Rapid dispersing hydrous kaolins

Abstract
A composition comprising pulverized hydrous kaolins having a particle size distribution meeting the following ratio (I), (cumulative⁢ ⁢mass⁢ ⁢at⁢ ⁢0.5⁢ ⁢μrc⁢\)(cumulative⁢ ⁢mass⁢ ⁢at⁢ ⁢2⁢ ⁢μm)<=0.5,(I)
Description

Consistent with embodiments of the present invention, a composition comprising pulverized hydrous kaolins is disclosed. The pulverized hydrous kaolins disclosed herein can have a particle size distribution that enables the kaolins to exhibit a rapid dispersion in both aqueous medium and non-aqueous medium. The composition disclosed herein can be used in many areas, such as inks, fillers or extenders in paint, plastics, polymers, papermaking, and coatings. More generally, the composition disclosed herein may be used wherever hydrous kaolins are used.


Particulate kaolins occur naturally in the hydrous form and exist as crystalline structures containing hydroxyl functionality. The hydrous kaolins have been widely used in the paper industry. However, because the dispersion rate of the typical hydrous kaolins in aqueous medium and/or non-aqueous medium can be limited, the typical hydrous kaolins may sometimes not be satisfactory in some applications, such as inks, polymers, and coatings.


Therefore, there remains a need for hydrous kaolins capable of exhibiting a high dispersion rate in both aqueous medium and non-aqueous medium, in order to provide an improved rate of makedown in the applications, such as inks, polymers, and coatings. The present inventors have surprisingly discovered that a relatively low portion of the very fine particles can lead to a high rate of dispersion and that pulverized hydrous kaolins having a defined particle size distribution can afford a rapid dispersion in both aqueous medium and non-aqueous medium.


Accordingly, one aspect of the present invention relates to a composition comprising pulverized hydrous kaolins having a particle size distribution with a relatively low portion of fine particles, wherein the relatively low portion of fine particles is defined as a particle size distribution meeting the following ratio:
(cumulativemassat0.5μm)(cumulativemassat2μm)0.5,

and the pulverized hydrous kaolin has a median particle size of, for example, less than or equal to 2.0 μm.


Another aspect of the present invention provides a composition comprising hydrous kaolin having a particle size distribution of the following ratio:
(cumulativemassat0.5μm)(cumulativemassat2μm)0.5,

a median particle size of, for example, less than or equal to 2.0 μm, and a Hegman grind of more than 2 in 3 minutes, such as more than 2.5 in 3 minutes, and more than 3 in 3 minutes, in accordance with the “SSM” V-T Alkyd Hegman Test.


Furthermore, another aspect of the present invention provides a method of preparing the composition disclosed herein, comprising:


pulverizing hydrous kaolins wherein the hydrous kaolins have a particle size distribution meeting the following ratio:
(cumulativemassat0.5μm)(cumulativemassat2μm)0.5,and

a median particle size of, for example, less than or equal to 2.0 μm; and


including the pulverized hydrous kaolins in the composition.


In addition, the present invention further provides a method for increasing the dispersion rate of hydrous kaolins, comprising pulverizing the hydrous kaolins, wherein the hydrous kaolins have a particle size distribution of the following ratio:
(cumulativemassat0.5μm)(cumulativemassat2μm)0.5,and

a median particle size of, for example, less than or equal to 2.0 μm.


Another aspect of the present invention provides products, such as inks, paints, polymers, rubbers, and coatings, comprising the inventive hydrous kaolins as disclosed herein.


Another aspect of the present invention provides a method for measuring the rate of dispersion of a particulate pigment or pigment mixture. This method comprises combining the particulate pigment with an alkyd resin-containing system such as a liquid, non-aqueous vinyl-toluene alkyd resin-containing system, to form an initial pigment-containing mixture; grinding the initial pigment-containing mixture to produce a ground pigment-containing mixture; measuring the relative dispersion of the particulate pigment in the ground pigment-containing mixture; regrinding the ground pigment-containing mixture; and measuring the relative dispersion of the particulate pigment in the reground pigment-containing mixture. In one aspect, the relative dispersions can be measured using a Hegman-grind gauge based method. In another aspect, the relative dispersion can be determined by measuring the gloss and sheen of dry films prepared from the pigment-containing mixture.


The hydrous kaolins that can be used in the present invention can be obtained naturally from various locations, such as from the Rio Capim area of Brazil and Georgia of the United States.


