A portion of the disclosure of this patent document contains material which is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosure, as it appears in the Patent and Trademark Office patent files or records, but otherwise reserves all copyrights whatsoever.
The invention disclosed herein relates generally to the field of floating bridges. More specifically, the present invention relates to floating bridges for vehicle and/or pedestrian traffic which can be deployed, erected, etc., rapidly. Such floating bridges may be used in emergency situations to replace a collapsed or damaged structure rendered unusable or unsafe due to, e.g., natural forces or acts of terrorism, or in planned situations, e.g., to provide a temporary bridge while an existing bridge is being repaired or a new bridge built, etc. The invention also relates to floating bridges that provide for passage of marine vessels therepast.
In accordance with some embodiments of the invention, rapid deployment of a floating bridge for carrying traffic (e.g., vehicles of various types, pedestrians, or both, etc.) over water from one shore to another encompasses the use of bridge parts including modules, components, spans and other parts (e.g., used or constituting spans, roadways, connectors, anchorage, shore approaches, etc.) that can be brought to a staging area for a bridge crossing quickly. In some embodiments, the bridge parts are of a size to be transportable by truck to the staging area, although the bridge parts may be transported to the staging area by any suitable and available mode of transportation, including by barge or boat. The size of the bridge parts as delivered to the staging area relates to the available mode of transportation. For example, for delivery at least by truck, the parts are provided unassembled, partially assembled and/or broken down so as to be transportable by truck. On the other hand, if water is an available mode of transportation, bridge parts can be assembled or partially assembled, etc., to a size to be transportable by a barge or boat, etc. However, floating bridges according to some embodiments of the invention are configured so that they may be entirely constructed from bridge parts transportable by truck. The bridge parts are configured to be relatively quickly assembled into the floating bridge so that a bridge may be deployed quickly when needed. The term “parts” is used herein in a broad sense and encompasses discrete parts, items, components, modules, assemblies, subassemblies, etc., as well as materials, e.g., bulk materials, including anything that may be included in a bill of materials, unless the context indicates otherwise.
A rapidly deployable floating bridge according to some embodiments of the invention is a temporary bridge in the sense that it can be assembled relatively quickly. In some embodiments, the bridge is temporary also in the sense that it can be disassembled relatively quickly, with many of the bridge parts being available for reuse. The bridge parts may be stored locally or regionally, but not necessarily earmarked for any particular potential bridge crossing.
A rapidly deployable floating bridge according to some embodiments of the invention is also rapidly openable to define a channel therepast for marine navigation.
The bridge parts may comprise modules and/or components that are assembled into bridge spans either on land or on the water, and can be stored on land. The parts may also comprise parts needed to assemble and/or secure spans of the floating bridge, or parts needed to form shore approaches, traffic carrying structures (e.g., a roadway, walkway), railings, road dividers, lighting and/or facilities used with a bridge, e.g., safety and/or security structures and apparatus, etc.
According to some embodiments of the invention, a local launch and/or assembly and/or staging area or site (for convenience, referred to as “staging area”) is constructed for receiving bridge parts, storing bridge parts, assembling bridge parts and/or staging or launching bridge spans, parts, etc. Such an area or site may include infrastructure such as storage space, assembly space, and shore approaches, etc., and equipment (e.g., cranes, fork lifts, trucks, ramps, boats, etc.) needed to assemble and/or launch bridge parts for the floating bridge.
A relatively rapidly deployable floating bridge according to some embodiments of the invention comprises overlapping sets of bridge parts (spans, units, modules components, etc.). This permits floating bridges to be assembled at different sites to employ many of the same parts, which in turn simplifies manufacture and storage of parts. In addition, using common parts enables bridges to be erected using standardized procedures.
