | A |
5924307 | Nenov | Jul 1999 | A |
5935444 | Johnson et al. | Aug 1999 | A |
5951744 | Rohrbach et al. | Sep 1999 | A |
5968234 | Midgett, II et al. | Oct 1999 | A |
5976221 | Bowman et al. | Nov 1999 | A |
5997617 | Czabala et al. | Dec 1999 | A |
6007606 | Baksh et al. | Dec 1999 | A |
6011192 | Baker et al. | Jan 2000 | A |
6023942 | Thomas et al. | Feb 2000 | A |
6053966 | Moreau et al. | Apr 2000 | A |
6063161 | Keefer et al. | May 2000 | A |
6096115 | Kleinberg | Aug 2000 | A |
6099621 | Ho | Aug 2000 | A |
6102985 | Naheiri et al. | Aug 2000 | A |
6129780 | Millet et al. | Oct 2000 | A |
6136222 | Friesen et al. | Oct 2000 | A |
6147126 | DeGeorge et al. | Nov 2000 | A |
6152991 | Ackley | Nov 2000 | A |
6156101 | Naheiri | Dec 2000 | A |
6171371 | Derive et al. | Jan 2001 | B1 |
6176897 | Keefer | Jan 2001 | B1 |
6179900 | Behling et al. | Jan 2001 | B1 |
6183538 | Naheiri | Feb 2001 | B1 |
6194079 | Hekal | Feb 2001 | B1 |
6210466 | Whysall et al. | Apr 2001 | B1 |
6231302 | Bonardi | May 2001 | B1 |
6245127 | Kane et al. | Jun 2001 | B1 |
6284021 | Lu et al. | Sep 2001 | B1 |
6311719 | Hill et al. | Nov 2001 | B1 |
6345954 | Al-Himyary et al. | Feb 2002 | B1 |
6398853 | Keefer et al. | Jun 2002 | B1 |
6402813 | Monereau et al. | Jun 2002 | B2 |
6406523 | Connor et al. | Jun 2002 | B1 |
6425938 | Xu et al. | Jul 2002 | B1 |
6432379 | Heung | Aug 2002 | B1 |
6436171 | Wang et al. | Aug 2002 | B1 |
6444012 | Dolan et al. | Sep 2002 | B1 |
6444014 | Mullhaupt et al. | Sep 2002 | B1 |
6444523 | Fan et al. | Sep 2002 | B1 |
6444610 | Yamamoto | Sep 2002 | B1 |
6451095 | Keefer et al. | Sep 2002 | B1 |
6457485 | Hill et al. | Oct 2002 | B2 |
6458187 | Fritz et al. | Oct 2002 | B1 |
6464761 | Bugli | Oct 2002 | B1 |
6471749 | Kawai et al. | Oct 2002 | B1 |
6471939 | Boix et al. | Oct 2002 | B1 |
6488747 | Keefer | Dec 2002 | B1 |
6497750 | Butwell et al. | Dec 2002 | B2 |
6500234 | Ackley et al. | Dec 2002 | B1 |
6500241 | Reddy | Dec 2002 | B2 |
6500404 | Camblor Fernandez et al. | Dec 2002 | B1 |
6503299 | Baksh et al. | Jan 2003 | B2 |
6506351 | Jain et al. | Jan 2003 | B1 |
6514318 | Keefer | Feb 2003 | B2 |
6514319 | Keefer et al. | Feb 2003 | B2 |
6517609 | Monereau et al. | Feb 2003 | B1 |
6531516 | Davis et al. | Mar 2003 | B2 |
6533846 | Keefer et al. | Mar 2003 | B1 |
6565627 | Golden et al. | May 2003 | B1 |
6565635 | Keefer et al. | May 2003 | B2 |
6565825 | Ohji et al. | May 2003 | B2 |
6572678 | Wijmans et al. | Jun 2003 | B1 |
6579341 | Baker et al. | Jun 2003 | B2 |
6593541 | Herren | Jul 2003 | B1 |
6595233 | Pulli | Jul 2003 | B2 |
6605136 | Graham et al. | Aug 2003 | B1 |
6607584 | Moreau et al. | Aug 2003 | B2 |
6630012 | Wegeng et al. | Oct 2003 | B2 |
6631626 | Hahn | Oct 2003 | B1 |
6641645 | Lee et al. | Nov 2003 | B1 |
6651645 | Nunez-Suarez | Nov 2003 | B1 |
6660064 | Golden et al. | Dec 2003 | B2 |
6660065 | Byrd et al. | Dec 2003 | B2 |
6692626 | Keefer et al. | Feb 2004 | B2 |
6712087 | Hill et al. | Mar 2004 | B2 |
6742507 | Keefer et al. | Jun 2004 | B2 |
6746515 | Wegeng et al. | Jun 2004 | B2 |
6752852 | Jacksier et al. | Jun 2004 | B1 |
6770120 | Neu et al. | Aug 2004 | B2 |
6773225 | Yuri et al. | Aug 2004 | B2 |
6802889 | Graham et al. | Oct 2004 | B2 |
6814771 | Scardino et al. | Nov 2004 | B2 |
6835354 | Woods et al. | Dec 2004 | B2 |
6840985 | Keefer | Jan 2005 | B2 |
6866950 | Connor et al. | Mar 2005 | B2 |
6889710 | Wagner | May 2005 | B2 |
6890376 | Arquin et al. | May 2005 | B2 |
6893483 | Golden et al. | May 2005 | B2 |
6902602 | Keefer et al. | Jun 2005 | B2 |
6916358 | Nakamura et al. | Jul 2005 | B2 |