The “particle size distribution” (PSD) disclosed herein is measured by a ratio of: (1) a cumulative mass of particles with a particle size of 0.5 μm to (2) a cumulative mass of particles with a particle size of 2 μm. The PSD of a particulate product, such as the pigment product according to the present invention, can be determined by measuring the sedimentation of the particulate product in a fully dispersed condition in a standard aqueous medium, such as water, using a SEDIGRAPH™ instrument, e.g., SEDIGRAPH 5100, obtained from Micromeritics Corporation, USA. The “particle size” of a given particle is expressed in terms of the diameter of a sphere of equivalent diameter, which sediments through the medium, i.e., an equivalent spherical diameter (ESD).


All percentages and amounts expressed herein are by weight. All amounts, percentages, and ranges expressed herein are approximate.


In one embodiment, the inventive hydrous kaolin disclosed herein has a median particle size of less than or equal to 2 μm. For example, the median particle size can range from 0.5 μm to 1.5 μm, such as greater than 0.5 μm but less than 1.5 μm, or less than 1 μm. The median particle size can also, for example, be less than 2 μm but greater than 0.4 μm.


The inventive hydrous kaolin disclosed herein can have a high dispersion rate in both aqueous medium and non-aqueous medium. As disclosed herein, the “aqueous medium” means a water-based medium, and more generally a polar, hydrophilic medium. The “non-aqueous medium” means a generally non-polar, hydrophobic medium. Optionally, both the aqueous medium and the non-aqueous medium can comprise at least one soluble organic solvent chosen, for example, from ketones, esters, and alcohols. Additionally, the medium can comprise emulsions of water and insoluble organic solvents, for example, hydrocarbons.


As disclosed herein, pulverization can be achieved by any process known to one of ordinary skill in the art, for example, using Bauer mills or air classification mills (ACMs).


Even further disclosed herein are products, such as inks; paints, such as matte paints; polymer products; rubber products; and coatings, such as non-aqueous coatings for paper, using the inventive hydrous kaolins.


In one embodiment, the present invention provides an ink comprising, in an appropriate medium, the inventive hydrous kaolins disclosed herein. The “ink” disclosed herein can be chosen from aqueous inks and non-aqueous inks, including, for example, gravure inks, heat-set inks, lithographic printing inks, and newsprint inks. The inventive hydrous kaolins disclosed herein can serve, for example, as a pigment in the ink and can provide economic advantage to the ink product, as they can exhibit high dispersion rate in both aqueous medium and non-aqueous medium.


The appropriate medium in the ink disclosed herein can be chosen from aqueous media and non-aqueous media conventionally used in the art.


Depending on the final applications of the ink, the ink disclosed herein can further comprise at least one component chosen, for example, from resins, such as vinyl resins; polymers; additives, such as rheology modifiers, surfactants, and drying accelerating agents such as sodium lauryl sulfate, N,N-diethyl-m-toluamide, cyclohexylpyrrolidinone and butyl carbitol; fillers; diluents; humectants, such as ethylene glycol, propylene glycol, diethylene glycols, glycerine, dipropylene glycols, polyethylene glycols, polypropylene glycols, amides, ethers, carboxylic acids, esters, alcohols, organosulfides, organosulfoxides, sulfones, alcohol derivatives, carbitol, butyl carbitol, cellosolve, ether derivatives, amino alcohols, and ketones; and biocides, such as benzoates, sorbates, and isothiazolones. The ink product can further comprise at least one additional pigment chosen from those conventionally used in the art.


The amount of inventive hydrous kaolin in a given ink can vary greatly based on the formulation of the ink, as would be apparent to one of ordinary skill in the art. For example, in some embodiments, the inventive hydrous kaolin can be present in an amount ranging from 5% to 45% by weight of the ink as formulated.


In another embodiment, the present invention provides a paint, such as an aqueous or non-aqueous industrial coating, architectural paint, deco paint, or art paint, comprising, in an appropriate medium, the inventive hydrous kaolins disclosed herein. The inventive hydrous kaolins disclosed herein can serve, for example, as a gloss control agent pigment in the paint. The inventive hydrous kaolin can generally be present in an amount less than the critical pigment volume. However, the inventive pigments can also be present in higher pigment volume concentrations, such as in the range of 1% to 80% by weight on a dry film basis.


The paint disclosed herein can further comprise at least one component chosen from binders, such as polymeric binders, for example, water dispersible binders chosen, for example, from polyvinyl alcohol (PVA) and latex; and additives conventionally used in paints, chosen, for example, from surfactants, thickeners, biocides, defoamers, wetting agents, dispersants, and coalescents. The paint disclosed herein can comprise at least one additional pigment chosen, for example, from TiO2 and calcium carbonate.