A rapidly deployable floating bridge according to some embodiments of the invention comprises shore approaches (which bring traffic to and take traffic away from the bridge crossing) that are also configured to be quickly constructed from parts that are transportable by truck, e.g., utilizing reinforced earth wall technology or, if the soil requires, utilizing steel sheet piles, or modular load bearing units, etc. “Shore approaches” is used herein in a broad sense and my encompass load-bearing abutments and structures, traffic carrying structures including (roadways for vehicles, walkways for pedestrians and light vehicles such a electric carts, bicycles, etc.) entrance and exit ramps, site preparation, etc.
A rapidly deployable floating bridge according to some embodiments of the invention comprises first and second elevated transition spans and a plurality of floating spans that are connected to at an adjacent floating span and an adjacent elevated transition span or two adjacent floating spans. Together the spans cooperate to carry traffic across the bridge from one shore approach to the other. An “elevated” span comprises a span which is not floating, e.g., has one end connected to a shore approach or another elevated span at an elevation above water level and another end which is connected to a floating span. According to some of the embodiments, at least one of the floating spans comprises a floating transition span that carries traffic between a higher elevation above water level and a lower elevation floating span, e.g., between an adjacent higher elevation elevated transition span and a lower adjacent floating span. All of the spans are constructed of parts transportable by truck.
In some embodiments, a floating bridge span comprises a plurality of buoyant modules, such as pontoons, that are connected together. In one embodiment, the pontoons extend transversely, e.g., perpendicularly, to the portion of the traffic carrying structure supported by the span. Spans fabricated from pontoons provide the advantage that the span will not fail due to a buoyant failure of a pontoon or pontoons. Because the pontoons are connected together, water entering a pontoon will only rise to the water level, i.e., the pontoon will not sink, since the upper portion of the failed pontoon is supported above the water level by the other pontoons. Spans of varying sizes may be fabricated to satisfy local requirements as loading, lengths, widths, etc.
In accordance with some embodiments of the invention, floating bridges provide for passage of marine vessels therepast, e.g., by providing one or more navigation channels past the bridge without opening the bridge, and/or by, moving one or more spans of the bridge to open the bridge to marine navigation. In some embodiments, two spans are connected together so as to be selectively disconnected and separated to create a break in the floating bridge when wanted, e.g., when marine vessels want to navigate past the bridge. When the bridge is configured to carry vehicle and or people, the two spans are connected. When the bridge is to be opened, traffic across the bridge is stopped and the two spans disconnected.
According to an embodiment of the invention, a pivot connection used, e.g., for pivoting a span to provide a marine navigation channel, may comprise a hinge connector with a hinge portion (or hinge leaf or hinge half) connected to each of two adjacent spans to pivotally connect the spans.
An anchorage system is operated to move and maintain the separated parts of the bridge apart to create the navigation channel. The process is reversed to close the bridge and resume traffic across the bridge.
The anchorage system also maintains the floating spans in position and is dynamic to accommodate changing currents, tides, winds and water levels. In some embodiments, sensor are provided to sense currents, wind, water levels, loading, etc., and the anchorage system is automatically adjusted to accommodate changes. Existing conditions such as tides, currents, winds, etc. may be used to assist in pivoting a span open or closed.
In some embodiments, the anchorage system includes modular anchor elements that also are transportable by truck to the staging area. In an embodiment of a modular anchor element, the modular element may include a base unit adapted to be embedded on the water bottom, and one or more stackable units that directly connect to the base unit or through another stackable unit. A cable is connected to the base element and may also be connected to or looped through one or more stackable units. Such anchor elements may be made of concrete. The cables may be connected to winches on the bridge spans to suitably tension and loosen the cables. This embodiment of a modular anchor element is configured to be relatively quickly installed. In some embodiments, anchor elements may comprise a ship anchor, e.g., a fluke-type anchor, or other types of anchor element depending upon water bottom condition, currents, bridge size and loading, etc. In some embodiments, the anchorage system includes anchor elements on either or both shores.