6918953 | Lomax, Jr. et al. | Jul 2005 | B2 |
6921597 | Keefer et al. | Jul 2005 | B2 |
6936561 | Marques et al. | Aug 2005 | B2 |
6974496 | Wegeng et al. | Dec 2005 | B2 |
7025801 | Monereau | Apr 2006 | B2 |
7027929 | Wang | Apr 2006 | B2 |
7029521 | Johansson | Apr 2006 | B2 |
7074323 | Ghijsen | Jul 2006 | B2 |
7077891 | Jaffe et al. | Jul 2006 | B2 |
7087331 | Keefer et al. | Aug 2006 | B2 |
7094275 | Keefer et al. | Aug 2006 | B2 |
7097925 | Keefer et al. | Aug 2006 | B2 |
7112239 | Kimbara et al. | Sep 2006 | B2 |
7117669 | Kaboord et al. | Oct 2006 | B2 |
7122073 | Notaro et al. | Oct 2006 | B1 |
7128775 | Celik et al. | Oct 2006 | B2 |
7144016 | Gozdawa | Dec 2006 | B2 |
7160356 | Koros et al. | Jan 2007 | B2 |
7160367 | Babicki et al. | Jan 2007 | B2 |
7166149 | Dunne et al. | Jan 2007 | B2 |
7172645 | Pfister et al. | Feb 2007 | B1 |
7189280 | Alizadeh-Khiavi et al. | Mar 2007 | B2 |
7243679 | Thelen | Jul 2007 | B2 |
7247185 | Jobson | Jul 2007 | B2 |
7250073 | Keefer et al. | Jul 2007 | B2 |
7250074 | Tonkovich et al. | Jul 2007 | B2 |
7255727 | Monereau et al. | Aug 2007 | B2 |
7258725 | Ohmi et al. | Aug 2007 | B2 |
7276107 | Baksh et al. | Oct 2007 | B2 |
7279029 | Occhialini et al. | Oct 2007 | B2 |
7285350 | Keefer et al. | Oct 2007 | B2 |
7297279 | Johnson et al. | Nov 2007 | B2 |
7311763 | Neary | Dec 2007 | B2 |
RE40006 | Keefer et al. | Jan 2008 | E |
7314503 | Landrum et al. | Jan 2008 | B2 |
7354562 | Ying et al. | Apr 2008 | B2 |
7387849 | Keefer et al. | Jun 2008 | B2 |
7390350 | Weist, Jr. et al. | Jun 2008 | B2 |
7404846 | Golden et al. | Jul 2008 | B2 |
7438079 | Cohen et al. | Oct 2008 | B2 |
7449049 | Thomas et al. | Nov 2008 | B2 |
7456131 | Klett et al. | Nov 2008 | B2 |
7510601 | Whitley et al. | Mar 2009 | B2 |
7527670 | Ackley et al. | May 2009 | B2 |
7553568 | Keefer | Jun 2009 | B2 |
7560154 | Katoh | Jul 2009 | B2 |
7578864 | Watanabe et al. | Aug 2009 | B2 |
7604682 | Seaton | Oct 2009 | B2 |
7637989 | Bong | Dec 2009 | B2 |
7641716 | Lomax, Jr. et al. | Jan 2010 | B2 |
7645324 | Rode et al. | Jan 2010 | B2 |
7651549 | Whitley | Jan 2010 | B2 |
7674319 | Lomax, Jr. et al. | Mar 2010 | B2 |
7674539 | Keefer et al. | Mar 2010 | B2 |
7687044 | Keefer et al. | Mar 2010 | B2 |
7713333 | Rege et al. | May 2010 | B2 |
7717981 | LaBuda et al. | May 2010 | B2 |
7722700 | Sprinkle | May 2010 | B2 |
7731782 | Kelley et al. | Jun 2010 | B2 |
7740687 | Reinhold, III | Jun 2010 | B2 |
7744676 | Leitmayr et al. | Jun 2010 | B2 |
7744677 | Barclay et al. | Jun 2010 | B2 |
7758051 | Roberts-Haritonov et al. | Jul 2010 | B2 |
7758988 | Keefer et al. | Jul 2010 | B2 |
7763098 | Alizadeh-Khiavi et al. | Jul 2010 | B2 |
7763099 | Verma et al. | Jul 2010 | B2 |
7792983 | Mishra et al. | Sep 2010 | B2 |
7793675 | Cohen et al. | Sep 2010 | B2 |
7806965 | Stinson | Oct 2010 | B2 |
7819948 | Wagner | Oct 2010 | B2 |
7828877 | Sawada et al. | Nov 2010 | B2 |
7828880 | Moriya et al. | Nov 2010 | B2 |
7854793 | Rarig et al. | Dec 2010 | B2 |
7858169 | Yamashita | Dec 2010 | B2 |
7862645 | Whitley et al. | Jan 2011 | B2 |
7867320 | Baksh et al. | Jan 2011 | B2 |
7902114 | Bowie et al. | Mar 2011 | B2 |
7938886 | Hershkowitz et al. | May 2011 | B2 |
7947118 | Rarig et al. | May 2011 | B2 |
7947120 | Deckman et al. | May 2011 | B2 |
7959720 | Deckman et al. | Jun 2011 | B2 |
8016918 | LaBuda et al. | Sep 2011 | B2 |
8034164 | Lomax, Jr. et al. | Oct 2011 | B2 |
8071063 | Reyes et al. | Dec 2011 | B2 |
8128734 | Song | Mar 2012 | B2 |
8142745 | Reyes et al. | Mar 2012 | B2 |
8142746 | Reyes et al. | Mar 2012 | B2 |
8192709 | Reyes et al. | Jun 2012 | B2 |