In another embodiment, the present invention provides a polymer product comprising the inventive hydrous kaolins disclosed herein. The inventive hydrous kaolin can be present at a concentration of up to 60% by weight of the polymer as compounded and up to 30% by weight of the final polymer article. The inventive hydrous kaolin can be used both for resin extension (i.e., filling), TiO2 extension, and reinforcement of the polymer.


The polymer product disclosed herein comprises at least one polymer resin. The term “resin” means a polymeric material, either solid or liquid, prior to shaping into a plastic article. The at least one polymer resin used in the present invention is one which, on cooling (in the case of thermoplastic plastics) or curing (in the case of thermosetting plastics), can form a plastic material.


The at least one polymer resin, which can be used in the present invention, can be chosen, for example, from polyolefin resins, polyamide resins, polyester resins, engineering polymers, allyl resins, thermoplastic resins, and thermoset resins.


In another embodiment, the present invention provides a rubber product comprising the inventive hydrous kaolins disclosed herein. The inventive hydrous kaolin composition can provide the benefits of resin extension, reinforcement of the rubber, and increased hardness of the rubber composition. The rubber product disclosed herein comprises at least one rubber chosen from natural rubbers and synthetic rubbers. For example, sulphur-vulcanizable rubbers, which can be used for manufacture of tire treads can be used in the present invention. Examples of the synthetic rubbers, which may be used in the present invention, include, but are not limited to, styrene-butadiene rubber (SBR), vinyl-styrene-butadiene rubber (VSBR), butadiene rubber (BR), and neoprene rubber or polyisoprene. The SBR may be emulsion SBR (E-SBR) or solution SBR (S-SBR). The VSBR may be solution VSBR (S-VSBR). And examples of the BR include, but are not limited to, cis-1,3-polybutadiene rubber and cis-1,4-polybutadiene rubber. An example of the natural rubbers, which can be used in the present invention, is Standard Malaysian natural rubber.


The rubber product disclosed herein may further comprise at least one additive chosen from conventional additives used in the art, for example, extender oils and mineral and synthetic fillers. The rubber product can include the inventive hydrous kaolin in an amount up to 35% by weight as formulated.


In another embodiment, the present invention provides a coating, such as a non-aqueous coating for paper or paperboard, comprising the inventive hydrous kaolins disclosed herein. The coating can further comprise at least one binder chosen from binders conventionally used in the art. Exemplary binders include, but are not limited to, adhesives derived from natural starch and synthetic binders, including, for example, styrene butadiene, acrylic latex, vinyl acetate latex, or styrene acrylic, casein, polyvinyl alcohol, polyvinyl acetate, or mixtures thereof.


Paper and paperboard coatings may have different binder levels depending on the end use of the coated product. Appropriate binder levels based upon the desired end product would be readily apparent to the skilled artisan. For example, binder levels can be controlled to allow the surfaces to receive ink without disruption. The latex binder levels for paper or paperboard coatings generally range from 3% to 30% by weight relative to the total weight of the coating. For example, the at least one binder can be present in an amount ranging from 3% to 30%, such as from 10% to 30%, by weight relative to the total weight of the coating. Paper or paperboard coatings can include the inventive hydrous kaolins in an amount ranging from about 3% to about 95% by weight on a dry coating basis.


The present invention is further illuminated by the following non-limiting examples, which are intended to be purely exemplary of the invention.







EXAMPLES

In the following Examples, the particle size data were determined using SEDIGRAPH 5100 in water at the standard temperature of 34.9° C.


Example 1

The particle size distributions of four samples of hydrous kaolins are shown in Table I below. In this Example, Samples I and II are two conventional particle pulverized products generally considered to exhibit good dispersion in aqueous and non-aqueous systems. Inventive samples A and B were made according to the present invention from spray-dried Brazilian-based products. These inventive hydrous kaolins were pulverized using conditions known to simulate typical pulverization conditions including multiple passes through a laboratory micromill sold by Mikro Samplmil Mikropul, a division of Slick Corporation, located in Summit, N.J. Pulverization was accomplished by passing the sample through the micromill 3 times, using a 340 mesh screen.

TABLE IHydrous KaolinParticle SizeInventiveDistributionConventional IConventional IIAInventive B5 μm99.698.399.096.62 μm93.590.489.679.61 μm82.379.571.356.10.5 μm  65.061.543.530.5Median μm0.35(0.4)0.580.84Ratio10.70.70.50.41Cumulativemassat0.5μmCumulativemassat2μm0.5.