According to some embodiments, a navigation channel is created adjacent a shoreline with one or more elevated spans or bascules (elevated relative to water level and floating spans). In some embodiments, an elevated span is followed by one or more floating transition spans that reduce bridge elevation from the elevated span to a lower span floating on the bridged body of water. According to an embodiment, an elevated span is pivotally connected, e.g., hinged, to an adjacent span and/or a shore approach to pivot vertically about a horizontal axis to accommodate changes in water level and/or loading.
According to some embodiments, a floating transition span comprises a floatation structure, support elements extending upward from the floatation structure tapering in height from an elevated end of the floating transition span to a lower end, and a traffic carrying structure supported by the support elements. In some embodiments, this floating transition span is pivotally connected to an adjacent span and/or a shore approach.
Some embodiments of floating bridges include locking connectors for locking adjacent spans together, e.g., pivotally connected spans. In some embodiments, a connector includes a male centering connector part on one span that is received in a female mating locking connector part on the adjacent span. In some embodiments, the centering part includes an actuatable locking structure, e.g., automatically operated to lock when the connectors are properly docked, and remotely actuated to disengage a locked connector. In some embodiments, a locking connector is locked and unlocked by manual activation. In some embodiments, a hinge connector includes at least one locking connector
According to an embodiment of the invention, a floating bridge for rapid deployment at a water crossing for carrying traffic between a first shore and a second shore, comprises a first shore approach at the first shore and a second shore approach at the second shore, each shore approach comprising a traffic carrying structure. This bridge also includes a first elevated transition span pivotally connected to the first shore approach and a second elevated transition span pivotally connected to the second shore approach, each elevated transition span comprising a traffic carrying structure, and a plurality of floating spans connected together between the first and second elevated transition spans, the floating spans including at least one transition floating that carries traffic between an adjacent higher elevation span and an adjacent lower elevation span. According to this embodiment, the shore approaches and all of the spans are constructed of parts transportable by truck or boat to a staging area from which the bridge is deployed.
As discussed above, the bridge may be constructed to open provide for navigation or not open. In an openable embodiment, at least one of the floating spans is pivotally connected to an adjacent span at one and releasably connected to an adjacent span at an opposite end so as to be pivotable horizontally on the water between a closed traffic carrying condition and an open condition in which an opening in the bridge is created for marine navigation.
To accommodate changes in water level, loading, weather, etc., an elevated span may be pivotally connected to a floating span.
To provide a navigation channel without opening the bridge, at least one of the elevated transition spans may be provided that is elevated a sufficient distance above water level at least for a portion thereof to form a navigation channel.
According to an embodiment of the invention, a hinge connector may be provided for attachment to two floating spans to allow horizontally pivoting therebetween. A hinge connector may comprise two leaves pivotally connected by a pin, each leaf of the connector being connected to adjacent pivotally connected spans, and a locking connector which comprises a mating locking part associated with each leaf.
An anchoring system may be provided for the bridge that anchors at least one floating span to the water bottom. In one embodiment, the anchoring system is attached to the at least one floating span and comprises a plurality of modular anchor elements which each comprise a base module situated on or in the water bottom on opposites sides of the at least one floating span, at least one stackable element attached to the base element, at least one cable attached to each anchor element and the at least floating span and a winch associated with the at least one floating span connected to each cable.
According to some embodiments of the invention, one or more of the floating spans comprises an assembly of a plurality of pontoons connected together transversely of traffic carried by the respective span. Various numbers and configurations of pontoons may be used. Exterior pontoons in an assembly include an end that is sloped to reduce drag and friction. In an embodiment, a pontoon assembly comprises pairs of pontoons arranged end to end with the sloped ends facing out. In one embodiment, two pontoons are configured to create a space therebetween which may function as a drain. In one embodiment, a pontoon may include a winch of the anchor system. In an embodiment of a pontoon assembly, four pontoons are arranged end to end. In this embodiment, two interior pontoons do not have sloped ends.
An embodiment of a floating transition span comprises a floating structure and supports extending upwardly from the floating structure to and supporting a traffic carrying structure, the supports comprising supports of different height arranged to provide a grade to the traffic carrying structure from the higher elevation span to the lower elevation span. The height of the supports may be adjustable.