8210772 | Gillecriosd | Jul 2012 | B2 |
8227121 | Adams et al. | Jul 2012 | B2 |
8262773 | Northrop et al. | Sep 2012 | B2 |
8262783 | Stoner et al. | Sep 2012 | B2 |
8268043 | Celik et al. | Sep 2012 | B2 |
8268044 | Wright et al. | Sep 2012 | B2 |
8272401 | McLean | Sep 2012 | B2 |
8287629 | Fujita et al. | Oct 2012 | B2 |
8319090 | Kitamura | Nov 2012 | B2 |
8337594 | Corma Canos et al. | Dec 2012 | B2 |
8361200 | Sayari et al. | Jan 2013 | B2 |
8361205 | Desai et al. | Jan 2013 | B2 |
8377173 | Chuang | Feb 2013 | B2 |
8444750 | Deckman et al. | May 2013 | B2 |
8449649 | Greenough | May 2013 | B2 |
8470395 | Khiavi et al. | Jun 2013 | B2 |
8480795 | Siskin et al. | Jul 2013 | B2 |
8512569 | Eaton et al. | Aug 2013 | B2 |
8518356 | Schaffer et al. | Aug 2013 | B2 |
8529662 | Kelley et al. | Sep 2013 | B2 |
8529663 | Reyes et al. | Sep 2013 | B2 |
8529664 | Deckman et al. | Sep 2013 | B2 |
8529665 | Manning et al. | Sep 2013 | B2 |
8535414 | Johnson et al. | Sep 2013 | B2 |
8545602 | Chance et al. | Oct 2013 | B2 |
8551444 | Agnihotri et al. | Oct 2013 | B2 |
8573124 | Havran et al. | Nov 2013 | B2 |
8591627 | Jain | Nov 2013 | B2 |
8591634 | Winchester et al. | Nov 2013 | B2 |
8616233 | McLean et al. | Dec 2013 | B2 |
8657922 | Yamawaki et al. | Feb 2014 | B2 |
8673059 | Leta et al. | Mar 2014 | B2 |
8680344 | Weston et al. | Mar 2014 | B2 |
8715617 | Genkin et al. | May 2014 | B2 |
8741243 | Gadkaree et al. | Jun 2014 | B2 |
8752390 | Wright et al. | Jun 2014 | B2 |
8753428 | Lomax, Jr. et al. | Jun 2014 | B2 |
8778051 | Weist, Jr. et al. | Jul 2014 | B2 |
8784533 | Leta et al. | Jul 2014 | B2 |
8784534 | Kamakoti et al. | Jul 2014 | B2 |
8784535 | Ravikovitch et al. | Jul 2014 | B2 |
8790618 | Adams et al. | Jul 2014 | B2 |
8795411 | Hufton et al. | Aug 2014 | B2 |
8808425 | Genkin et al. | Aug 2014 | B2 |
8808426 | Sundaram | Aug 2014 | B2 |
8814985 | Gerds et al. | Aug 2014 | B2 |
8852322 | Gupta et al. | Oct 2014 | B2 |
8858683 | Deckman | Oct 2014 | B2 |
8875483 | Wettstein | Nov 2014 | B2 |
8906138 | Rasmussen et al. | Dec 2014 | B2 |
8921637 | Sundaram et al. | Dec 2014 | B2 |
8932386 | Bouvier et al. | Jan 2015 | B2 |
8939014 | Kamakoti et al. | Jan 2015 | B2 |
9005561 | Leta | Apr 2015 | B2 |
9017457 | Tammera | Apr 2015 | B2 |
9028595 | Sundaram et al. | May 2015 | B2 |
9034078 | Wanni et al. | May 2015 | B2 |
9034079 | Deckman et al. | May 2015 | B2 |
9050553 | Alizadeh-Khiavi et al. | Jun 2015 | B2 |
9067168 | Frederick et al. | Jun 2015 | B2 |
9067169 | Patel | Jun 2015 | B2 |
9095809 | Deckman et al. | Aug 2015 | B2 |
9108145 | Kalbassi et al. | Aug 2015 | B2 |
9120049 | Sundaram et al. | Sep 2015 | B2 |
9126138 | Deckman et al. | Sep 2015 | B2 |
9162175 | Sundaram | Oct 2015 | B2 |
9168483 | Ravikovitch et al. | Oct 2015 | B2 |
9168485 | Deckman et al. | Oct 2015 | B2 |
9272264 | Coupland | Mar 2016 | B2 |
9278338 | Coupland | Mar 2016 | B2 |
9358493 | Tammera et al. | Jun 2016 | B2 |
9358496 | Berges | Jun 2016 | B2 |
9573116 | Johnson et al. | Feb 2017 | B2 |
9597655 | Beeckman | Mar 2017 | B2 |
9713787 | Owens et al. | Jul 2017 | B2 |
9737846 | Carstensen et al. | Aug 2017 | B2 |
9744521 | Brody et al. | Aug 2017 | B2 |
10040022 | Fowler et al. | Aug 2018 | B2 |
10080991 | Johnson et al. | Sep 2018 | B2 |
10080992 | Nagavarapu et al. | Sep 2018 | B2 |
10124286 | McMahon et al. | Nov 2018 | B2 |
10882002 | Vittenet | Jan 2021 | B2 |
20010047824 | Hill et al. | Dec 2001 | A1 |
20020053547 | Schlegel et al. | May 2002 | A1 |
20020124885 | Hill et al. | Sep 2002 | A1 |
20020162452 | Butwell et al. | Nov 2002 | A1 |
20030075485 | Ghijsen | Apr 2003 | A1 |