The results shown in Table I indicate that inventive Samples A and B according to the present invention have a particle size distribution meeting the following ratio:
(cumulativemassat0.5μm)(cumulativemassat2μm)0.5;

while the conventional pulverized Samples I and II, which are not according to the present invention, do not have such a particle size distribution.


A comparative dispersion test of these four samples was conducted using the “SSM” V-T Alkyd Hegman Test. In the “SSM” V-T Alkyd Hegman Test, a pigment containing mixture as set forth in Table II was first prepared:

TABLE IIWeightMaterialVolume (gal.)(lbs).Weight %Resin1286.22160.774.1Solvent293.3589.620.2Anti-Settling Agent31.913.60.5Organoclay Rheology1.113.60.5Modifier4Dispersant52.118.10.6Dryer I60.86.80.2Dryer II74.036.31.2Anti Skin81.29.10.3Solvent99.468.32.3
1Vinyl Toluene Resin (60%) = VT Alkyd (Polychem 6693-60)

2Odorless Mineral Spirits

3MPA-2000X

4Bentone SD1

5Nuosperse 657

6Cobalt, 12%

7Zirconium, 18%

8Methyl, Ethyl Ketoxine

9Toluene


In the base formulation, it is understood that:


the solids concentration is 45.9% by weight relative to the total weight of the base formulation; and


the solids concentration is 37.8% by volume relative to the total volume of the base formulation.


A final formulation as set forth in the following chart, was then prepared by addition of the pigment (i.e., the hydrous kaolin sample) to the base formulation:

WeightMaterialVolume (gal.)(lbs.)Weight %Base Formulation20.6149.260.2Pigment14.498.539.8
1Hydrous kaolin sample


In the final formulation of the pigment-containing mixture, it is understood that:


the pigment volume concentration (PVC) is 34.9% relative to the total volume of the final formulation;


the solids concentration is 69.0% by weight relative to the total weight of the final formulation; and


the solids concentration is 50.2% by volume relative to the total volume of the final formulation.


In the dispersion test, a simulated sand mill was used for grinding. Specifically, approximately 250 g of glass beads, Potters Industries A-Series, Tech Quality Glass Spheres, A-205 (nominal 2 mm diameter) were added to a 500 ml HDPE screw-top cylindrical sample bottle, along with nominally the same weight of the final formulation. The pigment-containing mixture then underwent grinding using a mechanical agitator, Red Devil Model 5400 Paint Shaker for certain period of time (grind time) as specified. Dispersion was measured as a function of time using a standard Hegman Grind gauge with Hegman National Standard ranging from 0 to 8, wherein the higher number of the Hegman Grind value, the higher the relative degree of dispersion. The results are shown in Table III.

TABLE IIIConventionalInventiveExamplesExamplesGrind1 Time,IIIABMinutesHegman Grind Value10.00.01.05.020.00.03.55.030.00.05.05.040.00.05.05.050.01.55.05.061.51.55.05.072.53.05.05.083.05.05.05.093.55.05.05.0104.55.05.05.0155.05.05.05.0
1Simulated Sand Mill


The results shown in Table III indicate that inventive Samples A and B have a higher dispersion rate than conventional Samples I and II.


Furthermore, the film properties were measured for the four samples after drying overnight. Gloss and sheen were measured in a known manner using a Hunter Pro-3 Gloss Meter. The results are shown in Table IV:

TABLE IVConventionalInventiveExamplesExamplesIIIAB1 Minute Grind120° Gloss16.717.826.614.160° Gloss55.259.971.558.185° Sheen58.270.587.485.85 Minute Grind120° Gloss24.424.330.216.460° Gloss70.270.576.463.185° Sheen87.388.592.785.710 Minute Grind120° Gloss34.931.733.118.060° Gloss78.076.677.764.585° Sheen90.190.092.787.715 Minute Grind120° Gloss36.529.841.822.060° Gloss80.575.183.469.685° Sheen91.691.394.390.0
1Simulated Sand Mill


The results shown in Table IV indicate that inventive Samples A and B and conventional Samples I and II have good non-aqueous dispersion properties.


Example 2

To confirm that the improved dispersion rate is related to a reduced fine distribution, the particle size distributions of six samples of hydrous kaolins were measured. The results are shown in Table V. In this Example, Samples II, III and IV are conventional pulverized hydrous kaolin products known to have high dispersion in non-aqueous medium. Sample II is the same as that in Example I. Samples C, D, and E are samples made according to the present invention using Brazilian kaolins and Georgia kaolins, and were pulverized by laboratory pulverization under the same conditions as set forth in Example 1.