According to some embodiments, a staging area is provided from which a floating bridge can be rapidly deployed. The staging area comprises a site near a water crossing which the floating bridge is to bridge, at least one storage area on the site for receiving pontoons transported by truck or boat, at least one assembly area on the site for assembling the floating spans on water from pontoon, and a launching area for at least one of the assembly sites.
The invention is illustrated in the figures of the accompanying drawings, which are meant to be exemplary and not limiting, and in which like references are intended to refer to like or corresponding parts.
Floating bridges according to embodiments of the invention may be configured for vehicular traffic, pedestrian traffic, or both, and in some embodiments, a floating bridge may be configured primarily for vehicle traffic, or primarily for pedestrian traffic, or for heavy or light vehicle and/or pedestrian traffic, etc. Floating bridges according to embodiments of the invention may include a single or a plurality of traffic lanes, e.g., for vehicular traffic and pedestrian traffic. Floating bridges according to embodiments of the invention may be configured for long or short term use, and may be permanent, e.g., have projected life span of many years, or temporary in nature, e.g., be used until another bridge is built or repaired, and one or more principles and/or embodiments of the invention are applicable to long term or permanent bridges, as well as to short term or temporary bridges. Parts of the bridge may modular and be of a size to be transportable to a staging and/or deployment area.
Floating bridges according to embodiments of the invention may include different numbers, types and positioning of floating bridge parts. Selection of various bridge parts may depend upon whether the floating bridge is for long or short term use, vehicle or pedestrian traffic, emergency evacuation, replacement of a damaged or collapsed bridge, temporary detour, etc., and takes into consideration the particular bridge site. Some floating bridges according to embodiments of the invention include bridge parts that provide for a marine vessel navigation opening or channel.
According to embodiments of the invention, bridge parts may be selected and stowed locally for a particular site or adjacent the site, or stored for use in a plurality of bridge sites, either identified or yet to be identified, and stored locally or regionally, or by type of floating bridge, etc. Bridge parts may be modular so as to be usable at more than one site and/or to facilitate storage, stowage and/or erection of a bridge. Some modular bridge parts themselves may be fabricated from modular components, e.g., pontoons.
While some embodiments of floating bridges and floating bridge parts are illustrated and/or discussed herein, it should be understood, however, that it is not intended to limit the invention to the illustrated and/or discussed embodiments and variations of bridges, bridge parts, etc.
Floating bridge 100 according to an embodiment of the invention includes a traffic carrying structure comprising a roadway 102, which is divided into three parts, 104a-c (
A roadway 102 may comprise a surface or combination of surfaces to accommodate different types of traffic on the floating bridge 100. The roadway surfaces may comprise wearing surfaces such as a thin overlay system consisting of an epoxy with aggregate broadcast onto the surface. In one embodiment, the roadway 102 is orthotropic.
A floating transition span 150b may be configured as a floating dock connected to piles 256 to permit the floating transitional span to move with water level. The elevated transitional span 140b is pivotally connected to the floating transitional span 140b for vertical pivoting with water level fluctuations.
Bridge 100 depicted in
An elevated transition span 140 need not be buoyant, and transitions from the shore to a floating span which may be a floating center span 130 or a transition floating span 150. An elevated transition span may be considered elevated with respect to water level, and may or may not permit marine navigation therebelow. In some embodiments, sufficient height above water is provided below an elevated transition span, and the elevated transition span has sufficient length, to permit marine navigation below the span where the water depth is suitable to accommodate such navigation, e.g., smaller craft. For example, an elevated transition span 140 which provides for marine navigation may be about 250 feet long, or longer, if navigation for larger craft is wanted, or smaller if navigation only for smaller boat traffic is wanted. A navigation channel may be provided for security reasons to allow security boats to quickly navigate past the bridge 100, and where the bridge is openable, without opening it. The transition spans 140 and 150 accommodate water level changes, e.g., due to tides, weather, etc., or loading, which may result in vertical movement of a floating transition span 150 at each shore. According to an embodiment, this movement is accommodated by pivotally connecting the elevated transition spans to a shore approach and/or a floating span. In some embodiments, a floating transition span 150 is not provided, and an elevated transition span 140 connects a shore approach with a floating center span 130. In that case, the elevated transition span 140 may be pivotally connected to a floating center span 130.