20030129101 | Zettel | Jul 2003 | A1 |
20030131728 | Kanazirev et al. | Jul 2003 | A1 |
20030145726 | Gueret et al. | Aug 2003 | A1 |
20030170527 | Finn et al. | Sep 2003 | A1 |
20030188635 | Lomax, Jr. et al. | Oct 2003 | A1 |
20030202918 | Ashida et al. | Oct 2003 | A1 |
20030205130 | Neu et al. | Nov 2003 | A1 |
20030223856 | Yuri et al. | Dec 2003 | A1 |
20040099142 | Arquin et al. | May 2004 | A1 |
20040118277 | Kim | Jun 2004 | A1 |
20040118747 | Cutler et al. | Jun 2004 | A1 |
20040197596 | Connor et al. | Oct 2004 | A1 |
20040232622 | Gozdawa | Nov 2004 | A1 |
20050045041 | Hechinger et al. | Mar 2005 | A1 |
20050109419 | Ohmi et al. | May 2005 | A1 |
20050114032 | Wang | May 2005 | A1 |
20050129952 | Sawada et al. | Jun 2005 | A1 |
20050145111 | Keefer et al. | Jul 2005 | A1 |
20050150378 | Dunne et al. | Jul 2005 | A1 |
20050229782 | Monereau et al. | Oct 2005 | A1 |
20050252378 | Celik et al. | Nov 2005 | A1 |
20060017940 | Takayama | Jan 2006 | A1 |
20060048648 | Gibbs et al. | Mar 2006 | A1 |
20060049102 | Miller et al. | Mar 2006 | A1 |
20060076270 | Poshusta et al. | Apr 2006 | A1 |
20060099096 | Shaffer et al. | May 2006 | A1 |
20060105158 | Fritz et al. | May 2006 | A1 |
20060116430 | Wentink et al. | Jun 2006 | A1 |
20060116460 | Georget et al. | Jun 2006 | A1 |
20060150811 | Callahan | Jul 2006 | A1 |
20060162556 | Ackley et al. | Jul 2006 | A1 |
20060165574 | Sayari | Jul 2006 | A1 |
20060169142 | Rode et al. | Aug 2006 | A1 |
20060236862 | Golden et al. | Oct 2006 | A1 |
20060236867 | Neary | Oct 2006 | A1 |
20060245982 | Whittenberger | Nov 2006 | A1 |
20070084241 | Kretchmer et al. | Apr 2007 | A1 |
20070084344 | Moriya et al. | Apr 2007 | A1 |
20070187029 | Axtell et al. | Aug 2007 | A1 |
20070222160 | Roberts-Haritonov et al. | Sep 2007 | A1 |
20070253872 | Keefer et al. | Nov 2007 | A1 |
20070261550 | Ota | Nov 2007 | A1 |
20070261557 | Gadkaree et al. | Nov 2007 | A1 |
20070283807 | Whitley | Dec 2007 | A1 |
20080051279 | Klett et al. | Feb 2008 | A1 |
20080072822 | White | Mar 2008 | A1 |
20080128655 | Garg et al. | Jun 2008 | A1 |
20080202336 | Hofer et al. | Aug 2008 | A1 |
20080236389 | Leedy et al. | Oct 2008 | A1 |
20080282883 | Rarig et al. | Nov 2008 | A1 |
20080282884 | Kelley et al. | Nov 2008 | A1 |
20080282885 | Deckman et al. | Nov 2008 | A1 |
20080282886 | Reyes et al. | Nov 2008 | A1 |
20080282887 | Chance | Nov 2008 | A1 |
20080282892 | Deckman et al. | Nov 2008 | A1 |
20080289497 | Barclay et al. | Nov 2008 | A1 |
20080307966 | Stinson | Dec 2008 | A1 |
20080314550 | Greco | Dec 2008 | A1 |
20090004073 | Gleize et al. | Jan 2009 | A1 |
20090014902 | Koivunen et al. | Jan 2009 | A1 |
20090025553 | Keefer et al. | Jan 2009 | A1 |
20090025555 | Lively et al. | Jan 2009 | A1 |
20090037550 | Mishra et al. | Feb 2009 | A1 |
20090071333 | LaBuda et al. | Mar 2009 | A1 |
20090079870 | Matsui | Mar 2009 | A1 |
20090107332 | Wagner | Apr 2009 | A1 |
20090151559 | Verma et al. | Jun 2009 | A1 |
20090162268 | Hufton et al. | Jun 2009 | A1 |
20090180423 | Kroener | Jul 2009 | A1 |
20090241771 | Manning et al. | Oct 2009 | A1 |
20090284013 | Anand et al. | Nov 2009 | A1 |
20090294366 | Wright et al. | Dec 2009 | A1 |
20090308248 | Siskin et al. | Dec 2009 | A1 |
20090314159 | Haggerty | Dec 2009 | A1 |
20100059701 | McLean | Mar 2010 | A1 |
20100077920 | Baksh et al. | Apr 2010 | A1 |
20100089241 | Stoner et al. | Apr 2010 | A1 |
20100132548 | Dunne et al. | Jun 2010 | A1 |
20100186445 | Minta et al. | Jul 2010 | A1 |
20100212493 | Rasmussen et al. | Aug 2010 | A1 |
20100251887 | Jain | Oct 2010 | A1 |
20100252497 | Ellison et al. | Oct 2010 | A1 |