TABLE VConventionalConventionalParticle SizeExamplesInventive ExamplesExampleDistributionIIIIICDEIV5 μm98.381.197.397.598.698.42 μm90.491.487.076.394.297.01 μm79.578.968.052.279.494.90.5 μm  61.959.639.027.349.986.4Median μm(0.4)(0.4)0.60.90.5(<0.3)Ratio0.70.70.50.40.50.91Cumulativemassat0.5μmCumulativemassat2μm0.5


The dispersion rate and film properties of these six samples were also measured according to the methods disclosed in Example I. The results are shown in Table VI and Table VII, respectively:

TABLE VIConventionalConventionalExamplesInventive ExamplesExampleGrind1 Time,IIIIICDEIVMinutesHegman Grind Value10.000.002.002.002.500.0020.000.003.002.503.500.0030.001.003.502.504.000.0041.003.003.503.504.500.0053.004.004.003.504.500.0063.504.504.504.004.500.5074.505.005.004.504.501.0085.005.005.005.004.501.5095.005.005.005.004.502.00105.005.005.005.005.002.00155.005.005.005.005.002.50
1Simulated Sand Mill













TABLE VII













Conventional

Conventional



Examples
Inventive Examples
Example














II
III
C
D
E
IV











1 Minute Grind1













20° Gloss
18.2
20.0
23.7
11.8
11.8
11.0


60° Gloss
61.9
62.6
70.8
53.4
52.7
44.1


85°
78.4
72.9
89.1
77.8
72.8
46.7


Sheen







5 Minute Grind1













20° Gloss
19.8
24.8
25.7
15.7
15.7
18.0


60° Gloss
69.2
71.9
71.9
59.0
58.0
63.1


85°
87.5
88.5
89.9
81.2
76.4
79.6


Sheen







10 Minute Grind1













20° Gloss
23.3
27.9
31.2
15.0
18.0
21.8


60° Gloss
69.9
73.7
77.8
59.7
62.7
66.4


85°
87.8
89.6
92.2
82.4
80.0
82.3


Sheen







15 Minute Grind1













20° Gloss
27.5
28.5
31.2
18.0
21.1
22.7


60° Gloss
73.7
75.4
78.1
63.1
65.3
68.7


85°
90.1
90.2
92.3
83.4
81.4
84.2


Sheen








1Simulated Sand Mill







The results shown in Table VI indicate that the inventive Samples C, D, and E have higher dispersion rates than conventional Samples II, III, and IV. The results shown in Table VII indicate that inventive Samples C, D, and E and conventional Samples II, III, and IV have good non-aqueous dispersion properties.


Example 3

To demonstrate the effect of pulverization, the dispersion rates of the non-pulverized, spray-dried feeds were measured and compared directly to the corresponding pulverized samples C and D according to the present invention. The dispersion rate was measured according to the test disclosed in Example 1. The results are shown in Table VIII:

TABLE VIIIGrind1 Time,Spray-DriedInventiveSpray-DriedInventiveMinutesFeed CSample CFeed DSample DHegman Grind10.02.000.03.0020.02.000.03.0030.03.000.03.5040.03.500.03.5050.04.000.04.5060.04.500.05.0070.05.000.05.0080.05.000.05.0090.05.000.05.00100.05.000.05.00
1Simulated Sand Mill


The results shown in Table VIII indicate the effect of pulverization, namely, that pulverized samples have higher dispersion rates than their corresponding non-pulverized samples. These results are shown with respect to the Hegman Grind value, wherein the higher number reflects a relative higher degree of dispersion.


Example 4

The effect of pulverization was again demonstrated in Example 4. The dispersion rate was measured according to the test disclosed in Example 1, except that in measuring the dispersion rate, a high-speed, Cowles-type mixer was used in place of the simulated sand mill. The results are shown in Table IX:

TABLE IXSpray-DriedInventiveSpray-DriedInventiveGrind1 Time,Feed CSample CFeed DSample DMinutesHegman Grind10.02.000.04.0050.04.500.05.00100.05.000.05.00150.05.000.05.00200.05.000.05.00
1High Speed Cowles Dispersion


The results shown in Tables IX indicate the effect of pulverization, namely, that pulverized samples have higher dispersion rates than their corresponding non-pulverized samples regardless which dispersion method was used. These results are shown with respect to the Hegman Grind value, wherein the higher number reflects a relative higher degree of dispersion.