An elevated transition span 140 supports the roadway 102 between a shore abutment 122 and a floating transition span 150 while accommodating vertical movements of parts of the floating bridge, as discussed, and can provide longitudinal restraint to maintain the roadway straight at the water end of the elevated transition span. An elevated transition span 140 which provides a navigation channel may only be provided on one or both sides of the water crossing. The construction of an elevated transition span 140 can vary depending on the requirements at the particular crossing, and can be constructed from various materials. In one embodiment, the transition span may be a steel truss assembled from prefabricated steel components. As with other components and/or modules of the floating bridge 100, an elevated transition span 140 may be pre-constructed and stored for delivering to a staging area, or stored at a deployment site near a projected bridge crossing.
Navigation lights may be installed at the bottom of elevated transition span 140 in the center of the navigation channel. Roadway expansion joints may be located at each end of a transition span 140. Electrical power and control wiring for the floating bridge may be installed on a transition span 140.
Floating bridges 100 and 100a are of modular design. For example, floating bridges 100 and 100a may include different numbers and configurations of floating center spans 130, floating transition span(s) 150, elevated transition span(s) 140 and/or shore ramp(s) 124. Thus, these parts may be of modular design and usable at different sites.
Referring to
In bridge 100a (
The shore abutments 122, which are depicted schematically in
Referring to
Three types of pontoons are used to fabricate floating spans of the bridges 100 and 100a. Pontoons 230 comprise first end, a second end, opposed sides, a top and a bottom, which are connected together to form a hollow, water-tight structure. The top and bottom are parallel to each other, the sides are parallel to each other and extend normal to the top and bottom, and each of the opposed sides is substantially longer than each of the ends, whereby the pontoon is elongated. At least a portion of the first end is sloped inwardly relative to the top to reduce drag or friction of the pontoon on the water, and these ends face outwardly in pontoon assemblies as shown in
Pontoon 230a, depicted in
The width of the buoyant structure 160 of the floating transitional span 150a is defined by four pontoons 230, 230b (
The winch 206 may be used to automatically maintain the proper anchor cable tension so as to maintain the floating spans in position with varying tidal, current and weather conditions, and for moving a center pivoting span or other component of the floating bridge. Horizontal and vertical rollers (not shown) may be provide near the drum of the winch to provide proper spooling of the anchor cable. In an alternative embodiment, the winch 206 may be provide as a separate watertight cell (except for a cable opening) which is attached to a pontoon 230 modified, e.g., in length, to accept the cell.
Pontoons 230 may include a hatch (not shown) to provide access to the interior of the pontoon.
Pontoons 230, 230a and 230b include a deck plate 238 bolted thereto which forms part of the traffic carrying structure. An orthotropic roadway is formed by covering the plates with a desired road surface.
Floating spans and buoyant structures comprise assemblies of pontoons 230, 230a and 230b. For example,
Pontoons 230, 230a, 230b may be combined into an assembly on land and launched into the water or may be assembled together in the water.
Bridges 100 and 100a comprise an anchorage system 114 as depicted in
Referring to
Referring to
Referring to
The embodiment of the lock connector 280 depicted in
The embodiment of the lock connector 290 depicted in
Referring to
A locking sequence is illustrated in
The staging area includes an assembly area 310 in close to the shore in relatively shallow water. The assembly area 310 includes a channel 312, which functions similar to a dry-dock, cut into the bottom adjacent the shore line to provide a suitable water depth for floating partially or fully assembled spans. For example, the floating transitional span 150a is shown being assembled in this area. Assembly includes positioning of pontoons by a cranes 314 where they can be attached to form a pontoon assembly for the buoyant structure 160. The cranes then assembles the base structure on pontoon assembly followed by attached the columns. The roadway 102 is then attached to the columns. Upon completion of the assembly of floating transitional span 150a, it can be floated into position for assembly into the bridge.