20100263534 | Chuang | Oct 2010 | A1 |
20100282593 | Speirs et al. | Nov 2010 | A1 |
20100288704 | Amsden et al. | Nov 2010 | A1 |
20110011803 | Koros | Jan 2011 | A1 |
20110020202 | Gadkaree et al. | Jan 2011 | A1 |
20110031103 | Deckman et al. | Feb 2011 | A1 |
20110067440 | Van Aken | Mar 2011 | A1 |
20110067770 | Pederson et al. | Mar 2011 | A1 |
20110123878 | Jangbarwala | May 2011 | A1 |
20110146494 | Desai et al. | Jun 2011 | A1 |
20110149640 | Furuta et al. | Jun 2011 | A1 |
20110217218 | Gupta et al. | Sep 2011 | A1 |
20110277620 | Havran et al. | Nov 2011 | A1 |
20110291051 | Hershkowitz et al. | Dec 2011 | A1 |
20110296871 | Van Soest-Vercammen et al. | Dec 2011 | A1 |
20110308524 | Brey et al. | Dec 2011 | A1 |
20120024150 | Moniot | Feb 2012 | A1 |
20120024152 | Yamawaki et al. | Feb 2012 | A1 |
20120031144 | Northrop et al. | Feb 2012 | A1 |
20120067216 | Corma-Canos et al. | Mar 2012 | A1 |
20120118755 | Dadvand et al. | May 2012 | A1 |
20120118758 | Ellis et al. | May 2012 | A1 |
20120152115 | Gerds et al. | Jun 2012 | A1 |
20120222551 | Deckman | Sep 2012 | A1 |
20120222552 | Ravikovitch et al. | Sep 2012 | A1 |
20120222553 | Kamakoti et al. | Sep 2012 | A1 |
20120222554 | Leta et al. | Sep 2012 | A1 |
20120222555 | Gupta et al. | Sep 2012 | A1 |
20120227583 | Monereau et al. | Sep 2012 | A1 |
20120255377 | Kamakoti et al. | Oct 2012 | A1 |
20120272823 | Halder et al. | Nov 2012 | A1 |
20120308456 | Leta et al. | Dec 2012 | A1 |
20120312163 | Leta et al. | Dec 2012 | A1 |
20130061755 | Frederick et al. | Mar 2013 | A1 |
20130095996 | Buelow et al. | Apr 2013 | A1 |
20130225898 | Sundaram et al. | Aug 2013 | A1 |
20130327216 | Deckman et al. | Dec 2013 | A1 |
20140013955 | Tammera et al. | Jan 2014 | A1 |
20140060326 | Sundaram et al. | Mar 2014 | A1 |
20140157984 | Deckman et al. | Jun 2014 | A1 |
20140157986 | Ravikovitch et al. | Jun 2014 | A1 |
20140174291 | Gupta et al. | Jun 2014 | A1 |
20140208797 | Kelley et al. | Jul 2014 | A1 |
20140216254 | Tammera et al. | Aug 2014 | A1 |
20150013377 | Oelfke | Jan 2015 | A1 |
20150068397 | Boulet et al. | Mar 2015 | A1 |
20150010483 | Perry et al. | Apr 2015 | A1 |
20150101483 | Perry et al. | Apr 2015 | A1 |
20150196870 | Albright et al. | Jul 2015 | A1 |
20150328578 | Deckman et al. | Nov 2015 | A1 |
20150361102 | Inubshi et al. | Dec 2015 | A1 |
20160016865 | Dolan | Jan 2016 | A1 |
20160023155 | Ramkumar et al. | Jan 2016 | A1 |
20160129433 | Tammera et al. | May 2016 | A1 |
20160166972 | Owens et al. | Jun 2016 | A1 |
20160236135 | Tammera et al. | Aug 2016 | A1 |
20160332105 | Tammera et al. | Nov 2016 | A1 |
20160332106 | Tammera et al. | Nov 2016 | A1 |
20170028342 | Zastera | Feb 2017 | A1 |
20170056814 | Marshall et al. | Mar 2017 | A1 |
20170113173 | Fowler et al. | Apr 2017 | A1 |
20170113175 | Fowler et al. | Apr 2017 | A1 |
20170136405 | Ravikovitch et al. | May 2017 | A1 |
20170266604 | Tammera et al. | Sep 2017 | A1 |
20170282114 | Owens et al. | Oct 2017 | A1 |
20170341011 | Nagavarapu et al. | Nov 2017 | A1 |
20170341012 | Nagavarapu et al. | Nov 2017 | A1 |
20180001301 | Brody et al. | Jan 2018 | A1 |
20180056229 | Denton et al. | Mar 2018 | A1 |
20180056235 | Wang et al. | Mar 2018 | A1 |
20180169565 | Brody et al. | Jun 2018 | A1 |
20180169617 | Brody et al. | Jun 2018 | A1 |
20180339263 | Dehaas et al. | Nov 2018 | A1 |
20190224613 | Nagavarapu et al. | Jul 2019 | A1 |
20190262764 | Johnson | Aug 2019 | A1 |
20190262765 | Barnes et al. | Aug 2019 | A1 |
20200197856 | Fulton et al. | Jun 2020 | A1 |
Number | Date | Country |
---|---|---|
0257493 | Feb 1988 | EP |