Example 5

The effect of pulverization was again demonstrated, this time, on three spray-dried hydrous kaolins. Samples F and G meet the particle size requirements of the present invention. In addition, a conventional spray-dried hydrous kaolin known to have very good dispersion characteristics, but that does not meet the particle size limitations of the present invention, was used as control Sample V. All three spray-dried hydrous kaolin samples were pulverized using a laboratory micropulverizer under conditions shown in Tables X and XI. For example, the screen sizes and numbers of passes through the micro-pulverizer were varied as shown in Table X and XI. In general, the use of a smaller screen and/or a larger number of passes results in a product having better dispersion properties. The dispersion rate and film properties were measured according to the methods disclosed in Example 1. The results are shown in Table X and Table XI, respectively:

TABLE XInventive FInventive GConventional Control VScreenLargeSmallSmallLargeSmallSmallLargeSmallSmall# of PassesGrind1 Time113113113(Minutes)Hegman Grind Value10.000.001.000.001.001.000.000.000.0020.000.505.000.001.001.000.000.000.0030.002.005.000.001.501.500.000.000.0040.002.005.000.001.501.500.000.000.0050.002.005.000.002.002.000.000.000.5060.002.005.000.002.002.000.000.001.0070.002.005.000.003.003.000.000.001.5080.002.005.000.003.004.000.000.002.5090.002.505.000.003.505.000.000.004.00100.003.006.000.003.505.500.000.005.00150.003.006.000.003.506.000.000.006.00
1Simulated Sand Mill













TABLE XI













Inventive F
Inventive G
Conventional Control V









Screen

















Large
Small
Small
Large
Small
Small
Large
Small
Small









# of Passes

















1
1
3
1
1
3
1
1
3











1 Minute Grind1
















20° Gloss
17.4
22.6
30.5
16.3
16.7
19.4
8.4
10.0
21.1


60° Gloss
59.2
69.0
76.5
60.0
61.0
67.2
37.9
44.1
65.1


85° Sheen
70.1
85.9
94.1
73.3
81.2
87.4
39.2
52.4
79.3







5 Minute Grind1
















20° Gloss
18.0
26.5
32.8
17.4
20.3
22.4
10.3
10.8
23.4


60° Gloss
60.5
71.9
79.0
62.8
66.3
69.8
42.7
47.0
68.7


85° Sheen
73.0
87.3
95.4
77.5
84.4
89.2
46.7
59.6
86.8







10 Minute Grind1
















20° Gloss
22.6
24.6
31.3
21.4
22.6
23.1
11.8
15.4
28.7


60° Gloss
66.2
71.0
77.5
67.5
70.3
71.8
45.7
53.9
73.8


85° Sheen
77.6
88.8
96.2
81.8
87.6
91.2
48.9
66.3
90.7







15 Minute Grind1
















20° Gloss
23.7
29.1
37.3
23.2
22.5
30.8
14.0
14.9
31.3


60° Gloss
67.4
74.7
82.4
68.3
69.7
77.2
48.5
54.1
75.7


85° Sheen
77.3
90.5
95.8
83.6
88.1
92.8
51.3
67.9
91.5








1Simulated Sand Mill







The results indicate the effect of pulverization, namely, that the relative rate of dispersion indicated by the Hegman Grind value is also dependent on the degree of pulverization. Samples that have undergone more thorough pulverization have higher dispersion rate than the same samples that have undergone less thorough pulverization. Even under the same pulverization conditions, the inventive samples according to the present invention have a higher dispersion rate than the conventional sample.


In addition, as shown in Table XI, the inventive Samples F and G, which underwent pulverization with a small screen and one pass show similar film properties as the conventional control Sample V that underwent pulverization with a small screen and three passes.


Unless otherwise indicated, all numbers expressing quantities of ingredients, reaction conditions, and so forth used in the specification and claims are to be understood as being modified in all instances by the term “about.” Accordingly, unless indicated to the contrary, the numerical parameters set forth in the following specification and attached claims are approximations that may vary depending upon the desired properties sought to be obtained by the present invention.