Different assembly operations may take place at the same time in different areas of the staging area depicted in
Cranes 318 may be provided to unload bridge parts trucked to the staging area or delivered by barge at the channel 312. Also, a helicopter pad (not shown) may be provided for helicopters to land and deliver parts, or helicopters could lower parts into any desired area. Parts in partial assembly may be stored in areas such as 320, where assembly may continue or from which parts may be moved to channel 312 for further assembly. Area 320 also stores a part of a elevated transition span 140 and pontoons. Area 320 is accessible by the cranes to either continue assembly there or move parts to other areas for further assembly or launch.
The site depicted in
In an embodiment, the prefabricated span modules and/or components may all be stored at one central location, may be stored at a location near the planned crossing, or may be trucked to the planned crossing location. Security and periodic maintenance may be required while the prefabricated span modules and/or components are in storage.
In an embodiment, the various components of the floating bridge are initially transported to the deployment site, either by truck, boat, or other transportation method. Shore abutments 122 are first constructed along with a roadway system on shore to connect to the shore abutments 122. The shore abutments 122 may be designed to be rapidly constructed by utilizing, for example, reinforced earth wall technology, etc., as discussed above.
Floating spans are connected and secured with the anchorage system. Anchor modules, not shown in
During installation, the floating bridge is trimmed to the proper freeboard, i.e. the distance from the waterline to the upper deck level of the floating bridge, through the use of gravel ballast installed inside the floating spans.
In an embodiment, once the various components of the bridge are connected, electrical wiring is installed to accommodate deck lighting or other electrical components, and provisions for attaching traffic barriers to the deck are installed.
Roadway cover plates are installed at the center of the floating bridge to accommodate any longitudinal movement resulting from environmental loads or water level changes, and may be configured to move, as required, when the center pivoting span 118 is rotated. Further, the roadway cover plates may be positioned to have a positive hold down effect to minimize the noise created by vehicular traffic driving on the cover plates.
Traffic control gates for the roadways and a control building may be installed on shore. The operation and sequencing of the traffic control gates, navigation channel lights, center pivoting span, center locks, centering pyramids, and other components may all be controlled from the control building or other remote location. Remote cameras and display screens may be used to monitor various operations of the floating bridge or, more specifically, the center pivoting span opening and closing. Bumper guards may be installed on the interior or exterior of the floating bridge to protect against pedestrian, vehicle, service cart, or marine vessel traffic.
The components of the floating bridge may be disassembled in the reverse order for storage or transportation to a different deployment site.
A transition span 150a may be transported by barge into position and is lowered into the water by pumping water into the barges. which transported the transition span into place in embodiments where the transition span is not permanently installed. The shore abutments 122 are connected to the transition spans 112 which are then connected to the abutting floating spans 110, with each connection method comprising either a bolt or hinge system, as appropriate.
In an embodiment with a center pivoting span 118, a segment of floating spans 110 is equipped with the components of the center pivoting span 118 described above. The center pivoting span 118 is moved into position and connected to connection anchor cables 152 and tensioned, and the hinge connection is completed. The center lock mechanism 128 on the upstream side of the floating bridge at the hinge is tensioned to keep the center pivoting span 118 from opening during assembly. In an embodiment, one of the floating spans 110 abutting the center pivoting span 118 may be kept in an open position while the hinge is tensioned.
This application claims the priority of provisional patent application 60/933,112, filed Jun. 5, 2007, titled “RSA Floating Bridge With Anchor Cables,” and provisional patent application 60/958,538, filed Jul. 7, 2007, titled “RSA Floating Long-Span Bridge.” The entire disclosures of these applications are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
60933112 | Jun 2007 | US | |
60958538 | Jul 2007 | US |