0426937 | May 1991 | EP |
0904827 | Mar 1999 | EP |
0953374 | Mar 1999 | EP |
1110593 | Jun 2001 | EP |
1674555 | Jun 2006 | EP |
2754488 | Jul 2014 | EP |
2823872 | Jan 2015 | EP |
2854819 | May 2003 | FR |
2924951 | Jun 2009 | FR |
58-114715 | Jul 1983 | JP |
59-232174 | Dec 1984 | JP |
60-189318 | Dec 1985 | JP |
2002-253818 | Oct 1990 | JP |
04-180978 | Jun 1992 | JP |
06006736 | Jun 1992 | JP |
H05-037318 | May 1993 | JP |
H6-6736 | Jan 1994 | JP |
3477280 | Aug 1995 | JP |
2011-169640 | Jun 1999 | JP |
2011-280921 | Oct 1999 | JP |
2000-024445 | Aug 2001 | JP |
2002-348651 | Dec 2002 | JP |
2006-016470 | Jan 2006 | JP |
2006-036849 | Feb 2006 | JP |
2008-272534 | Nov 2008 | JP |
2011-083726 | Apr 2011 | JP |
2013-244469 | Dec 2013 | JP |
2016-121414 | Jul 2016 | JP |
101349424 | Jan 2014 | KR |
2329094 | Dec 2006 | RU |
2547115 | Apr 2015 | RU |
WO2002024309 | Mar 2002 | WO |
WO2002073728 | Sep 2002 | WO |
WO 0304438 | Jan 2003 | WO |
WO2005090793 | Sep 2005 | WO |
WO2010024643 | Mar 2010 | WO |
WO2011139894 | Nov 2011 | WO |
Entry |
---|
Cheung, O. et al., (2013) “Adsorption kinetics for CO2 on highly selective zeolites NaKA and nano-NaKA,” ApplEnerg, 112, pp. 1326-1336. |
Cygan, R. T. et al., (2004) “Molecular Models of Hydroxide, Oxyhydroxide, and Clay Phases and the Development of a General Force Field”, J Phys Chem B, vol. 108, pp. 1255-1266. |
Deem, M. W. et al., (2009) “Computational Discovery of New Zeolite-Like Materials”, J Phys Chem C, 113, pp. 21353-21360. |
Demiralp, E., et al., (1999) “Morse Stretch Potential Charge Equilibrium Force Field for Ceramics: Application to the Quartz-Stishovite Phase Transition and to Silica Glass”, Physical Review Letters, vol. 82(8), pp. 1708-1711. |
Dubbeldam, D., et al., (2013) “On the inner workings of Monte Carlo codes” Molecular Simulation, vol. 39, Nos. 14-15, pp. 1253-1292. |
Dubbeldam, D. et al. (2016) “RASPA: molecular simulation software for adsorption and diffusion in flexible nanoporous materials” Molecular Simulation, (published online Feb. 26, 2015), vol. 42(2), pp. 81-101. |
Earl, D. J. et al., (2005) “Parallel tempering: Theory, applications, and new perspectives,” Phys Chem Chem Phys, vol. 7, pp. 3910-3916. |
ExxonMobil Research and Engineering and QuestAir (2008) “A New Commercialized Process for Lower Cost H2 Recovery—Rapid Cycle Pressure Swing Adsorption (RCPSA),” Brochure, 4 pgs. |
Fang, H., et al., (2012) “Prediction of CO2 Adsorption Properties in Zeolites Using Force Fields Derived from Periodic Dispersion-Corrected DFT Calculations,” J Phys Chem C, 116, ACS Publications, pp. 10692-10701. |
Fang, H. et al., (2013) “First principles derived, transferable force fields for CO2 adsorption in Na-exchanged cationic zeolites,” Phys Chem Chem Phys, vol. 15, pp. 12882-12894. |
Fang, H. et al. (2014) “Recent Developments in First-Principles Force Fields for Molecules in Nanoporous Materials”, Journal of Materials Chemistry A, 2014, vol. 2, pp. 274-291. |
Fang, H. et al. (2016) “Identification of High-CO2-Capacity Cationic Zeolites by Accurate Computational Screening”, American Chemical Society, Chemistry of Materials, 2016, vol. 28, pp. 3887-3896. |
Farooq, S. et al. (1990) “Continuous Countercurrent Flow Model for a Bulk PSA Separation Process,”AIChE J., v36 (2) p. 310-314. |
FlowServe (2005) “Exceeding Expectations, US Navy Cuts Maintenance Costs With Flowserve GX-200 Non-Contacting Seal Retrofits,” Face-to-Face, v17.1, 8 pgs. |
Foster, M.D., et al. “A geometric solution to the largest-free-sphere problem in zeolite frameworks”, Microporous and Mesoporous Materials, vol. 90, pp. 32-38. |