Claims
  • 1. A composition comprising pulverized hydrous kaolin, wherein the pulverized hydrous kaolin has a particle size distribution of the following ratio:
  • 2. The composition according to claim 1, wherein the pulverized hydrous kaolin has a median particle size (D50) ranging from about 0.5 μm to about 1.5 μm.
  • 3. The composition according to claim 1, wherein the pulverized hydrous kaolin has a median particle size (D50) of less than about 2.0 μm and greater than about 0.4 μm.
  • 4. The composition according to claim 2, wherein the pulverized hydrous kaolin has a median particle size (D50) of less than about 1.0 μm and greater than about 0.5 μm.
  • 5. A composition comprising hydrous kaolin, wherein the hydrous kaolin has a particle size distribution of the following ratio:
  • 6. The composition according to claim 5, wherein the hydrous kaolin has a Hegman grind of more than about 2.5 in 3 minutes using the “SSM” V-T Alkyd Hegman Test.
  • 7. The composition according to claim 6, wherein the hydrous kaolin has a Hegman grind of more than about 3 in 3 minutes using the “SSM” V-T Alkyd Hegman Test.
  • 8. The composition according to claim 5, wherein the hydrous kaolin has a median particle size (D50) ranging from about 0.5 μm to about 1.5 μm.
  • 9. The composition according to claim 5, wherein the hydrous kaolin has a median particle size (D50) of less than about 2.0 μm and greater than about 0.4 μm.
  • 10. The composition according to claim 8, wherein the hydrous kaolin has a median particle size (D50) of less than about 1.0 μm and greater than about 0.5 μm.
  • 11. A method of preparing a kaolin composition comprising: pulverizing hydrous kaolin wherein the hydrous kaolins have the following particle size distribution ratio: (cumulative⁢ ⁢mass⁢ ⁢at⁢ ⁢0.5⁢ ⁢μm)(cumulative⁢ ⁢mass⁢ ⁢at⁢ ⁢2⁢ ⁢μm)≤0.5,anda median particle size (D50) less than or equal to about 2.0 μm; and including the pulverized hydrous kaolins in the composition.
  • 12. A method for increasing the dispersion rate of hydrous kaolins, comprising pulverizing the hydrous kaolins wherein the hydrous kaolins have a particle size distribution of the following ratio:
  • 13. An ink comprising, in an appropriate medium, hydrous kaolin, wherein the hydrous kaolin has a particle size distribution of the following ratio:
  • 14. The ink according to claim 13, wherein the appropriate medium is chosen from aqueous media and non-aqueous media.
  • 15. The ink according to claim 13, wherein the ink is chosen from gravure inks, heat-set inks, lithographic printing inks, and newsprint inks.
  • 16. The ink according to claim 13, further comprising at least one component chosen from resins, polymers, additives, fillers, diluents, humectants, lecithin, and biocides.
  • 17. The ink according to claim 16, wherein the resins are chosen from vinyl resins, acrylic resins, hydrocarbon resins, polyester resins, metal-containing resinates, and cellulosic resinates.
  • 18. The ink according to claim 16, wherein the additives are chosen from rheology modifiers, surfactants, and drying accelerating agents.
  • 19. The ink according to claim 18, wherein the additives are chosen from drying accelerating agents.
  • 20. The ink according to claim 19, wherein the drying accelerating agents are chosen from sodium lauryl sulfate, N,N-diethyl-m-toluamide, cyclohexylpyrrolidinone and butyl carbitol.
  • 21. The ink according to claim 16, wherein the humectants are chosen from ethylene glycol, propylene glycol, diethylene glycols, glycerine, dipropylene glycols, polyethylene glycols, polypropylene glycols, amides, ethers, carboxylic acids, esters, alcohols, organosulfides, organosulfoxides, sulfones, alcohol derivatives, carbitol, butyl carbitol, cellosolve, ether derivatives, amino alcohols, and ketones.
  • 22. The ink according to claim 16, wherein the biocides are chosen from benzoates, sorbates, and isothiazolones.
  • 23. The ink according to claim 13, further comprising at least one pigment.
  • 24. A paint comprising, in an appropriate medium, hydrous kaolin, wherein the hydrous kaolin has a particle size distribution of the following ratio:
  • 25. The paint according to claim 24, wherein the paint is chosen from architectural paints, deco paints, art paints, and industrial coatings.
  • 26. The paint according to claim 24, wherein the paint has a pigment volume concentration in the range of 1%-80%.
  • 27. The paint composition of claim 24, wherein the paint has a pigment volume concentration below its critical pigment volume concentration.
  • 28. The paint according to claim 24, further comprising at least one component chosen from binders and additives.
  • 29. The paint according to claim 28, wherein the binders are chosen from aqueous dispersible binders and non-aqueous dispersible binders.