Frenkel, D. et al., (2002) “Understanding Molecular Simulation: From Algorithms to Applications”, 2nd ed., Academic Press, pp. 292-301. |
Garcia, E. J., et al. (2014) “Tuning the Adsorption Properties of Zeolites as Adsorbents for CO2 Separation: Best Compromise between the Working Capacity and Selectivity”, Ind. Eng. Chem. Res., vol. 53, pp. 9860-9874. |
Garcia-Sanchez, A., et al. (2009) “Transferable Force Field for Carbon Dioxide Adsorption in Zeolites”, J. Phys. Chem. C 2009, vol. 113, pp. 8814-8820. |
GE Oil & Gas (2007) “Dry Gas Seal Retrofit,” Florence, Italy, www.ge.com/oilandgas. 3 pgs. |
Harris, J. G. et al., (1995) “Carbon Dioxide's Liquid—Vapor Coexistence Curve and Critical Properties as Predicted by a Simple Molecular Model”, J Phys Chem, vol. 99, pp. 12021-12024. |
Hill, J. R. et al., (1995) “Molecular Mechanics Potential for Silica and Zeolite Catalysts Based on ab Initio Calculations. 2. Aluminosilicates”, J Phys Chem, vol. 99, pp. 9536-9550. |
Hopper, B. et al. (2008) “World's First 10,000 psi Sour Gas Injection Compressor,” Proceedings of the 37th Turbomachinery Symposium, pp. 73-95. |
Jain, S., et al. (2003) “Heuristic design of pressure swing adsorption: a preliminary study”, Separation and Purification Technology, vol. 33, pp. 25-43. |
Jaramillo, E. et al. (2004) “Adsorption of Small Molecules in LTA Zeolites, 1. NH3, CO2, and H2O in Zeolite 4A”, J. Phys. Chem. B 2004, vol. 108, pp. 20155-20159. |
Kim J. et al. (2012) “Predicting Large CO2 Adsorption in Aluminosilicate Zeolites for Postcombustion Carbon Dioxide Capture”, J. Am. Chem, Soc., vol. 134, pp. 18940-18940. |
Kärger, J., et al. (2012) “Diffusion in Nanoporous Materials”, Whiley-VCH publisher, vol. 1, Chapter 16, pp. 483-501. |
Kikkinides, E. S. et al. (1995) “Natural Gas Desulfurization by Adsorption: Feasibility and Multiplicity of Cyclic Steady States,” Ind. Eng. Chem. Res. V. 34, pp. 255-262. |
Lin, L., et al. (2012) “In silica screening of carbon-capture materials”, Nature Materials, vol. 1, pp. 633-641. |
Liu, Q. et al., (2010) “NaKA sorbents with high CO2-over-N2 selectivity and high capacity to adsorb CO2,” Chem Commun., vol. 46, pp. 4502-4504. |
Loewenstein, W., (1954) “The Distribution of Aluminum in the Tetra-Hedra of Silicates and Aluminates” Am Mineral, 92-96. |
Maurin et al. (2005) “Adsorption Mechanism of Carbon Dioxide in Faujasites: Grand Canonical Monte Carlo Simulations and Microcalorimetry Measurements”, J. Phys. Chem. B 2005, vol. 109, pp. 16084-16091. |
Neimark, A. V. et al., (1997) “Calibration of Pore Volume in Adsorption Experiments and Theoretical Models”, Langmuir, vol. 13, pp. 5148-5160. |
Palomino, M., et al. (2009) “New Insights on CO2-Methane Separation Using LTA Zeolites with Different Si/A1 Ratios and a First Comparison with MOFs”, Langmar, vol. 26(3), pp. 1910-1917. |
Patcas, F.C. et al. (2007) “CO Oxidation Over Structured Carriers: A Comparison of Ceramic Forms, Honeycombs and Beads”, Chem Engineering Science, v. 62, pp. 3984-3990. |
Peng, D. Y., et al., (1976) “A New Two-Constant Equation of State”, Ind Eng Chem Fundam, vol. 15, pp. 59-64. |
Pham, T. D. et al., (2013) “Carbon Dioxide and Nitrogen Adsorption on Cation-Exchanged SSZ-13 Zeolites”, Langmuir, vol. 29, pp. 832-839. |
Pophale, R., et al., (2011) “A database of new zeolite-like materials”, Phys Chem Chem Phys, vol. 13(27), pp. 1412. |
Potoff, J. J. et al., (2001) “Vapor-Liquid Equilibria of Mixtures Containing Alkanes, Carbon Dioxide, and Nitrogen”, AIChE J, vol. 47(7), pp. 1676-1682. |
Rameshni, Mahin “Strategies for Sour Gas Field Developments,” Worley Parsons-Brochure, 20 pp. |