  • 30. The paint according to claim 28, wherein the binders are chosen from polyvinyl alcohol, acrylic, vinyl acrylic, vinyl acetate, styrene-containing and latex-containing binders.
  • 31. The paint according to claim 28, wherein the additives are chosen from surfactants, thickeners, defoamers, wetting agents, dispersants, biocides, and coalescents.
  • 32. The paint according to claim 28, further comprising at least one pigment.
  • 33. The paint according to claim 32, wherein the at least one additional pigment is chosen from TiO2 and calcium carbonate.
  • 34. A polymer product comprising hydrous kaolin, wherein the hydrous kaolin has a particle size distribution of the following ratio:
  • 35. The polymer product according to claim 34, further comprising at least one polymer resin.
  • 36. The polymer product according to claim 35, wherein the at least one polymer resin is chosen from polyolefin resins, allyl resins, polyamide resins, polyester resins, engineering polymers, thermoplastic resins and thermoset resins.
  • 37. A rubber product comprising hydrous kaolin, wherein the hydrous kaolin has a particle size distribution of the following ratio:
  • 38. The rubber product according to claim 37, wherein the rubber product comprises at least one rubber chosen from natural rubbers and synthetic rubbers.
  • 39. The rubber product according to claim 38, wherein the synthetic rubbers are chosen from sulphur-vulcanisable rubbers, styrene-butadiene rubbers, vinyl-styrene-butadiene rubbers, butadiene rubbers, and neoprene rubbers.
  • 40. The rubber product according to claim 39, wherein the styrene-butadiene rubbers are chosen from emulsion and solution styrene-butadiene rubbers.
  • 41. The rubber product according to claim 39, wherein the butadiene rubbers are chosen from cis-1,3-polybutadiene rubber and cis-1,4-polybutadiene rubber.
  • 42. The rubber product according to claim 38, wherein the natural rubbers are Standard Malaysian natural rubbers.
  • 43. A coating comprising hydrous kaolin, wherein the hydrous kaolin has a particle size distribution of the following ratio:
  • 44. The coating according to claim 43, wherein the coating is a non-aqueous paper coating.
  • 45. The coating according to claim 43, wherein the coating is a paperboard coating.
  • 46. The coating according to claim 39, further comprising at least one binder.
  • 47. An ink comprising, in an appropriate medium, pulverized hydrous kaolin, wherein the pulverized hydrous kaolin has a particle size distribution of the following ratio:
  • 48. A paint comprising, in an appropriate medium, pulverized hydrous kaolin, wherein the pulverized hydrous kaolin has a particle size distribution of the following ratio:
  • 49. A polymer product comprising pulverized hydrous kaolin, wherein the pulverized hydrous kaolin has a particle size distribution of the following ratio:
  • 50. A rubber product comprising pulverized hydrous kaolin, wherein the pulverized hydrous kaolin has a particle size distribution of the following ratio:
  • 51. A coating comprising pulverized hydrous kaolin, wherein the pulverized hydrous kaolin has a particle size distribution of the following ratio:
  • 52. A paper coating comprising pulverized hydrous kaolin, wherein the pulverized hydrous kaolin has a particle size distribution of the following ratio:
  • 53. A paperboard coating comprising pulverized hydrous kaolin, wherein the pulverized hydrous kaolin has a particle size distribution of the following ratio:
  • 54. A method for measuring the rate of dispersion of a particulate pigment or pigment mixture, said method comprising: a. combining the particulate pigment with an alkyd resin-containing system to form an initial pigment-containing mixture; b. grinding the initial pigment-containing mixture to produce a ground pigment-containing mixture; c. measuring the relative dispersion of the particulate pigment in the ground pigment-containing mixture; d. regrinding the ground pigment-containing mixture; and e. measuring the relative dispersion of the particulate pigment in the reground pigment-containing mixture.
  • 55. The method of claim 54, wherein said alkyd resin comprises a liquid, non-aqueous alkyd resin.
  • 56. The method of claim 54, wherein said alkyd resin comprises a vinyl-toluene resin.
  • 57. The method of claim 54, wherein said relative dispersions are measured using a Hegman grind gauge-based method.
  • 58. The method of claim 54, wherein said relative dispersions are determined by measuring the gloss and sheen of dry films prepared from the pigment-containing mixture.
Parent Case Info

This application claims priority to U.S. Provisional Patent Application No. 60/523,672, filed Nov. 21, 2003.

PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/US04/38575 11/18/2004 WO 10/19/2006
Provisional Applications (1)
Number Date Country
60523672 Nov 2003 US