Reyes, S. C. et al. (1997) “Frequency Modulation 2407-12Methods for Diffusion and Adsorption Measurements in Porous Solids,” J. Phys. Chem. B. v.101, pp. 614-622. |
Rezaei, F. et al. (2009) “Optimum Structured Adsorbents for Gas Separation Process”, Chem. Engineering Science, v. 64, pp. 5182-5191. |
Richardson, J.T. et al. (2000) “Properties of Ceramic Foam Catalyst Supports: Pressure Dop”, Applied Catalysis A: General v. 204, pp. 19-32. |
Robinson, D. B., et al., (1985) “The development of the Peng-Robinson Equation and its Application to Phase Equilibrium in a System Containing Methanol,” Fluid Phase Equilibria, vol. 24, pp. 25-41. |
Ruthven, D. M. et al. (1996) “Performance of a Parallel Passage Adsorbent Contactor,” Gas. Sep. Purif., vol. 10, No. 1, pp. 63-73. |
Stahley, J. S. (2003) “Design, Operation, and Maintenance Considerations for Improved Dry Gas Seal Reliability in Centrifugal Compressors,” Dresser-Rand, Tech. Paper 134, 15 pages. |
Santos, M. S (2011) “New Cycle configuration to enhance performance of kinetic PSA processes” Chemical Engineering Science 66, pp. 1590-1599. |
Snurr, R. Q. et al., (1993) “Prediction of Adsorption of Aromatic Hydrocarbons in Silicalite from Grand Canonical Monte Carlo Simulations with Biased Insertions”, J Phys Chem, vol. 97, pp. 13742-13752. |
Stemmet, C.P. et al. (2006) “Solid Foam Packings for Multiphase Reactors: Modelling of Liquid Holdup and Mass Transfer”, Chem. Engineering Research and Design, v. 84(A12), pp. 1134-1141. |
Suzuki, M. (1985) “Continuous-Countercurrent-Flow Approximation for Dynamic Steady State Profile of Pressure Swing Adsorption” AIChE Symp. Ser. v81 (242) pp. 67-73. |
Talu, O. et al., (2001), “Reference potentials for adsorption of helium, argon, methane, and krypton in high-silica zeolites,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 83-93, pp. 83-93. |
Walton, K. S. et al., (2006) “CO2 adsorption in Y and X zeolites modified by alkali metal cation exchange,” Microporous and Mesoporous Mat, vol. 91, pp. 78-84. |
Willems, T. F. et al., (2012) “Algorithms and tools for high-throughput geometry-based analysis of crystalline porous materials” Microporous Mesoporous Mat, vol. 149, pp. 134-141. |
Zukal, A., et al., (2009) “Isosteric heats of adsorption of carbon dioxide on zeolite MCM-22 modified by alkali metal cations”, Adsorption, vol. 15, pp. 264-270. |
Agrafiotis, C. et al., “The effect of particle size on the adhesion properties of oxide washcoats on cordierite honeycombs,” Journal of Materials Science Letters, 1999, vol. 18, pp. 1421-1424. |
Allen, M. P. et al., (1987) “Computer Simulation of Liquids” Clarendon Press, pp. 156-160. |
Asgari, M. et al., (2014) “Designing A Commercial Scale Pressure Swing Adsorber For Hydrogen Purification” Petroleum & Coal, vol. 56(5), pp. 552-561. |
Baerlocher, C. et al., (2017) International Zeolite Association's “Database of Zeolite Structures,” available at http://www.iza-stucture.org/databases/, downloaded Jun. 15, 2018, 1 page. |
Bernad, S. I. (2012) “Numberical Model for Cavitational Flow in Hydraulic Poppet Valves” Modelling and Simulation in Engineering, vol. 2012, Article ID 742162, 10 pages. |
Burtch, N.C. et al., (2015) “Molecular-level Insight into Unusual Low Pressure CO2 Affinity in Pillared Metal-Organic Frameworks,” J Am Chem Soc, 135, pp. 7172-7180. |
Beauvais, C. et al., (2004) “Distribution of Sodium Cations in Faujasite-Type Zeolite: A Canonical Parallel Tempering Simulation Study,” J Phys Chem B, 108, pp. 399-404. |
Number | Date | Country | |
---|---|---|---|
20200346162 A1 | Nov 2020 | US |
Number | Date | Country | |
---|---|---|---|
62840770 | Apr 2019 | US |